Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Amira Abdel-Rahman
// (c) Massachusetts Institute of Technology 2019
////////////3D bar-truss fea/////////////////////
function solveFea(){
// # determine the global matrices
var M,K,F;
[M,K,F]=getMatrices(setup);
// M.print();
// K.print();
// F.print();
// M, K, F = get_matrices(properties)
// [Q,R]=tf.linalg.qr(K);
var displacements=lusolve(K.arraySync(), F.arraySync(),false);
// console.log(displacements);
updateDisplacement(displacements);
var X= tf.tensor(displacements);//change later to more effecient solver
console.log("Displacements:")
X.print();
// # determine the stresses in each element
var stresses = get_stresses(setup, displacements);
updateStresses(stresses.arraySync());
console.log("Stresses:");
stresses.print()
// console.log(setup);
//TODO CHECK SINGULARITY AND DOFSC
}
function getMatrices(setup){
var M = tf.zeros([setup.ndofs,setup.ndofs]);
var K = tf.zeros([setup.ndofs,setup.ndofs]);
for(var ii=0;ii<setup.edges.length;ii++){
var element=setup.edges[ii];
var fromPoint= toTf3D(setup.nodes[element.source].position);
var toPoint= toTf3D(setup.nodes[element.target].position);
var dofs=[];
dofs.push(...setup.nodes[element.source].degrees_of_freedom);
dofs.push(...setup.nodes[element.target].degrees_of_freedom);
var element_vector=tf.sub (toPoint,fromPoint);
var length = element_vector.norm();
var rho = tf.scalar(element.density);
var area = tf.scalar(element.area);
var E = tf.scalar(element.stiffness);// youngs modulus
var Cm = tf.div(tf.mul(rho,tf.mul(area,length)),tf.scalar(6.0));//rho * area * length /6.0
var Ck= tf.div(tf.mul(E,area),length);//E * area / length
// Cm.print();
var m = tf.tensor ([[2,1],[1,2]]) ;
var k = tf.tensor([[1,-1],[-1,1]]);
var x_axis=tf.tensor ([1,0,0]);
var y_axis=tf.tensor ([0,1,0]);
var z_axis=tf.tensor ([0,0,1]);
// # find rotated mass and stifness matrices
var tau = rotation_matrix(element_vector, x_axis,y_axis,z_axis);
var m_r=tf.matMul(tau,tf.matMul(m,tau) ,true ,false) //tau.T.dot(m).dot(tau)
var k_r=tf.matMul(tau,tf.matMul(k,tau) ,true ,false) //tau.T.dot(k).dot(tau)
// # change from element to global coordinate
var B=tf.zeros([6,setup.ndofs]);
var B=[]
for(var i=0;i<6;i++){
B.push([]);
for(var j=0;j<setup.ndofs;j++){
B[i].push(0.0);
}
}
for(var i=0;i<6;i++){
B[i][dofs[i]]=1.0;
}
B=tf.tensor(B);
// B.print()
var M_rG=tf.matMul(B,tf.matMul(m_r,B) ,true ,false) //B.T.dot(m_r).dot(B)
var K_rG=tf.matMul(B,tf.matMul(k_r,B) ,true ,false) //B.T.dot(k_r).dot(B)
M=tf.add(M,tf.mul(Cm, M_rG)); //+= Cm * M_rG
K=tf.add(K,tf.mul(Ck, K_rG)); //+= Ck * K_rG
}
// # construct the force vector
var F=[];
for(var i=0;i<setup.nodes.length;i++){
F.push(setup.nodes[i].force.x);
F.push(setup.nodes[i].force.y);
F.push(setup.nodes[i].force.z);
}
F=tf.tensor(F);
// # remove the restrained dofs
var remove_indices=[];
for(var i=0;i<setup.nodes.length;i++){
for(var j=0;j<setup.nodes[i].degrees_of_freedom.length;j++){
if(setup.nodes[i].restrained_degrees_of_freedom[j]){
remove_indices.push(setup.nodes[i].degrees_of_freedom[j]);
}
}
}
// M.print();
// K.print();
// F.print();
for(var i=0;i<2;i++){
M=tf_delete(M,remove_indices,i);
K=tf_delete(K,remove_indices,i);
}
F=tf_delete(F,remove_indices,0);
// M.print()
// K.print()
// F.print()
return [ M,K,F ]
}
function get_stresses(setup,X){
// # find the stresses in each member
var stresses=[];
for(var ii=0;ii<setup.edges.length;ii++){
var element=setup.edges[ii];
// # find the element geometry
var fromPoint= toTf3D(setup.nodes[element.source].position);
var toPoint= toTf3D(setup.nodes[element.target].position);
var dofs=[];
dofs.push(...setup.nodes[element.source].degrees_of_freedom);
dofs.push(...setup.nodes[element.target].degrees_of_freedom);
var element_vector=tf.sub (toPoint,fromPoint);
var x_axis=tf.tensor ([1,0,0]);
var y_axis=tf.tensor ([0,1,0]);
var z_axis=tf.tensor ([0,0,1]);
// # find rotated mass and stifness matrices
var tau = rotation_matrix(element_vector, x_axis,y_axis,z_axis);
var global_displacements=tf.tensor([setup.nodes[element.source].displacement.x,setup.nodes[element.source].displacement.y,setup.nodes[element.source].displacement.z,
setup.nodes[element.target].displacement.x,setup.nodes[element.target].displacement.y,setup.nodes[element.target].displacement.z]) //# todo change
// # nodal displacement
var q=tf.dot(tau,global_displacements);
var q=tf.unstack(q);
var strain=tf.div(tf.sub(q[1],q[0]),element_vector.norm()); //todo check smarter way to do it
var E = tf.scalar(element.stiffness);
var stress=tf.mul(E,strain);
stresses.push(stress);
}
return tf.stack(stresses,0);
}
///////utils////////
function rotation_matrix(element_vector, x_axis, y_axis, z_axis){
// # find the direction cosines
var x_proj = direction_cosine(element_vector, x_axis);
var y_proj = direction_cosine(element_vector, y_axis);
var z_proj = direction_cosine(element_vector, z_axis);
var zero=tf.tensor([0]);
var temp1=tf.concat([x_proj.expandDims(0), y_proj.expandDims(0), z_proj.expandDims(0), zero, zero, zero]);
var temp2=tf.concat([ zero, zero, zero, x_proj.expandDims(0), y_proj.expandDims(0), z_proj.expandDims(0)]);
return tf.stack([temp1,temp2]);
}
function direction_cosine(vec1, vec2){
return tf.div(tf.dot(vec1,vec2) ,tf.mul( vec1.norm() , vec2.norm()));
}