{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "using LinearAlgebra\n", "using Plots\n", "import JSON\n", "# using Quaternions\n", "using StaticArrays, Rotations\n", "using Distributed\n", "using StaticArrays, BenchmarkTools\n", "using Base.Threads\n", "using CUDAnative\n", "using CuArrays,CUDAdrv \n", "using Test\n", "import Base: +, * , -, ^" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Todo\n", "- create struct for material and get for each edge its properties\n", "- implement getTimestep (done)\n", "- implement on single voxel (done)\n", "- get reat E and L (done)\n", "- compare to Frame3dd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "struct Vector3\n", " x::Float64\n", " y::Float64\n", " z::Float64\n", " function Vector3()\n", " x=0.0\n", " y=0.0\n", " z=0.0\n", " new(x,y,z)\n", " end\n", " function Vector3(x,y,z)\n", " new(x,y,z)\n", " end\n", "end\n", "struct Quaternion\n", " x::Float64\n", " y::Float64\n", " z::Float64\n", " w::Float64\n", " function Quaternion()\n", " x=0.0\n", " y=0.0\n", " z=0.0\n", " w=1.0\n", " new(x,y,z,w)\n", " end\n", " function Quaternion(x,y,z,w)\n", " new(x,y,z,w)\n", " end\n", "end\n", "struct RotationMatrix\n", " te1::Float64\n", " te2::Float64\n", " te3::Float64\n", " te4::Float64\n", " te5::Float64\n", " te6::Float64\n", " te7::Float64\n", " te8::Float64\n", " te9::Float64\n", " te10::Float64\n", " te11::Float64\n", " te12::Float64\n", " te13::Float64\n", " te14::Float64\n", " te15::Float64\n", " te16::Float64\n", " function RotationMatrix()\n", " te1 =0.0\n", " te2 =0.0\n", " te3 =0.0\n", " te4 =0.0\n", " te5 =0.0\n", " te6 =0.0\n", " te7 =0.0\n", " te8 =0.0\n", " te9 =0.0\n", " te10=0.0\n", " te11=0.0\n", " te12=0.0\n", " te13=0.0\n", " te14=0.0\n", " te15=0.0\n", " te16=0.0\n", " new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)\n", " end\n", " function RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)\n", " new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)\n", " end\n", "end\n", "\n", "+(f::Vector3, g::Vector3)=Vector3(f.x+g.x , f.y+g.y,f.z+g.z )\n", "-(f::Vector3, g::Vector3)=Vector3(f.x-g.x , f.y-g.y,f.z-g.z )\n", "*(f::Vector3, g::Vector3)=Vector3(f.x*g.x , f.y*g.y,f.z*g.z )\n", "\n", "+(f::Vector3, g::Number)=Vector3(f.x+g , f.y+g,f.z+g )\n", "-(f::Vector3, g::Number)=Vector3(f.x-g , f.y-g,f.z-g )\n", "*(f::Vector3, g::Number)=Vector3(f.x*g , f.y*g,f.z*g )\n", "\n", "+(g::Vector3, f::Number)=Vector3(f.x+g , f.y+g,f.z+g )\n", "-(g::Vector3, f::Number)=Vector3(g-f.x , g-f.y,g-f.z )\n", "*(g::Vector3, f::Number)=Vector3(f.x*g , f.y*g,f.z*g )\n", "\n", "addX(f::Vector3, g::Number)=Vector3(f.x+g , f.y,f.z)\n", "addY(f::Vector3, g::Number)=Vector3(f.x , f.y+g,f.z )\n", "addZ(f::Vector3, g::Number)=Vector3(f.x , f.y,f.z+g )\n", "\n", "function normalizeVector3(f::Vector3)\n", " leng=sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z))\n", " return Vector3(f.x/leng,f.y/leng,f.z/leng)\n", " \n", "end\n", "function normalizeQuaternion(f::Quaternion)\n", " l = sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z)+ (f.w * f.w))\n", " if l === 0 \n", " qx = 0\n", " qy = 0\n", " qz = 0\n", " qw = 1\n", " else \n", " l = 1 / l\n", " qx = f.x * l\n", " qy = f.y * l\n", " qz = f.z * l\n", " qw = f.w * l\n", " end\n", " return Quaternion(qx,qy,qz,qw)\n", "end\n", "\n", "function normalizeQuaternion1!(fx::Float64,fy::Float64,fz::Float64,fw::Float64)\n", " l = sqrt((fx * fx) + (fy * fy) + (fz * fz)+ (fw * fw))\n", " if l === 0 \n", " qx = 0.0\n", " qy = 0.0\n", " qz = 0.0\n", " qw = 1.0\n", " else \n", " l = 1.0 / l\n", " qx = fx * l\n", " qy = fy * l\n", " qz = fz * l\n", " qw = fw * l\n", " end\n", " return qx,qy,qz,qw\n", "end\n", "\n", "\n", "function dotVector3(f::Vector3, g::Vector3)\n", " return (f.x * g.x) + (f.y * g.y) + (f.z * g.z)\n", "end\n", "\n", "function Base.show(io::IO, v::Vector3)\n", " print(io, \"x:$(v.x), y:$(v.y), z:$(v.z)\")\n", "end\n", "\n", "function Base.show(io::IO, v::Quaternion)\n", " print(io, \"x:$(v.x), y:$(v.y), z:$(v.z), w:$(v.z)\")\n", "end\n", "\n", "Base.Broadcast.broadcastable(q::Vector3) = Ref(q)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "simulateParallel (generic function with 2 methods)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function simulateParallel(numTimeSteps,dt)\n", " # initialize(setup)\n", " \n", " for i in 1:numTimeSteps\n", " #println(\"Timestep:\",i)\n", " doTimeStep(dt,i)\n", " end\n", "end\n", "\n", "function simulateParallel(metavoxel,numTimeSteps,dt)\n", " # initialize(setup)\n", " \n", " for i in 1:numTimeSteps\n", " #println(\"Timestep:\",i)\n", " doTimeStep(metavoxel,dt,i)\n", " end\n", "end" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "initialize (generic function with 1 method)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function initialize(setup)\n", " nodes = setup[\"nodes\"]\n", " edges = setup[\"edges\"]\n", "\n", " i=1\n", " # pre-calculate current position\n", " for node in nodes\n", " # element=parse(Int,node[\"id\"][2:end])\n", " N_position[i]=Vector3(node[\"position\"][\"x\"]/100.0,node[\"position\"][\"y\"]/100.0,node[\"position\"][\"z\"]/100.0)\n", " N_restrained[i]=node[\"restrained_degrees_of_freedom\"][1] ## todo later consider other degrees of freedom\n", " N_displacement[i]=Vector3(node[\"displacement\"][\"x\"],node[\"displacement\"][\"y\"],node[\"displacement\"][\"z\"])\n", " N_angle[i]=Vector3(node[\"angle\"][\"x\"],node[\"angle\"][\"y\"],node[\"angle\"][\"z\"])\n", " N_force[i]=Vector3(node[\"force\"][\"x\"]/1,node[\"force\"][\"y\"]/1,node[\"force\"][\"z\"]/1)\n", " N_currPosition[i]=Vector3(node[\"position\"][\"x\"]/100.0,node[\"position\"][\"y\"]/100.0,node[\"position\"][\"z\"]/100.0)\n", "\n", " # for dynamic simulations\n", " # append!(N_posTimeSteps,[[]])\n", " # append!(N_angTimeSteps,[[]])\n", "\n", " i=i+1\n", " end \n", "\n", " i=1\n", " # pre-calculate the axis\n", " for edge in edges\n", " # element=parse(Int,edge[\"id\"][2:end])\n", "\n", " # find the nodes that the lements connects\n", " fromNode = nodes[edge[\"source\"]+1]\n", " toNode = nodes[edge[\"target\"]+1]\n", "\n", "\n", " node1 = [fromNode[\"position\"][\"x\"]/100.0 fromNode[\"position\"][\"y\"]/100.0 fromNode[\"position\"][\"z\"]/100.0]\n", " node2 = [toNode[\"position\"][\"x\"]/100.0 toNode[\"position\"][\"y\"]/100.0 toNode[\"position\"][\"z\"]/100.0]\n", "\n", " length=norm(node2-node1)\n", " axis=normalize(collect(Iterators.flatten(node2-node1)))\n", "\n", " E_source[i]=edge[\"source\"]+1\n", " E_target[i]=edge[\"target\"]+1\n", " E_area[i]=edge[\"area\"]\n", " E_density[i]=edge[\"density\"]\n", " E_stiffness[i]=edge[\"stiffness\"]\n", " E_axis[i]=Vector3(axis[1],axis[2],axis[3])\n", " E_currentRestLength[i]=length #?????????? todo change\n", "# E_currentRestLength[i]=75/sqrt(2)\n", "\n", " N_edgeID[E_source[i],N_currEdge[E_source[i]]]=i\n", " N_edgeFirst[E_source[i],N_currEdge[E_source[i]]]=true\n", " N_currEdge[E_source[i]]+=1\n", "\n", " N_edgeID[E_target[i],N_currEdge[E_target[i]]]=i\n", " N_edgeFirst[E_target[i],N_currEdge[E_target[i]]]=false\n", " N_currEdge[E_target[i]]+=1\n", "\n", "\n", " # for dynamic simulations\n", " # append!(E_stressTimeSteps,[[]])\n", "\n", " i=i+1\n", " end \n", "end" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "doTimeStep! (generic function with 1 method)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function doTimeStep(dt,currentTimeStep)\n", " # update forces: go through edges, get currentposition from nodes, calc pos2 and update stresses and interior forces of nodes\n", " run_updateEdges!(\n", " E_sourceGPU, \n", " E_targetGPU,\n", " E_areaGPU,\n", " E_densityGPU,\n", " E_stiffnessGPU,\n", " E_stressGPU,\n", " E_axisGPU,\n", " E_currentRestLengthGPU,\n", " E_pos2GPU,\n", " E_angle1vGPU,\n", " E_angle2vGPU,\n", " E_angle1GPU,\n", " E_angle2GPU,\n", " E_intForce1GPU,\n", " E_intMoment1GPU,\n", " E_intForce2GPU,\n", " E_intMoment2GPU,\n", " E_dampGPU,\n", " N_currPositionGPU,\n", " N_orientGPU)\n", " \n", " # update forces: go through nodes and update interior force (according to int forces from edges), integrate and update currpos\n", " run_updateNodes!(dt,currentTimeStep,\n", " N_positionGPU, \n", " N_restrainedGPU,\n", " N_displacementGPU,\n", " N_angleGPU,\n", " N_currPositionGPU,\n", " N_linMomGPU,\n", " N_angMomGPU,\n", " N_intForceGPU,\n", " N_intMomentGPU,\n", " N_forceGPU,\n", " N_momentGPU,\n", " N_orientGPU,\n", " N_edgeIDGPU, \n", " N_edgeFirstGPU, \n", " E_intForce1GPU,\n", " E_intMoment1GPU,\n", " E_intForce2GPU,\n", " E_intMoment2GPU)\n", " \n", "end\n", "\n", "function doTimeStep!(metavoxel,dt,currentTimeStep)\n", " # update forces: go through edges, get currentposition from nodes, calc pos2 and update stresses and interior forces of nodes\n", " run_updateEdges!(\n", " metavoxel[\"E_sourceGPU\"], \n", " metavoxel[\"E_targetGPU\"],\n", " metavoxel[\"E_areaGPU\"],\n", " metavoxel[\"E_densityGPU\"],\n", " metavoxel[\"E_stiffnessGPU\"],\n", " metavoxel[\"E_stressGPU\"],\n", " metavoxel[\"E_axisGPU\"],\n", " metavoxel[\"E_currentRestLengthGPU\"],\n", " metavoxel[\"E_pos2GPU\"],\n", " metavoxel[\"E_angle1vGPU\"],\n", " metavoxel[\"E_angle2vGPU\"],\n", " metavoxel[\"E_angle1GPU\"],\n", " metavoxel[\"E_angle2GPU\"],\n", " metavoxel[\"E_intForce1GPU\"],\n", " metavoxel[\"E_intMoment1GPU\"],\n", " metavoxel[\"E_intForce2GPU\"],\n", " metavoxel[\"E_intMoment2GPU\"],\n", " metavoxel[\"E_dampGPU\"],\n", " metavoxel[\"N_currPositionGPU\"],\n", " metavoxel[\"N_orientGPU\"])\n", " \n", " # update forces: go through nodes and update interior force (according to int forces from edges), integrate and update currpos\n", " run_updateNodes!(dt,currentTimeStep,\n", " metavoxel[\"N_positionGPU\"], \n", " metavoxel[\"N_restrainedGPU\"],\n", " metavoxel[\"N_displacementGPU\"],\n", " metavoxel[\"N_angleGPU\"],\n", " metavoxel[\"N_currPositionGPU\"],\n", " metavoxel[\"N_linMomGPU\"],\n", " metavoxel[\"N_angMomGPU\"],\n", " metavoxel[\"N_intForceGPU\"],\n", " metavoxel[\"N_intMomentGPU\"],\n", " metavoxel[\"N_forceGPU\"],\n", " metavoxel[\"N_momentGPU\"],\n", " metavoxel[\"N_orientGPU\"],\n", " metavoxel[\"N_edgeIDGPU\"], \n", " metavoxel[\"N_edgeFirstGPU\"], \n", " metavoxel[\"E_intForce1GPU\"],\n", " metavoxel[\"E_intMoment1GPU\"],\n", " metavoxel[\"E_intForce2GPU\"],\n", " metavoxel[\"E_intMoment2GPU\"])\n", " \n", "end" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "run_updateEdges! (generic function with 1 method)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,E_stress,E_axis,\n", " E_currentRestLength,E_pos2,E_angle1v,E_angle2v,\n", " E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,E_damp,\n", " N_currPosition,N_orient)\n", "\n", " index = (blockIdx().x - 1) * blockDim().x + threadIdx().x\n", " stride = blockDim().x * gridDim().x\n", " ## @cuprintln(\"thread $index, block $stride\")\n", " N=length(E_source)\n", " for i = index:stride:N\n", " \n", " @inbounds pVNeg=N_currPosition[E_source[i]]\n", " @inbounds pVPos=N_currPosition[E_target[i]]\n", " \n", " @inbounds oVNeg=N_orient[E_source[i]]\n", " @inbounds oVPos=N_orient[E_target[i]]\n", " \n", " @inbounds oldPos2=Vector3(E_pos2[i].x,E_pos2[i].y,E_pos2[i].z) #?copy?\n", " @inbounds oldAngle1v = Vector3(E_angle1v[i].x,E_angle1v[i].y,E_angle1v[i].z)\n", " @inbounds oldAngle2v = Vector3(E_angle2v[i].x,E_angle2v[i].y,E_angle2v[i].z)# remember the positions/angles from last timestep to calculate velocity\n", " \n", " \n", " @inbounds E_pos2[i],E_angle1v[i],E_angle2v[i],E_angle1[i],E_angle2[i],totalRot= orientLink!(E_currentRestLength[i],pVNeg,pVPos,oVNeg,oVPos,E_axis[i])\n", " \n", " @inbounds dPos2 = Vector3(0.5,0.5,0.5) * (E_pos2[i]-oldPos2) #deltas for local damping. velocity at center is half the total velocity\n", " @inbounds dAngle1 = Vector3(0.5,0.5,0.5) *(E_angle1v[i]-oldAngle1v)\n", " @inbounds dAngle2 = Vector3(0.5,0.5,0.5) *(E_angle2v[i]-oldAngle2v)\n", " \n", " \n", " @inbounds strain=(E_pos2[i].x/E_currentRestLength[i])\n", " \n", " positiveEnd=true\n", " if axialStrain( positiveEnd,strain)>100.0\n", " diverged=true\n", " @cuprintln(\"DIVERGED!!!!!!!!!!\")\n", " return \n", " end\n", " \n", " @inbounds E = E_stiffness[i]\n", " \n", " \n", " \n", " @inbounds l = E_currentRestLength[i]\n", " \n", " \n", " nu=0\n", "# L = 5.0 #?? change!!!!!!\n", " L=l\n", " a1 = E*L # EA/L : Units of N/m\n", " a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m\n", " b1 = E*L # 12EI/L^3 : Units of N/m\n", " b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)\n", " b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m\n", " \n", " nu=0.35\n", " W = 75\n", "# L = W/sqrt(2)\n", " l=L\n", " n_min = 1\n", " n_max = 7\n", " # Cross Section inputs, must be floats\n", " mass=125000 #before for voxel\n", " mass=1\n", " E = 2000e9 # MPa\n", " G = E * 1 / 3 # MPa\n", " h = 2.38/100.0 # mm\n", " b = 2.38/100.0 # mm\n", " rho = 7.85e-9 / 3 # kg/mm^3\n", " S = h * b\n", " Sy = (S * (6 + 12 * nu + 6 * nu^2)/ (7 + 12 * nu + 4 * nu^2))\n", " # For solid rectangular cross section (width=b, depth=d & ( b < d )):\n", " Q = 1 / 3 - 0.2244 / (min(h / b, b / h) + 0.1607)\n", " Jxx = Q * min(h * b^3, b * h^3)\n", " s=b\n", " \n", " MaxFreq2=E*s/mass\n", " dt= 1/(6.283185*sqrt(MaxFreq2))\n", "\n", "\n", " ##if voxels\n", " #nu=0\n", " #L=l\n", " #a1 = E*L # EA/L : Units of N/m\n", " #a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m\n", " #b1 = E*L # 12EI/L^3 : Units of N/m\n", " #b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)\n", " #b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m\n", "\n", " I= b*h^3/12\n", " J=b*h*(b*b+h*h)/12\n", " a1=E*b*h/L\n", " a2=G*J/L\n", " b1=12*E*I/(L^3)\n", " b2=6*E*I/(L^2)\n", " b3=2*E*I/(L)\n", " \n", " \n", "\n", " \n", " #inbounds currentTransverseArea=25.0 #?? change!!!!!! E_area[i]\n", " @inbounds currentTransverseArea= b*h\n", " @inbounds _stress=updateStrain(strain,E)\n", " \n", " #@inbounds currentTransverseArea= E_area[i]\n", " #@inbounds _stress=updateStrain(strain,E_stiffness[i])\n", " \n", " @inbounds E_stress[i]=_stress\n", " \n", " #@cuprintln(\"_stress $_stress\")\n", " x=(_stress*currentTransverseArea)\n", " @inbounds y=(b1*E_pos2[i].y-b2*(E_angle1v[i].z + E_angle2v[i].z))\n", " @inbounds z=(b1*E_pos2[i].z + b2*(E_angle1v[i].y + E_angle2v[i].y))\n", " \n", " x=convert(Float64,x)\n", " y=convert(Float64,y)\n", " z=convert(Float64,z)\n", " \n", " # Use Curstress instead of -a1*Pos2.x to account for non-linear deformation \n", " forceNeg = Vector3(x,y,z)\n", " \n", " forcePos = Vector3(-x,-y,-z)\n", " \n", " @inbounds x= (a2*(E_angle2v[i].x-E_angle1v[i].x))\n", " @inbounds y= (-b2*E_pos2[i].z-b3*(2.0*E_angle1v[i].y+E_angle2v[i].y))\n", " @inbounds z=(b2*E_pos2[i].y - b3*(2.0*E_angle1v[i].z + E_angle2v[i].z)) \n", " x=convert(Float64,x)\n", " y=convert(Float64,y)\n", " z=convert(Float64,z)\n", " momentNeg = Vector3(x,y,z)\n", " \n", "\n", " @inbounds x= (a2*(E_angle1v[i].x-E_angle2v[i].x))\n", " @inbounds y= (-b2*E_pos2[i].z- b3*(E_angle1v[i].y+2.0*E_angle2v[i].y))\n", " @inbounds z=(b2*E_pos2[i].y - b3*(E_angle1v[i].z + 2.0*E_angle2v[i].z))\n", " x=convert(Float64,x)\n", " y=convert(Float64,y)\n", " z=convert(Float64,z)\n", " momentPos = Vector3(x,y,z)\n", " \n", " \n", " ### damping\n", " @inbounds if E_damp[i] #first pass no damping\n", " sqA1=CUDAnative.sqrt(a1) \n", " sqA2xIp=CUDAnative.sqrt(a2*L*L/6.0) \n", " sqB1=CUDAnative.sqrt(b1) \n", " sqB2xFMp=CUDAnative.sqrt(b2*L/2) \n", " sqB3xIp=CUDAnative.sqrt(b3*L*L/6.0)\n", " \n", " dampingMultiplier=Vector3(28099.3,28099.3,28099.3) # 2*mat->_sqrtMass*mat->zetaInternal/previousDt;?? todo link to material\n", " \n", " zeta=1\n", " dampingM= 2*sqrt(mass)*zeta/dt\n", " dampingMultiplier=Vector3(dampingM,dampingM,dampingM)\n", " \n", " posCalc=Vector3(sqA1*dPos2.x, sqB1*dPos2.y - sqB2xFMp*(dAngle1.z+dAngle2.z),sqB1*dPos2.z + sqB2xFMp*(dAngle1.y+dAngle2.y))\n", " \n", " \n", " forceNeg =forceNeg + (dampingMultiplier*posCalc);\n", " forcePos =forcePos - (dampingMultiplier*posCalc);\n", "\n", " momentNeg -= Vector3(0.5,0.5,0.5)*dampingMultiplier*Vector3(-sqA2xIp*(dAngle2.x - dAngle1.x),\n", " sqB2xFMp*dPos2.z + sqB3xIp*(2*dAngle1.y + dAngle2.y),\n", " -sqB2xFMp*dPos2.y + sqB3xIp*(2*dAngle1.z + dAngle2.z));\n", " momentPos -= Vector3(0.5,0.5,0.5)*dampingMultiplier*Vector3(sqA2xIp*(dAngle2.x - dAngle1.x),\n", " sqB2xFMp*dPos2.z + sqB3xIp*(dAngle1.y + 2*dAngle2.y),\n", " -sqB2xFMp*dPos2.y + sqB3xIp*(dAngle1.z + 2*dAngle2.z));\n", "\n", " else\n", " @inbounds E_damp[i]=true \n", " end\n", "\n", " smallAngle=true\n", " if !smallAngle # ?? check\n", " @inbounds forceNeg = RotateVec3DInv(E_angle1[i],forceNeg)\n", " @inbounds momentNeg = RotateVec3DInv(E_angle1[i],momentNeg)\n", " end\n", " \n", " @inbounds forcePos = RotateVec3DInv(E_angle2[i],forcePos)\n", " @inbounds momentPos = RotateVec3DInv(E_angle2[i],momentPos)\n", "\n", " @inbounds forceNeg =toAxisOriginalVector3(forceNeg,E_axis[i])\n", " @inbounds forcePos =toAxisOriginalVector3(forcePos,E_axis[i])\n", "\n", " @inbounds momentNeg=toAxisOriginalQuat(momentNeg,E_axis[i])# TODOO CHECKKKKKK\n", " @inbounds momentPos=toAxisOriginalQuat(momentPos,E_axis[i])\n", "\n", "\n", " @inbounds E_intForce1[i] =forceNeg\n", " @inbounds E_intForce2[i] =forcePos\n", " \n", "\n", "\n", " @inbounds x= momentNeg.x\n", " @inbounds y= momentNeg.y\n", " @inbounds z= momentNeg.z \n", " x=convert(Float64,x)\n", " y=convert(Float64,y)\n", " z=convert(Float64,z)\n", " \n", " @inbounds E_intMoment1[i]=Vector3(x,y,z)\n", "\n", " @inbounds x= momentNeg.x\n", " @inbounds y= momentNeg.y\n", " @inbounds z= momentNeg.z\n", " x=convert(Float64,x)\n", " y=convert(Float64,y)\n", " z=convert(Float64,z)\n", " \n", " @inbounds E_intMoment2[i]=Vector3(x,y,z)\n", " \n", " #x=E_pos2[i].x*10000000000\n", " #y=E_pos2[i].y*10000000000\n", " #z=E_pos2[i].z*10000000000\n", " #@cuprintln(\"pos2 x $x, y $y, z $z \")\n", " ##x=E_intMoment2[i].x*10000000000\n", " #y=E_intMoment2[i].y*10000000000\n", " #z=E_intMoment2[i].z*10000000000\n", " #@cuprintln(\"E_intMoment2 x $x, y $y, z $z \")\n", "\n", " \n", " \n", " end\n", " return\n", "end\n", "\n", "function run_updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,\n", " E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,E_angle2v,\n", " E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,\n", " E_damp,N_currPosition,N_orient)\n", " N=length(E_source)\n", " numblocks = ceil(Int, N/256)\n", " CuArrays.@sync begin\n", " @cuda threads=256 blocks=numblocks updateEdges!(E_source,E_target,E_area,E_density,\n", " E_stiffness,E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,\n", " E_angle2v,E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,\n", " E_intMoment2,E_damp,N_currPosition,N_orient)\n", " end\n", "end" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "run_updateNodes! (generic function with 1 method)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement,N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)\n", "\n", " index = (blockIdx().x - 1) * blockDim().x + threadIdx().x\n", " stride = blockDim().x * gridDim().x\n", " ## @cuprintln(\"thread $index, block $stride\")\n", " N,M=size(N_edgeID)\n", " for i = index:stride:N\n", " @inbounds if N_restrained[i]\n", " return\n", " else\n", " for j in 1:M\n", " temp=N_edgeID[i,j]\n", " @inbounds if (N_edgeID[i,j]!=-1)\n", " #@cuprintln(\"i $i, j $j, N_edgeID[i,j] $temp\")\n", " @inbounds N_intForce[i]=ifelse(N_edgeFirst[i,j], N_intForce[i]+E_intForce1[N_edgeID[i,j]], N_intForce[i]+E_intForce2[N_edgeID[i,j]] )\n", " @inbounds N_intMoment[i]=ifelse(N_edgeFirst[i,j], N_intMoment[i]+E_intMoment1[N_edgeID[i,j]], N_intMoment[i]+E_intMoment2[N_edgeID[i,j]] )\n", " end\n", " end\n", " @inbounds curForce = force(N_intForce[i],N_orient[i],N_force[i],true,currentTimeStep)\n", " \n", " #@inbounds N_force[i]=Vector3(0,0,0) ##????\n", " \n", " @inbounds N_intForce[i]=Vector3(0,0,0)\n", " \n", " #x=curForce.x\n", " #y=curForce.y\n", " #z=curForce.z\n", " #@cuprintln(\"curForce x $x, y $y, z $z \")\n", " \n", " #x=N_linMom[i].x*10000000000\n", " #y=N_linMom[i].y*10000000000\n", " #z=N_linMom[i].z*10000000000\n", " #@cuprintln(\"N_linMom[i] x $x, y $y, z $z \")\n", " \n", " \n", " @inbounds N_linMom[i]=N_linMom[i]+curForce*Vector3(dt,dt,dt) #todo make sure right\n", " massInverse=8e-6 # todo ?? later change //8e-6\n", " mass=1\n", " massInverse=1.0/mass #\n", " @inbounds translate=N_linMom[i]*Vector3((dt*massInverse),(dt*massInverse),(dt*massInverse)) # ??massInverse\n", " \n", " #x=translate.x*10000000000\n", " #y=translate.y*10000000000\n", " #z=translate.z*10000000000\n", " #@cuprintln(\"translate x $x, y $y, z $z \")\n", " \n", " @inbounds N_currPosition[i]=N_currPosition[i]+translate\n", " @inbounds N_displacement[i]=N_displacement[i]+translate\n", " \n", " \n", " \n", " # Rotation\n", " @inbounds curMoment = moment(N_intMoment[i],N_orient[i],N_moment[i]) \n", " \n", " \n", " \n", " @inbounds N_intMoment[i]=Vector3(0,0,0) # do i really need it?\n", " \n", " @inbounds N_angMom[i]=N_angMom[i]+curMoment*Vector3(dt,dt,dt)\n", " \n", " \n", " \n", " \n", " momentInertiaInverse=1.92e-6 # todo ?? later change 1/Inertia (1/(kg*m^2))\n", " \n", " \n", " @inbounds temp=FromRotationVector(N_angMom[i]*Vector3((dt*momentInertiaInverse),(dt*momentInertiaInverse),(dt*momentInertiaInverse)))\n", " \n", " \n", " #x=temp.x*10000000000\n", " #y=temp.y*10000000000\n", " #z=temp.z*10000000000\n", " #@cuprintln(\"temp x $x, y $y, z $z \")\n", " \n", " @inbounds N_orient[i]=multiplyQuaternions(temp,N_orient[i])\n", " \n", " #@inbounds x= N_orient[i].x*temp.x\n", " #@inbounds y= N_orient[i].y*temp.y\n", " #@inbounds z= N_orient[i].z*temp.z\n", " #@inbounds w= N_orient[i].w*temp.w\n", " #x=convert(Float64,x)\n", " #y=convert(Float64,y)\n", " #z=convert(Float64,z)\n", " #w=convert(Float64,w)\n", " \n", " #@inbounds N_orient[i]=Quaternion(x,y,z,w)\n", " \n", " #x=N_orient[i].x*10000000000\n", " #y=N_orient[i].y*10000000000\n", " #z=N_orient[i].z*10000000000\n", " #w=N_orient[i].w\n", " #@cuprintln(\"N_orient x $x, y $y, z $z, w $w \")\n", " \n", " \n", " end\n", " end\n", " return\n", "end\n", "\n", "\n", "function run_updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement, N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)\n", " N=length(N_intForce)\n", " numblocks = ceil(Int, N/256)\n", " CuArrays.@sync begin\n", " @cuda threads=256 blocks=numblocks updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement, N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)\n", " end\n", "end" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "orientLink! (generic function with 1 method)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function orientLink!(currentRestLength,pVNeg,pVPos,oVNeg,oVPos,axis) # updates pos2, angle1, angle2, and smallAngle //Quat3D<double> /*double restLength*/\n", " \n", " pos2 = toAxisXVector3(pVPos-pVNeg,axis) # digit truncation happens here...\n", " angle1 = toAxisXQuat(oVNeg,axis)\n", " angle2 = toAxisXQuat(oVPos,axis)\n", " \n", " #x=pos2.x*10000000000\n", " #y=pos2.y*10000000000\n", " #z=pos2.z*10000000000\n", " #@cuprintln(\"pos2 x $x, y $y, z $z \")\n", " \n", " #x=angle1.x*10000000000\n", " #y=angle1.y*10000000000\n", " #z=angle1.z*10000000000\n", " #@cuprintln(\"angle1 x $x, y $y, z $z \")\n", " #x=oVNeg.x*10000000000\n", " #y=oVNeg.y*10000000000\n", " #z=oVNeg.z*10000000000\n", " #@cuprintln(\"oVNeg x $x, y $y, z $z \")\n", " \n", " \n", " \n", " totalRot = conjugate(angle1) #keep track of the total rotation of this bond (after toAxisX()) # Quat3D<double>\n", " pos2 = RotateVec3D(totalRot,pos2)\n", " \n", " #x=pos2.x*10000000000\n", " #y=pos2.y*10000000000\n", " #z=pos2.z*10000000000\n", " #@cuprintln(\"pos2 2 x $x, y $y, z $z \")\n", " \n", " \n", " #x=totalRot.x*10000000000\n", " #y=totalRot.y*10000000000\n", " #z=totalRot.z*10000000000\n", " #@cuprintln(\"totalRot x $x, y $y, z $z \")\n", " \n", " \n", "# x=pos2.x*10000000000\n", "# y=pos2.y*10000000000\n", "# z=pos2.z*10000000000\n", "# @cuprintln(\"pos2 x $x, y $y, z $z \")\n", " \n", " angle2 = Quaternion(angle2.x*totalRot.x,angle2.y*totalRot.y,angle2.z*totalRot.z,angle2.w*totalRot.w)\n", " angle1 = Quaternion(0.0,0.0,0.0,1.0)#new THREE.Quaternion() #zero for now...\n", "\n", " smallAngle=true #todo later remove\n", " \n", " \n", " if (smallAngle)\t #Align so Angle1 is all zeros\n", " #pos2[1] =pos2[1]- currentRestLength #only valid for small angles\n", " pos2=Vector3(pos2.x-currentRestLength,pos2.y,pos2.z)\n", " else #Large angle. Align so that Pos2.y, Pos2.z are zero.\n", " # FromAngleToPosX(angle1,pos2) #get the angle to align Pos2 with the X axis\n", " # totalRot = angle1.clone().multiply(totalRot) #update our total rotation to reflect this\n", " # angle2 = angle1.clone().multiply( angle2) #rotate angle2\n", " # pos2 = new THREE.Vector3(pos2.length() - currentRestLength, 0, 0);\n", " end\n", " \n", " angle1v = ToRotationVector(angle1)\n", " angle2v = ToRotationVector(angle2)\n", " \n", " \n", " \n", " \n", "# pos2,angle1v,angle2v,angle1,angle2,\n", " return pos2,angle1v,angle2v,angle1,angle2,totalRot\n", "end" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "toAxisOriginalQuat (generic function with 1 method)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function toAxisXVector3(pV::Vector3,axis::Vector3) #TODO CHANGE\n", "\n", " xaxis=Vector3(1.0,0.0,0.0)\n", "\n", " vector=normalizeVector3(axis)\n", " q=setFromUnitVectors(vector,xaxis)\n", " \n", " \n", " \n", "# rot=setFromRotationMatrix(quatToMatrix( q ))\n", " \n", " \n", "# v= applyQuaternion1( pV ,setQuaternionFromEuler(rot) )\n", " v=applyQuaternion1( pV ,q )\n", " \n", " #d=15\n", " #vx=round(v.x, digits=d)\n", " #vy=round(v.y, digits=d)\n", " #vz=round(v.z, digits=d)\n", " \n", " \n", " return Vector3(v.x,v.y,v.z)\n", "end\n", "\n", "function toAxisOriginalVector3(pV::Vector3,axis::Vector3)\n", " \n", " xaxis=Vector3(1.0,0.0,0.0)\n", "\n", " vector=normalizeVector3(axis)\n", "\n", " q=setFromUnitVectors(xaxis,vector)\n", " \n", "\n", "# rot=setFromRotationMatrix(quatToMatrix( q ))\n", "\n", "# v= applyQuaternion1( pV ,setQuaternionFromEuler(rot) )\n", " v=applyQuaternion1( pV ,q )\n", " \n", " #d=15\n", " #vx=round(v.x, digits=d)\n", " #vy=round(v.y, digits=d)\n", " #vz=round(v.z, digits=d)\n", " \n", " \n", " return Vector3(v.x,v.y,v.z)\n", "end\n", "\n", "function toAxisXQuat(pQ::Quaternion,axis::Vector3)\n", " \n", " xaxis=Vector3(1.0,0.0,0.0)\n", "\n", " vector=normalizeVector3(axis)\n", "\n", "\n", " q=setFromUnitVectors(vector,xaxis)\n", " \n", " #d=17\n", " #qw=round(q[1], digits=d)\n", " #qx=round(q[2], digits=d)\n", " #qy=round(q[3], digits=d)\n", " #qz=round(q[4], digits=d)\n", " #\n", "\n", "# rot=setFromRotationMatrix(quatToMatrix( q ))\n", " \n", " pV=Vector3(pQ.x,pQ.y,pQ.z)\n", " \n", "# v=applyQuaternion1( pV ,setQuaternionFromEuler(rot) )\n", " v=applyQuaternion1( pV ,q )\n", " \n", " #d=15\n", " #vx=round(v.x, digits=d)\n", " #vy=round(v.y, digits=d)\n", " #vz=round(v.z, digits=d)\n", " \n", " return Quaternion(v.x,v.y,v.z,1.0)\n", " \n", " # return [1.0 v[1] v[2] v[3]]\n", "end\n", "\n", "function toAxisOriginalQuat(pQ::Vector3,axis::Vector3)\n", " xaxis=Vector3(1.0,0.0,0.0)\n", "\n", " vector=normalizeVector3(axis)\n", " \n", " q=setFromUnitVectors(xaxis,vector)\n", " \n", "\n", "# rot=setFromRotationMatrix(quatToMatrix( q ))\n", " \n", " pV=Vector3(pQ.x,pQ.y,pQ.z)\n", "# v=applyQuaternion1( pV ,setQuaternionFromEuler(rot) )\n", " v=applyQuaternion1( pV ,q )\n", " \n", " #d=15\n", " #vx=round(v.x, digits=d)\n", " #vy=round(v.y, digits=d)\n", " #vz=round(v.z, digits=d)\n", " \n", " return Quaternion(v.x,v.y,v.z,1.0)\n", " \n", "end" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "applyQuaternion1 (generic function with 1 method)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function setFromUnitVectors(vFrom::Vector3, vTo::Vector3)\n", " # assumes direction vectors vFrom and vTo are normalized\n", " EPS = 0.000000001;\n", " r= dotVector3(vFrom,vTo)+1.0\n", " # r = dot(vFrom,vTo)+1\n", "\n", " if r < EPS\n", " r = 0;\n", " if abs( vFrom.x ) > abs( vFrom.z ) \n", " qx = - vFrom.y\n", " qy = vFrom.x\n", " qz = 0.0\n", " qw = r\n", " else \n", " qx = 0.0\n", " qy = -(vFrom.z)\n", " qz = vFrom.y\n", " qw = r\n", " end\n", " else \n", " # crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3\n", " qx = vFrom.y * vTo.z - vFrom.z * vTo.y\n", " qy = vFrom.z * vTo.x - vFrom.x * vTo.z\n", " qz = vFrom.x * vTo.y - vFrom.y * vTo.x\n", " qw = r\n", "\n", " end\n", " qx= (qx==-0.0) ? 0.0 : qx\n", " qy= (qy==-0.0) ? 0.0 : qy\n", " qz= (qz==-0.0) ? 0.0 : qz\n", " qw= (qw==-0.0) ? 0.0 : qw\n", " \n", " \n", " mx=qx*qx\n", " my=qy*qy\n", " mz=qz*qz\n", " mw=qw*qw\n", " mm=mx+my\n", " mm=mm+mz\n", " mm=mm+mw\n", " mm=convert(Float64,mm)#??????????????????? todo check later\n", " \n", " l=CUDAnative.sqrt(mm)\n", " \n", " #l = sqrt((qx * qx) + (qy * qy) + (qz * qz)+ (qw * qw))\n", " if l === 0 \n", " qx = 0.0\n", " qy = 0.0\n", " qz = 0.0\n", " qw = 1.0\n", " else \n", " l = 1.0 / l\n", " qx = qx * l\n", " qy = qy * l\n", " qz = qz * l\n", " qw = qw * l\n", " end\n", " \n", " \n", "\n", " # return qx,qy,qz,qw\n", " return Quaternion(qx,qy,qz,qw)\n", " \n", " # return normalizeQ(Quat(qw,qx,qy,qz))\n", " # return Quat(nn[1], nn[2], nn[3], nn[4])\n", "\n", "end\n", "\n", "function quatToMatrix( quaternion::Quaternion)\n", "\n", " #te = RotationMatrix()\n", " \n", " x = quaternion.x\n", " y = quaternion.y\n", " z = quaternion.z\n", " w = quaternion.w\n", " \n", " x2 = x + x\n", " y2 = y + y\n", " z2 = z + z\n", " xx = x * x2\n", " xy = x * y2\n", " xz = x * z2\n", " yy = y * y2\n", " yz = y * z2\n", " zz = z * z2\n", " wx = w * x2\n", " wy = w * y2\n", " wz = w * z2\n", "\n", " sx = 1.0\n", " sy = 1.0\n", " sz = 1.0\n", "\n", " te1 = ( 1.0 - ( yy + zz ) ) * sx\n", " te2 = ( xy + wz ) * sx\n", " te3 = ( xz - wy ) * sx\n", " te4 = 0.0\n", "\n", " te5 = ( xy - wz ) * sy\n", " te6 = ( 1.0 - ( xx + zz ) ) * sy\n", " te7 = ( yz + wx ) * sy\n", " te8 = 0.0\n", "\n", " te9 = ( xz + wy ) * sz\n", " te10 = ( yz - wx ) * sz\n", " te11 = ( 1.0 - ( xx + yy ) ) * sz\n", " te12 = 0.0\n", "\n", " te13 = 0.0 #position.x;\n", " te14 = 0.0 #position.y;\n", " te15 = 0.0 #position.z;\n", " te16 = 1.0\n", " \n", " \n", " te= RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)\n", "\n", " return te\n", "\n", "end\n", "\n", "function setFromRotationMatrix(m::RotationMatrix)\n", " #te = m\n", " #m11 = (te[ 1 ]== -0.0) ? 0.0 : te[ 1 ]\n", " #m12 = (te[ 5 ]== -0.0) ? 0.0 : te[ 5 ]\n", " #m13 = (te[ 9 ]== -0.0) ? 0.0 : te[ 9 ]\n", " #m21 = (te[ 2 ]== -0.0) ? 0.0 : te[ 2 ]\n", " #m22 = (te[ 6 ]== -0.0) ? 0.0 : te[ 6 ]\n", " #m23 = (te[ 10]== -0.0) ? 0.0 : te[ 10]\n", " #m31 = (te[ 3 ]== -0.0) ? 0.0 : te[ 3 ]\n", " #m32 = (te[ 7 ]== -0.0) ? 0.0 : te[ 7 ]\n", " #m33 = (te[ 11]== -0.0) ? 0.0 : te[ 11]\n", "\n", " m11 = convert(Float64,m.te1 )\n", " m12 = convert(Float64,m.te5 )\n", " m13 = convert(Float64,m.te9 )\n", " m21 = convert(Float64,m.te2 )\n", " m22 = convert(Float64,m.te6 )\n", " m23 = convert(Float64,m.te10)\n", " m31 = convert(Float64,m.te3 )\n", " m32 = convert(Float64,m.te7 )\n", " m33 = convert(Float64,m.te11)\n", " \n", "\n", " y = CUDAnative.asin( clamp( m13, -1.0, 1.0 ) ) ##check if has to be changed to cuda\n", "\n", " if ( abs( m13 ) < 0.9999999999 ) \n", " \n", " x = CUDAnative.atan2( - m23, m33 )\n", " z = CUDAnative.atan2( - m12, m11 )#-m12, m11\n", " # if(m23==0.0)\n", " # x = atan( m23, m33 )\n", " # end\n", " # if(m12==0.0)\n", " # z = atan( m12, m11 )\n", " # end\n", "\n", " else\n", "\n", " x = CUDAnative.atan2( m32, m22 )\n", " z = 0.0;\n", "\n", " end\n", " \n", " \n", " return Vector3(x,y,z)\n", " \n", "end\n", "\n", "function setQuaternionFromEuler(euler::Vector3)\n", " x=euler.x\n", " y=euler.y\n", " z=euler.z\n", " \n", " \n", " c1 = CUDAnative.cos( x / 2.0 )\n", " c2 = CUDAnative.cos( y / 2.0 )\n", " c3 = CUDAnative.cos( z / 2.0 )\n", "\n", " s1 = CUDAnative.sin( x / 2.0 )\n", " s2 = CUDAnative.sin( y / 2.0 )\n", " s3 = CUDAnative.sin( z / 2.0 )\n", " \n", " \n", " x = s1 * c2 * c3 + c1 * s2 * s3\n", " y = c1 * s2 * c3 - s1 * c2 * s3\n", " z = c1 * c2 * s3 + s1 * s2 * c3\n", " w = c1 * c2 * c3 - s1 * s2 * s3\n", " \n", " return Quaternion(x,y,z,w)\n", "end\n", "\n", "function applyQuaternion1(e::Vector3,q2::Quaternion)\n", " x = e.x\n", " y = e.y\n", " z = e.z\n", "\n", " qx = q2.x\n", " qy = q2.y\n", " qz = q2.z\n", " qw = q2.w\n", "\n", " # calculate quat * vector\n", "\n", " ix = qw * x + qy * z - qz * y\n", " iy = qw * y + qz * x - qx * z\n", " iz = qw * z + qx * y - qy * x\n", " iw = - qx * x - qy * y - qz * z\n", "\n", " # calculate result * inverse quat\n", "\n", " xx = ix * qw + iw * - qx + iy * - qz - iz * - qy\n", " yy = iy * qw + iw * - qy + iz * - qx - ix * - qz\n", " zz = iz * qw + iw * - qz + ix * - qy - iy * - qx\n", " \n", " d=15\n", "\n", " return Vector3(xx,yy,zz)\n", "end\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "multiplyQuaternions (generic function with 1 method)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function conjugate(q::Quaternion)\n", " x= (-q.x==-0) ? 0.0 : -q.x\n", " y= (-q.y==-0) ? 0.0 : -q.y\n", " z= (-q.z==-0) ? 0.0 : -q.z\n", " w=q.w\n", " x=convert(Float64,x)\n", " y=convert(Float64,y)\n", " z=convert(Float64,z)\n", " w=convert(Float64,w)\n", " return Quaternion(x,y,z,w)\n", "end\n", "\n", "function RotateVec3D(a::Quaternion, f::Vector3) \n", " fx= (f.x==-0) ? 0 : f.x\n", " fy= (f.y==-0) ? 0 : f.y\n", " fz= (f.z==-0) ? 0 : f.z\n", " # fx= f.x\n", " # fy= f.y\n", " # fz= f.z\n", " tw = fx*a.x + fy*a.y + fz*a.z\n", " tx = fx*a.w - fy*a.z + fz*a.y\n", " ty = fx*a.z + fy*a.w - fz*a.x\n", " tz = -fx*a.y + fy*a.x + fz*a.w\n", "\n", " return Vector3((a.w*tx+a.x*tw+a.y*tz-a.z*ty),(a.w*ty-a.x*tz+a.y*tw+a.z*tx),(a.w*tz+a.x*ty-a.y*tx+a.z*tw))\n", "end\n", "#!< Returns a vector representing the specified vector \"f\" rotated by this quaternion. @param[in] f The vector to transform.\n", "\n", "function RotateVec3DInv(a::Quaternion, f::Vector3) \n", " fx=f.x\n", " fy=f.y\n", " fz=f.z\n", " tw = a.x*fx + a.y*fy + a.z*fz\n", " tx = a.w*fx - a.y*fz + a.z*fy\n", " ty = a.w*fy + a.x*fz - a.z*fx\n", " tz = a.w*fz - a.x*fy + a.y*fx\n", " return Vector3((tw*a.x + tx*a.w + ty*a.z - tz*a.y),(tw*a.y - tx*a.z + ty*a.w + tz*a.x),(tw*a.z + tx*a.y - ty*a.x + tz*a.w))\n", "end\n", "#!< Returns a vector representing the specified vector \"f\" rotated by the inverse of this quaternion. This is the opposite of RotateVec3D. @param[in] f The vector to transform.\n", "\n", "function ToRotationVector(a::Quaternion) \n", " if (a.w >= 1.0 || a.w <= -1.0) \n", " return Vector3(0.0,0.0,0.0)\n", " end\n", " squareLength = 1.0-a.w*a.w; # because x*x + y*y + z*z + w*w = 1.0, but more susceptible to w noise (when \n", " SLTHRESH_ACOS2SQRT= 2.4e-3; # SquareLength threshhold for when we can use square root optimization for acos. From SquareLength = 1-w*w. (calculate according to 1.0-W_THRESH_ACOS2SQRT*W_THRESH_ACOS2SQRT\n", "\n", " if (squareLength < SLTHRESH_ACOS2SQRT) # ???????\n", " x=a.x*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))\n", " y=a.y*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))\n", " z=a.z*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))\n", " x=convert(Float64,x)\n", " y=convert(Float64,y)\n", " z=convert(Float64,z)\n", " \n", " return Vector3(x,y,z) ; # acos(w) = sqrt(2*(1-x)) for w close to 1. for w=0.001, error is 1.317e-6\n", " else \n", " x=a.x*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))\n", " y=a.y*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))\n", " z=a.z*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))\n", " x=convert(Float64,x)\n", " y=convert(Float64,y)\n", " z=convert(Float64,z)\n", "\n", " return Vector3(x,y,z)\n", " end \n", "end \n", "# !< Returns a rotation vector representing this quaternion rotation. Adapted from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/\n", "\n", "function FromRotationVector(VecIn::Vector3)\n", " theta=VecIn*Vector3(0.5,0.5,0.5)\n", " ntheta=CUDAnative.sqrt((theta.x * theta.x) + (theta.y * theta.y) + (theta.z * theta.z))\n", " thetaMag2=ntheta*ntheta\n", " \n", " DBL_EPSILONx24 =5.328e-15\n", " if thetaMag2*thetaMag2 < DBL_EPSILONx24\n", " qw=1.0 - 0.5*thetaMag2\n", "\t\ts=1.0 - thetaMag2 / 6.0\n", " else\n", " thetaMag = CUDAnative.sqrt(thetaMag2)\n", "\t\tqw=CUDAnative.cos(thetaMag)\n", "\t\ts=CUDAnative.sin(thetaMag) / thetaMag\n", " end\n", " qx=theta.x*s\n", " qy=theta.y*s\n", " qz=theta.z*s\n", " \n", " qx=convert(Float64,qx)\n", " qy=convert(Float64,qy)\n", " qz=convert(Float64,qz)\n", " qw=convert(Float64,qw)\n", " \n", " return Quaternion(qx,qy,qz,qw)\n", "end\n", "\n", "function multiplyQuaternions(q::Quaternion,f::Quaternion)\n", " x=q.x\n", " y=q.y\n", " z=q.z\n", " w=q.w\n", " x1=w*f.x + x*f.w + y*f.z - z*f.y \n", " y1=w*f.y - x*f.z + y*f.w + z*f.x\n", " z1=w*f.z + x*f.y - y*f.x + z*f.w\n", " w1=w*f.w - x*f.x - y*f.y - z*f.z\n", "# x1=convert(Float64,x1)\n", "# y1=convert(Float64,y1)\n", "# z1=convert(Float64,z1)\n", "# w1=convert(Float64,w1)\n", "\treturn Quaternion(x1,y1,z1,w1 ); #!< overload quaternion multiplication.\n", "end\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "axialStrain (generic function with 1 method)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function updateStrain( axialStrain,E) # ?from where strain\n", " strain = axialStrain # redundant?\n", " currentTransverseStrainSum=0.0 # ??? todo\n", " linear=true\n", " maxStrain=1000000000000000;# ?? todo later change\n", " if linear\n", " if axialStrain > maxStrain\n", " maxStrain = axialStrain # remember this maximum for easy reference\n", " end\n", " return stress(axialStrain,E)\n", " else \n", " if (axialStrain > maxStrain) # if new territory on the stress/strain curve\n", " maxStrain = axialStrain # remember this maximum for easy reference\n", " returnStress = stress(axialStrain,E) # ??currentTransverseStrainSum\n", " if (nu != 0.0) \n", " strainOffset = maxStrain-stress(axialStrain,E)/(_eHat*(1.0-nu)) # precalculate strain offset for when we back off\n", " else \n", " strainOffset = maxStrain-returnStress/E # precalculate strain offset for when we back off\n", " end\n", " else # backed off a non-linear material, therefore in linear region.\n", " relativeStrain = axialStrain-strainOffset # treat the material as linear with a strain offset according to the maximum plastic deformation\n", " if (nu != 0.0) \n", " returnStress = stress(relativeStrain,E)\n", " else \n", " returnStress = E*relativeStrain\n", " end\n", " end\n", " return returnStress\n", " end\n", "end\n", "\n", "function stress( strain , E ) #end,transverseStrainSum, forceLinear){\n", " # reference: http://www.colorado.edu/engineering/CAS/courses.d/Structures.d/IAST.Lect05.d/IAST.Lect05.pdf page 10\n", " # if (isFailed(strain)) return 0.0f; //if a failure point is set and exceeded, we've broken!\n", " # var E =setup.edges[0].stiffness; //todo change later to material ??\n", " # var E=1000000;//todo change later to material ??\n", " # var scaleFactor=1;\n", " return E*strain;\n", "\n", " # # if (strain <= strainData[1] || linear || forceLinear){ //for compression/first segment and linear materials (forced or otherwise), simple calculation\n", "\n", " # if (nu==0.0) return E*strain;\n", " # else return _eHat*((1-nu)*strain + nu*transverseStrainSum); \n", " # else return eHat()*((1-nu)*strain + nu*transverseStrainSum); \n", " # # }\n", "\n", " #//the non-linear feature with non-zero poissons ratio is currently experimental\n", " #int DataCount = modelDataPoints();\n", " #for (int i=2; i<DataCount; i++){ //go through each segment in the material model (skipping the first segment because it has already been handled.\n", " # if (strain <= strainData[i] || i==DataCount-1){ //if in the segment ending with this point (or if this is the last point extrapolate out) \n", " # float Perc = (strain-strainData[i-1])/(strainData[i]-strainData[i-1]);\n", " # float basicStress = stressData[i-1] + Perc*(stressData[i]-stressData[i-1]);\n", " # if (nu==0.0f) return basicStress;\n", " # else { //accounting for volumetric effects\n", " # float modulus = (stressData[i]-stressData[i-1])/(strainData[i]-strainData[i-1]);\n", " # float modulusHat = modulus/((1-2*nu)*(1+nu));\n", " # float effectiveStrain = basicStress/modulus; //this is the strain at which a simple linear stress strain line would hit this point at the definied modulus\n", " # float effectiveTransverseStrainSum = transverseStrainSum*(effectiveStrain/strain);\n", " # return modulusHat*((1-nu)*effectiveStrain + nu*effectiveTransverseStrainSum);\n", " # }\n", " # }\n", " #}\n", "\n", " # assert(false); //should never reach this point\n", " # return 0.0f;\n", "end \n", "\n", "function axialStrain( positiveEnd,strain)\n", "\t#strainRatio = pVPos->material()->E/pVNeg->material()->E;\n", "\tstrainRatio=1.0;\n", "\treturn positiveEnd ? 2.0 *strain*strainRatio/(1.0+strainRatio) : 2.0*strain/(1.0+strainRatio)\n", "end" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "moment (generic function with 1 method)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function force(N_intForce,N_orient,N_force,static,currentTimeStep) \n", " # forces from internal bonds\n", " totalForce=Vector3(0,0,0)\n", " # new THREE.Vector3(node.force.x,node.force.y,node.force.z);\n", " # todo \n", "\n", "\n", " totalForce=totalForce+N_intForce\n", "\n", " # for (int i=0; i<6; i++){ \n", " # \tif (links[i]) totalForce += links[i]->force(isNegative((linkDirection)i)); # total force in LCS\n", " # }\n", " totalForce = RotateVec3D(N_orient,totalForce); # from local to global coordinates\n", "\n", "\n", " # assert(!(totalForce.x != totalForce.x) || !(totalForce.y != totalForce.y) || !(totalForce.z != totalForce.z)); //assert non QNAN\n", "\n", " # other forces\n", " if(static)\n", " totalForce=totalForce+N_force\n", " # }else if(currentTimeStep<50){\n", " # \ttotalForce.add(new THREE.Vector3(node.force.x,node.force.y,node.force.z));\n", " else\n", " # var ex=0.1;\n", " # if(node.force.y!=0){\n", " # \tvar f=400*Math.sin(currentTimeStep*ex);\n", " # \ttotalForce.add(new THREE.Vector3(0,f,0));\n", "\n", " # }\n", " #x=N_position[node][3]\n", " #t=currentTimeStep\n", " #wave=getForce(x,t)\n", " #totalForce=totalForce+[0 wave 0]\n", " end\n", "\n", "\n", " # if (externalExists()) totalForce += external()->force(); //external forces\n", " # totalForce -= velocity()*mat->globalDampingTranslateC(); //global damping f-cv\n", " # totalForce.z += mat->gravityForce(); //gravity, according to f=mg\n", "\n", " # if (isCollisionsEnabled()){\n", " # \tfor (std::vector<CVX_Collision*>::iterator it=colWatch->begin(); it!=colWatch->end(); it++){\n", " # \t\ttotalForce -= (*it)->contactForce(this);\n", " # \t}\n", " # }\n", " # todo make internal forces 0 again\n", " # N_intForce[node]=[0 0 0] # do i really need it?\n", "\n", " # node.force.x=0;\n", " # node.force.y=0;\n", " # node.force.z=0;\n", "\n", "\n", " return totalForce\n", "end\n", "\n", "\n", "function moment(intMoment,orient,moment) \n", " #moments from internal bonds\n", " totalMoment=Vector3(0,0,0)\n", " # for (int i=0; i<6; i++){ \n", " # \tif (links[i]) totalMoment += links[i]->moment(isNegative((linkDirection)i)); //total force in LCS\n", " # }\n", "\n", " totalMoment=totalMoment+intMoment\n", " \n", " \n", "\n", " totalMoment = RotateVec3D(orient,totalMoment);\n", " \n", " \n", "\n", " totalMoment=totalMoment+moment\n", "\n", "\n", " #other moments\n", " # if (externalExists()) totalMoment += external()->moment(); //external moments\n", " # totalMoment -= angularVelocity()*mat->globalDampingRotateC(); //global damping\n", "\n", " return totalMoment\n", "end" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "updateDataAndSave! (generic function with 1 method)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function updateDataAndSave!(metavoxel,setup,fileName)\n", " nodes = setup[\"nodes\"]\n", " edges = setup[\"edges\"]\n", " \n", " setup[\"animation\"][\"showDisplacement\"]=false\n", " voxCount=size(nodes)[1]\n", " linkCount=size(edges)[1]\n", " \n", " N_displacement=Array(metavoxel[\"N_displacementGPU\"])\n", " N_angle=Array(metavoxel[\"N_angleGPU\"])\n", " E_stress=Array(metavoxel[\"E_stressGPU\"])\n", " \n", " setup[\"viz\"][\"maxStress\"]=maximum(E_stress)\n", " setup[\"viz\"][\"minStress\"]=minimum(E_stress) \n", "\n", "\n", " i=1\n", "\tfor edge in edges\n", " edge[\"stress\"]=E_stress[i]\n", " i=i+1\n", "\n", " end\n", " \n", " \n", " i=1 \n", "\tfor node in nodes\n", " node[\"displacement\"][\"x\"]=N_displacement[i].x*100\n", " node[\"displacement\"][\"y\"]=N_displacement[i].y*100\n", " node[\"displacement\"][\"z\"]=N_displacement[i].z*100\n", " \n", " node[\"angle\"][\"x\"]=N_angle[i].x\n", " node[\"angle\"][\"y\"]=N_angle[i].y\n", " node[\"angle\"][\"z\"]=N_angle[i].z\n", " i=i+1\n", "\n", " end\n", " \n", " # pass data as a json string (how it shall be displayed in a file)\n", " stringdata = JSON.json(setup)\n", "\n", " # write the file with the stringdata variable information\n", " open(fileName, \"w\") do f\n", " write(f, stringdata)\n", " end\n", " \n", "end" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "runMetavoxelGPU! (generic function with 1 method)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function runMetavoxelGPU!(setup,numTimeSteps,latticeSize,displacements,returnEvery,save)\n", " function initialize!(setup)\n", " nodes = setup[\"nodes\"]\n", " edges = setup[\"edges\"]\n", "\n", " i=1\n", " # pre-calculate current position\n", " for node in nodes\n", " # element=parse(Int,node[\"id\"][2:end])\n", " N_position[i]=Vector3(node[\"position\"][\"x\"]/100.0,node[\"position\"][\"y\"]/100.0,node[\"position\"][\"z\"]/100.0)\n", " N_restrained[i]=node[\"restrained_degrees_of_freedom\"][1] ## todo later consider other degrees of freedom\n", " N_displacement[i]=Vector3(node[\"displacement\"][\"x\"],node[\"displacement\"][\"y\"],node[\"displacement\"][\"z\"])\n", " N_angle[i]=Vector3(node[\"angle\"][\"x\"],node[\"angle\"][\"y\"],node[\"angle\"][\"z\"])\n", " N_force[i]=Vector3(node[\"force\"][\"x\"],node[\"force\"][\"y\"]/1,node[\"force\"][\"z\"])\n", " N_currPosition[i]=Vector3(node[\"position\"][\"x\"]/100.0,node[\"position\"][\"y\"]/100.0,node[\"position\"][\"z\"]/100.0)\n", "\n", " # for dynamic simulations\n", " # append!(N_posTimeSteps,[[]])\n", " # append!(N_angTimeSteps,[[]])\n", "\n", " i=i+1\n", " end \n", "\n", " i=1\n", " # pre-calculate the axis\n", " for edge in edges\n", " # element=parse(Int,edge[\"id\"][2:end])\n", "\n", " # find the nodes that the lements connects\n", " fromNode = nodes[edge[\"source\"]+1]\n", " toNode = nodes[edge[\"target\"]+1]\n", "\n", "\n", " node1 = [fromNode[\"position\"][\"x\"]/100.0 fromNode[\"position\"][\"y\"]/100.0 fromNode[\"position\"][\"z\"]/100.0]\n", " node2 = [toNode[\"position\"][\"x\"]/100.0 toNode[\"position\"][\"y\"]/100.0 toNode[\"position\"][\"z\"]/100.0]\n", "\n", " length=norm(node2-node1)\n", " axis=normalize(collect(Iterators.flatten(node2-node1)))\n", "\n", " E_source[i]=edge[\"source\"]+1\n", " E_target[i]=edge[\"target\"]+1\n", " E_area[i]=edge[\"area\"]\n", " E_density[i]=edge[\"density\"]\n", " E_stiffness[i]=edge[\"stiffness\"]\n", " E_axis[i]=Vector3(axis[1],axis[2],axis[3])\n", " E_currentRestLength[i]=length #?????? todo change\n", "# E_currentRestLength[i]=75/sqrt(2)\n", " \n", "\n", " N_edgeID[E_source[i],N_currEdge[E_source[i]]]=i\n", " N_edgeFirst[E_source[i],N_currEdge[E_source[i]]]=true\n", " N_currEdge[E_source[i]]+=1\n", "\n", " N_edgeID[E_target[i],N_currEdge[E_target[i]]]=i\n", " N_edgeFirst[E_target[i],N_currEdge[E_target[i]]]=false\n", " N_currEdge[E_target[i]]+=1\n", "\n", "\n", " # for dynamic simulations\n", " # append!(E_stressTimeSteps,[[]])\n", "\n", " i=i+1\n", " end \n", " end\n", " function simulateParallel!(metavoxel,numTimeSteps,dt,returnEvery)\n", " # initialize(setup)\n", "\n", " for i in 1:numTimeSteps\n", " #println(\"Timestep:\",i)\n", " doTimeStep!(metavoxel,dt,i)\n", " if(mod(i,returnEvery)==0)\n", " append!(displacements,[Array(metavoxel[\"N_displacementGPU\"])])\n", " end\n", " end\n", " end\n", " \n", " ########\n", " voxCount=0\n", " linkCount=0\n", " nodes = setup[\"nodes\"]\n", " edges = setup[\"edges\"]\n", " voxCount=size(nodes)[1]\n", " linkCount=size(edges)[1]\n", " strain =0 #todooo moveeee\n", " maxNumEdges=10\n", "\n", " ########\n", " voxCount=0\n", " linkCount=0\n", " nodes = setup[\"nodes\"]\n", " edges = setup[\"edges\"]\n", " voxCount=size(nodes)[1]\n", " linkCount=size(edges)[1]\n", " strain =0 #todooo moveeee\n", "\n", " ############# nodes\n", " N_position=fill(Vector3(),voxCount)\n", " N_restrained=zeros(Bool, voxCount)\n", " N_displacement=fill(Vector3(),voxCount)\n", " N_angle=fill(Vector3(),voxCount)\n", " N_currPosition=fill(Vector3(),voxCount)\n", " N_linMom=fill(Vector3(),voxCount)\n", " N_angMom=fill(Vector3(),voxCount)\n", " N_intForce=fill(Vector3(),voxCount)\n", " N_intMoment=fill(Vector3(),voxCount)\n", " N_moment=fill(Vector3(),voxCount)\n", " # N_posTimeSteps=[]\n", " # N_angTimeSteps=[]\n", " N_force=fill(Vector3(),voxCount)\n", " N_orient=fill(Quaternion(),voxCount)\n", " N_edgeID=fill(-1,(voxCount,maxNumEdges))\n", " N_edgeFirst=fill(true,(voxCount,maxNumEdges))\n", " N_currEdge=fill(1,voxCount)\n", "\n", " ############# edges\n", " E_source=fill(0,linkCount)\n", " E_target=fill(0,linkCount)\n", " E_area=fill(0.0f0,linkCount)\n", " E_density=fill(0.0f0,linkCount)\n", " E_stiffness=fill(0.0f0,linkCount)\n", " E_stress=fill(0.0f0,linkCount)\n", " E_axis=fill(Vector3(1.0,0.0,0.0),linkCount)\n", " E_currentRestLength=fill(0.0f0,linkCount)\n", " E_pos2=fill(Vector3(),linkCount)\n", " E_angle1v=fill(Vector3(),linkCount)\n", " E_angle2v=fill(Vector3(),linkCount)\n", " E_angle1=fill(Quaternion(),linkCount)\n", " E_angle2=fill(Quaternion(),linkCount)\n", "\n", " E_intForce1=fill(Vector3(),linkCount)\n", " E_intMoment1=fill(Vector3(),linkCount) \n", "\n", " E_intForce2=fill(Vector3(),linkCount)\n", " E_intMoment2=fill(Vector3(),linkCount)\n", " E_damp=fill(false,linkCount)\n", "\n", " E_currentTransverseStrainSum=fill(0.0f0,linkCount)# TODO remove ot incorporate\n", " # E_stressTimeSteps=[]\n", "\n", "\n", " #################################################################\n", " initialize!(setup)\n", " #################################################################\n", "\n", " ########################## turn to cuda arrays\n", " ############# nodes\n", " N_positionGPU= CuArray(N_position) \n", " N_restrainedGPU= CuArray(N_restrained) \n", " N_displacementGPU=CuArray(N_displacement) \n", " N_angleGPU= CuArray(N_angle) \n", " N_currPositionGPU=CuArray(N_currPosition) \n", " N_linMomGPU= CuArray(N_linMom) \n", " N_angMomGPU= CuArray(N_angMom) \n", " N_intForceGPU= CuArray(N_intForce) \n", " N_intMomentGPU= CuArray(N_intMoment) \n", " N_momentGPU= CuArray(N_moment) \n", " N_forceGPU= CuArray(N_force) \n", " N_orientGPU= CuArray(N_orient) \n", " N_edgeIDGPU= CuArray(N_edgeID) \n", " N_edgeFirstGPU= CuArray(N_edgeFirst) \n", "\n", "\n", " ############# edges\n", " E_sourceGPU= CuArray(E_source) \n", " E_targetGPU= CuArray(E_target)\n", " E_areaGPU= CuArray(E_area) \n", " E_densityGPU= CuArray(E_density)\n", " E_stiffnessGPU= CuArray(E_stiffness)\n", " E_stressGPU= CuArray(E_stress)\n", " E_axisGPU= CuArray(E_axis) \n", " E_currentRestLengthGPU= CuArray(E_currentRestLength)\n", " E_pos2GPU= CuArray(E_pos2)\n", " E_angle1vGPU= CuArray(E_angle1v)\n", " E_angle2vGPU= CuArray(E_angle2v)\n", " E_angle1GPU= CuArray(E_angle1)\n", " E_angle2GPU= CuArray(E_angle2)\n", " E_currentTransverseStrainSumGPU=CuArray(E_currentTransverseStrainSum)\n", " E_intForce1GPU= CuArray(E_intForce1) \n", " E_intMoment1GPU= CuArray(E_intMoment1) \n", " E_intForce2GPU= CuArray(E_intForce2) \n", " E_intMoment2GPU= CuArray(E_intMoment2)\n", " E_dampGPU= CuArray(E_damp) \n", " # E_stressTimeSteps=[]\n", "\n", "\n", " #########################################\n", " metavoxel = Dict(\n", " \"N_positionGPU\" => N_positionGPU, \n", " \"N_restrainedGPU\" => N_restrainedGPU, \n", " \"N_displacementGPU\" => N_displacementGPU,\n", " \"N_angleGPU\" => N_angleGPU, \n", " \"N_currPositionGPU\" => N_currPositionGPU,\n", " \"N_linMomGPU\" => N_linMomGPU, \n", " \"N_angMomGPU\" => N_angMomGPU, \n", " \"N_intForceGPU\" => N_intForceGPU, \n", " \"N_intMomentGPU\" => N_intMomentGPU, \n", " \"N_momentGPU\" => N_momentGPU, \n", " \"N_forceGPU\" => N_forceGPU, \n", " \"N_orientGPU\" => N_orientGPU, \n", " \"N_edgeIDGPU\" => N_edgeIDGPU, \n", " \"N_edgeFirstGPU\" => N_edgeFirstGPU,\n", " \"E_sourceGPU\" =>E_sourceGPU, \n", " \"E_targetGPU\" =>E_targetGPU, \n", " \"E_areaGPU\" =>E_areaGPU, \n", " \"E_densityGPU\" =>E_densityGPU, \n", " \"E_stiffnessGPU\" =>E_stiffnessGPU, \n", " \"E_stressGPU\" =>E_stressGPU, \n", " \"E_axisGPU\" =>E_axisGPU, \n", " \"E_currentRestLengthGPU\" =>E_currentRestLengthGPU, \n", " \"E_pos2GPU\" =>E_pos2GPU, \n", " \"E_angle1vGPU\" =>E_angle1vGPU, \n", " \"E_angle2vGPU\" =>E_angle2vGPU, \n", " \"E_angle1GPU\" =>E_angle1GPU, \n", " \"E_angle2GPU\" =>E_angle2GPU, \n", " \"E_currentTransverseStrainSumGPU\" =>E_currentTransverseStrainSumGPU,\n", " \"E_intForce1GPU\" =>E_intForce1GPU, \n", " \"E_intMoment1GPU\" =>E_intMoment1GPU, \n", " \"E_intForce2GPU\" =>E_intForce2GPU, \n", " \"E_intMoment2GPU\" =>E_intMoment2GPU, \n", " \"E_dampGPU\" =>E_dampGPU \n", " )\n", "\n", " #########################################\n", " \n", "\n", " dt=0.0251646\n", " E = 2000e9 # MPa\n", " s=2.38/100.0\n", " mass=1 \n", " \n", " \n", " \n", " MaxFreq2=E*s/mass\n", " dt= 1/(6.283185*sqrt(MaxFreq2))\n", "# dt=0.0001646\n", " println(\"dt: $dt\")\n", " \n", " append!(displacements,[Array(metavoxel[\"N_displacementGPU\"])])\n", " \n", " t=@timed doTimeStep!(metavoxel,dt,0)\n", " append!(displacements,[Array(metavoxel[\"N_displacementGPU\"])])\n", " time=t[2]\n", " println(\"first timestep took $time seconds\")\n", " t=@timed simulateParallel!(metavoxel,numTimeSteps-1,dt,returnEvery)\n", " time=t[2]\n", " \n", " if save\n", " updateDataAndSave!(metavoxel,setup,\"../json/trialJuliaParallelGPU.json\")\n", " end\n", " println(\"ran latticeSize $latticeSize with $voxCount voxels and $linkCount edges for $numTimeSteps time steps took $time seconds\")\n", " return\n", "end" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "fea (generic function with 1 method)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function fea(setup)\n", " #######################################################\n", " function points(element, properties)\n", " elements = properties[\"elements\"]\n", " nodes = properties[\"nodes\"]\n", " degrees_of_freedom = properties[\"degrees_of_freedom\"]\n", "\n", " # find the nodes that the lements connects\n", " fromNode = elements[element][1]\n", " toNode = elements[element][2]\n", "\n", " # the coordinates for each node\n", " fromPoint = nodes[fromNode]\n", " toPoint = nodes[toNode]\n", "\n", " # find the degrees of freedom for each node\n", " dofs = degrees_of_freedom[fromNode]\n", " dofs=vcat(dofs,degrees_of_freedom[toNode])\n", "\n", " return fromPoint, toPoint, dofs\n", " end\n", "\n", " function direction_cosine(vec1, vec2)\n", " return dot(vec1,vec2) / (norm(vec1) * norm(vec2))\n", " end\n", "\n", " function rotation_matrix(element_vector, x_axis, y_axis,z_axis)\n", " # find the direction cosines\n", " x_proj = direction_cosine(element_vector, x_axis)\n", " y_proj = direction_cosine(element_vector, y_axis)\n", " z_proj = direction_cosine(element_vector, z_axis);\n", " return [[x_proj y_proj z_proj 0 0 0];[0 0 0 x_proj y_proj z_proj]]\n", " end\n", "\n", " function rotation_matrix(element_vector, x_axis, y_axis,z_axis)\n", " # find the direction cosines\n", " L=norm(element_vector)\n", " l = (element_vector[1])/L\n", " m = (element_vector[2])/L\n", " n = (element_vector[3])/L\n", " D = ( l^2+ m^2+n^2)^0.5\n", "\n", " transMatrix=[[l m n 0 0 0 0 0 0 0 0 0];[-m/D l/D 0 0 0 0 0 0 0 0 0 0];[ -l*n/D -m*n/D D 0 0 0 0 0 0 0 0 0];[ 0 0 0 l m n 0 0 0 0 0 0];[ 0 0 0 -m/D l/D 0 0 0 0 0 0 0];[ 0 0 0 -l*n/D -m*n/D D 0 0 0 0 0 0];[ 0 0 0 0 0 0 l m n 0 0 0];[ 0 0 0 0 0 0 -m/D l/D 0 0 0 0];[ 0 0 0 0 0 0 -l*n/D -m*n/D D 0 0 0];[ 0 0 0 0 0 0 0 0 0 l m n];[ 0 0 0 0 0 0 0 0 0 -m/D l/D 0];[ 0 0 0 0 0 0 0 0 0 -l*n/D -m*n/D D]]\n", "\n", " return transMatrix\n", " end\n", " \n", " #######################################################\n", " function get_matrices(setup)\n", "\n", " nodes = setup[\"nodes\"]\n", " edges = setup[\"edges\"]\n", " ndofs = length(nodes)*6\n", "\n", " x_axis = [1 0 0]\n", " y_axis = [0 1 0]\n", " z_axis = [0 0 1]\n", "\n", " M = zeros((ndofs,ndofs))\n", " K = zeros((ndofs,ndofs))\n", " \n", " \n", " for edge in edges\n", " #degrees_of_freedom = properties[\"degrees_of_freedom\"]\n", "\n", " element=parse(Int,edge[\"id\"][2:end])\n", "\n", " # find the nodes that the lements connects\n", " fromNode = nodes[edge[\"source\"]+1]\n", " toNode = nodes[edge[\"target\"]+1]\n", " \n", "\n", " # the coordinates for each node\n", " fromPoint = [fromNode[\"position\"][\"x\"]/100.0 fromNode[\"position\"][\"y\"]/100.0 fromNode[\"position\"][\"z\"]/100.0]\n", " toPoint = [toNode[\"position\"][\"x\"]/100.0 toNode[\"position\"][\"y\"]/100.0 toNode[\"position\"][\"z\"]/100.0]\n", "\n", " # find the degrees of freedom for each node\n", " dofs = convert(Array{Int}, fromNode[\"degrees_of_freedom\"])\n", " dofs=vcat(dofs,convert(Array{Int}, toNode[\"degrees_of_freedom\"]))\n", "\n", " element_vector=toPoint-fromPoint\n", "\n", " # find element mass and stifness matrices\n", " length = norm(element_vector)\n", " rho = edge[\"density\"]\n", " area = edge[\"area\"]\n", " E = edge[\"stiffness\"]# youngs modulus\n", "\n", " A = edge[\"area\"]\n", " G=1.0#todo shear_modulus\n", " ixx = 1.0#todo section ixx\n", " iyy = 1.0#todo section.iyy#\n", " l0=length\n", " j=1.0;#todo check\n", " l02 = l0 * l0\n", " l03 = l0 * l0 * l0\n", " \n", " ################################\n", " mass=1\n", " nu=0.35\n", " W = 75\n", " L = W/sqrt(2)\n", " L=length\n", " n_min = 1\n", " n_max = 7\n", " # Cross Section inputs, must be floats\n", " E = 2000e9 # MPa\n", " G = E * 1 / 3 # MPa\n", " h = 2.38/100.0 # mm\n", " b = 2.38/100.0 # mm\n", " rho = 7.85e-9 / 3 # kg/mm^3\n", " S = h * b\n", " Sy = (S * (6 + 12 * nu + 6 * nu^2)/ (7 + 12 * nu + 4 * nu^2))\n", " # For solid rectangular cross section (width=b, depth=d & ( b < d )):\n", " Q = 1 / 3 - 0.2244 / (min(h / b, b / h) + 0.1607)\n", " J = Q * min(h * b^3, b * h^3)\n", " \n", " \n", " ##if voxels\n", " #nu=0\n", " #L=l\n", " #a1 = E*L # EA/L : Units of N/m\n", " #a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m\n", " #b1 = E*L # 12EI/L^3 : Units of N/m\n", " #b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)\n", " #b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m\n", " \n", " I= b*h^3/12\n", "# J=b*h*(b*b+h*h)/12\n", " a1=E*b*h/L\n", " a2=G*J/L\n", " b1=12*E*I/(L^3)\n", " b2=6*E*I/(L^2)\n", " b3=2*E*I/(L)\n", " \n", " # Cm = rho * area * length /6.0\n", " # Ck= E * area / length \n", "\n", " # m = [[2 1];[1 2]]\n", " # k = [[1 -1];[-1 1]]\n", " \n", "\n", " k = [[E*A/l0 0 0 0 0 0 -E*A/l0 0 0 0 0 0];[0 12*E*ixx/l03 0 0 0 6*E*ixx/l02 0 -12*E*ixx/l03 0 0 0 6*E*ixx/l02];[0 0 12*E*iyy/l03 0 -6*E*iyy/l02 0 0 0 -12*E*iyy/l03 0 -6*E*iyy/l02 0];[0 0 0 G*j/l0 0 0 0 0 0 -G*j/l0 0 0];[0 0 -6*E*iyy/l02 0 4*E*iyy/l0 0 0 0 6*E*iyy/l02 0 2*E*iyy/l0 0];[0 6*E*ixx/l02 0 0 0 4*E*ixx/l0 0 -6*E*ixx/l02 0 0 0 2*E*ixx/l0];[-E*A/l0 0 0 0 0 0 E*A/l0 0 0 0 0 0];[0 -12*E*ixx/l03 0 0 0 -6*E*ixx/l02 0 12*E*ixx/l03 0 0 0 -6*E*ixx/l02];[0 0 -12*E*iyy/l03 0 6*E*iyy/l02 0 0 0 12*E*iyy/l03 0 6*E*iyy/l02 0];[0 0 0 -G*j/l0 0 0 0 0 0 G*j/l0 0 0];[0 0 -6*E*iyy/l02 0 2*E*iyy/l0 0 0 0 6*E*iyy/l02 0 4*E*iyy/l0 0];[0 6*E*ixx/l02 0 0 0 2*E*ixx/l0 0 -6*E*ixx/l02 0 0 0 4*E*ixx/l0]]\n", " k= [[ a1 0 0 0 0 0 -a1 0 0 0 0 0 ];\n", " [ 0 b1 0 0 0 b2 0 -b1 0 0 0 b2 ];\n", " [ 0 0 b1 0 -b2 0 0 0 -b1 0 -b2 0 ];\n", " [ 0 0 0 a2 0 0 0 0 0 -a2 0 0 ];\n", " [ 0 0 0 0 2b3 0 0 0 b2 0 b3 0 ];\n", " [ 0 0 0 0 0 2b3 0 -b2 0 0 0 b3 ];\n", " [ 0 0 0 0 0 0 a1 0 0 0 0 0 ];\n", " [ 0 0 0 0 0 0 0 b1 0 0 0 -b2 ];\n", " [ 0 0 0 0 0 0 0 0 b1 0 b2 0 ];\n", " [ 0 0 0 0 0 0 0 0 0 a2 0 0 ];\n", " [ 0 0 0 0 0 0 0 0 0 0 2b3 0 ];\n", " [ 0 0 0 0 0 0 0 0 0 0 0 2b3 ]]\n", " # find rotated mass and stifness matrices\n", " tau = rotation_matrix(element_vector, x_axis,y_axis,z_axis)\n", "\n", " # m_r=transpose(tau)*m*tau\n", " k_r=transpose(tau)*k*tau\n", "\n", " # change from element to global coordinate\n", " index= dofs.+1\n", "\n", " B=zeros((12,ndofs))\n", " for i in 1:12\n", " B[i,index[i]]=1.0\n", " end\n", "\n", "\n", " # M_rG= transpose(B)*m_r*B\n", " K_rG= transpose(B)*k_r*B\n", "\n", " # M += Cm .* M_rG\n", " # K += Ck .* K_rG\n", " K += K_rG\n", "\n", " end\n", " \n", " \n", " # construct the force vector\n", " F=zeros(ndofs)\n", " remove_indices=[];\n", " for node in nodes\n", " #insert!(F,i, value);\n", " #F=vcat(F,value)\n", " \n", " \n", " i=parse(Int,node[\"id\"][2:end])\n", " f=node[\"force\"]\n", " \n", " # println(f)\n", " F[(i)*6+1]=f[\"x\"]/1.0\n", " F[(i)*6+2]=f[\"y\"]/1.0\n", " F[(i)*6+3]=f[\"z\"]/1.0\n", " F[(i)*6+4]=0\n", " F[(i)*6+5]=0\n", " F[(i)*6+6]=0\n", " Load+=f[\"y\"]/1.0\n", " if (F[(i)*6+2]!=0)\n", " append!(topNodesIndices,i)\n", " end\n", " \n", " dofs = convert(Array{Int}, node[\"degrees_of_freedom\"]).+1\n", " restrained_dofs=node[\"restrained_degrees_of_freedom\"]\n", " for (index, value) in enumerate(dofs)\n", " if restrained_dofs[index]\n", " append!( remove_indices, value)\n", " end\n", " end\n", " \n", " end\n", "\n", " #println(remove_indices)\n", " #print(K)\n", " #print(F)\n", " \n", "\n", " #M = M[setdiff(1:end, remove_indices), :]\n", " K = K[setdiff(1:end, remove_indices), :]\n", "\n", " #M = M[:,setdiff(1:end, remove_indices)]\n", " K = K[:,setdiff(1:end, remove_indices)]\n", "\n", " F = F[setdiff(1:end, remove_indices)]\n", " return M,K,F\n", " end\n", " \n", " \n", " function updateDisplacement(setup, X)\n", " nodes= setup[\"nodes\"]\n", " i=0\n", " for node in nodes\n", " \n", " if !node[\"restrained_degrees_of_freedom\"][1]\n", " #i=parse(Int,node[\"id\"][2:end])\n", " node[\"displacement\"][\"x\"]=X[(i)*6+1]\n", " node[\"displacement\"][\"y\"]=X[(i)*6+2]\n", " node[\"displacement\"][\"z\"]=X[(i)*6+3]\n", " node[\"angle\"][\"x\"]=X[(i)*6+4]\n", " node[\"angle\"][\"y\"]=X[(i)*6+5]\n", " node[\"angle\"][\"z\"]=X[(i)*6+6]\n", " append!(displacementFEA,[Vector3(X[(i)*6+1],X[(i)*6+2],X[(i)*6+3])])\n", " i=i+1\n", " else\n", " append!(displacementFEA,[Vector3(0,0,0)])\n", " end\n", " end\n", " end\n", " \n", " #######################################################\n", "\n", " function get_stresses(setup)\n", " nodes = setup[\"nodes\"]\n", " edges = setup[\"edges\"]\n", " ndofs = length(nodes)*6\n", "\n", " x_axis = [1 0 0]\n", " y_axis = [0 1 0]\n", " z_axis = [0 0 1]\n", "\n", " # find the stresses in each member\n", " stresses=zeros(length(edges))\n", " max11=-10e6\n", " min11=10e6\n", " for edge in edges\n", " #degrees_of_freedom = properties[\"degrees_of_freedom\"]\n", "\n", " element=parse(Int,edge[\"id\"][2:end])\n", "\n", " # find the nodes that the lements connects\n", " fromNode = nodes[edge[\"source\"]+1]\n", " toNode = nodes[edge[\"target\"]+1]\n", "\n", " # the coordinates for each node\n", " fromPoint = [fromNode[\"position\"][\"x\"]/100.0 fromNode[\"position\"][\"y\"]/100.0 fromNode[\"position\"][\"z\"]/100.0]\n", " toPoint = [toNode[\"position\"][\"x\"]/100.0 toNode[\"position\"][\"y\"]/100.0 toNode[\"position\"][\"z\"]/100.0]\n", "\n", " # find the degrees of freedom for each node\n", " dofs = convert(Array{Int}, fromNode[\"degrees_of_freedom\"])\n", " dofs=vcat(dofs,convert(Array{Int}, toNode[\"degrees_of_freedom\"]))\n", "\n", " element_vector=toPoint-fromPoint\n", "\n", "\n", " # find rotated mass and stifness matrices\n", " tau = rotation_matrix(element_vector, x_axis,y_axis,z_axis)\n", "\n", " # i1=parse(Int,fromNode[\"id\"][2:end])\n", " # i2=parse(Int,toNode[\"id\"][2:end])\n", "\n", " # global_displacements=[X[(i1)*6+1] X[(i1)*6+2] X[(i1)*6+3] X[(i1)*6+4] X[(i1)*6+5] X[(i1)*6+6] X[(i2)*6+1] X[(i2)*6+2] X[(i2)*6+3] X[(i2)*6+4] X[(i2)*6+5] X[(i2)*6+6]] # todo change\n", " global_displacements=[fromNode[\"displacement\"][\"x\"] fromNode[\"displacement\"][\"y\"] fromNode[\"displacement\"][\"z\"] fromNode[\"angle\"][\"x\"] fromNode[\"angle\"][\"y\"] fromNode[\"angle\"][\"z\"] toNode[\"displacement\"][\"x\"] toNode[\"displacement\"][\"y\"] toNode[\"displacement\"][\"z\"] toNode[\"angle\"][\"x\"] toNode[\"angle\"][\"y\"] toNode[\"angle\"][\"z\"]] # todo change\n", "\n", " # nodal displacement\n", "\n", " q=tau*transpose(global_displacements)\n", " # println(q)\n", " # calculate the strain and stresses\n", " strain =(q[7]-q[1])/norm(element_vector)\n", " E = edge[\"stiffness\"]# youngs modulus\n", " stress=E.*strain\n", " edge[\"stress\"]=stress\n", " if stress>max11\n", " max11=stress\n", " end\n", " if stress<min11\n", " min11=stress\n", " end\n", " # println(element)\n", " # println(stress)\n", " end\n", "\n", "\n", "\n", " setup[\"viz\"][\"minStress\"]=min11\n", " setup[\"viz\"][\"maxStress\"]=max11\n", " return stresses\n", " end\n", " \n", " function initialize(setup)\n", " nodes = setup[\"nodes\"]\n", " ndofs = length(nodes)*6\n", " \n", " i=0\n", " for node in nodes\n", " dg=[]\n", " for ii in 0:5\n", " append!(dg,i+ii) \n", " end\n", " i+=6\n", " node[\"degrees_of_freedom\"]=dg\n", " end\n", " end\n", "\n", " #######################################################\n", " function solveFea(setup)\n", " // # determine the global matrices\n", " initialize(setup)\n", " \n", " M,K,F=get_matrices(setup)\n", " \n", " #println(M)\n", " #println(K)\n", " #println(F)\n", "\n", " #evals=eigvals(K,M)\n", " #evecs=eigvecs(K,M)\n", " #frequencies=sqrt.(evals)\n", " X=inv(K)*F\n", " # println(X)\n", "\n", " #updateDisplacement(displacements);\n", " updateDisplacement(setup, X)\n", "\n", " # determine the stresses in each element\n", " stresses=get_stresses(setup)\n", " end\n", " #######################################################\n", " displacementFEA=[]\n", " Load=0\n", " topNodesIndices=[]\n", " solveFea(setup)\n", " return displacementFEA,Load,topNodesIndices\n", "end" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "recommendedTimeStep (generic function with 1 method)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function recommendedTimeStep()\n", " \n", " \n", "# #find the largest natural frequency (sqrt(k/m)) that anything in the simulation will experience, then multiply by 2*pi and invert to get the optimally largest timestep that should retain stability\n", "# MaxFreq2 = 0.0; #maximum frequency in the simulation in rad/sec\n", " \n", "# for e in 1:length(edges) #for each edge\n", "# CVX_Link* pL = (*it);\n", "# #axial\n", "# m1 = mass(), m2 = mass()\n", "# thisMaxFreq2 = axialStiffness()/(m1<m2?m1:m2)\n", "# if (thisMaxFreq2 > MaxFreq2) \n", "# MaxFreq2 = thisMaxFreq2;\n", "# end\n", "\n", "# #rotational will always be less than or equal\n", "# end\n", " \n", "\n", "# if (MaxFreq2 <= 0.0) #didn't find anything (i.e no links) check for individual voxelss\n", "# for n in 1:length(nodes) #for each node\n", "# thisMaxFreq2 = youngsModulus*nomSize/mass;\n", "# #thisMaxFreq2 = (*it)->mat->youngsModulus()*(*it)->mat->nomSize/(*it)->mat->mass();\n", "# if (thisMaxFreq2 > MaxFreq2) \n", "# MaxFreq2 = thisMaxFreq2;\n", "# end\n", "# end\n", "# end\n", "\n", "# if (MaxFreq2 <= 0.0) \n", "# return 0.0\n", "# else \n", "# return 1.0/(6.283185*sqrt(MaxFreq2)) #the optimal timestep is to advance one radian of the highest natural frequency\n", "# end\n", " MaxFreq2=E*size/mass\n", " return 1/(6.283185*sqrt(MaxFreq2))\n", "end" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "getSetup (generic function with 1 method)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function getSetup(latticeSize)\n", " setup = Dict()\n", " name=string(\"../json/setupTestUni$latticeSize\",\".json\")\n", "# open(\"../json/setupValid2.json\", \"r\") do f\n", "# open(\"../json/setupTest.json\", \"r\") do f\n", " # open(\"../json/trialJulia.json\", \"r\") do f\n", "# open(\"../json/setupTestUni4.json\", \"r\") do f\n", " # open(\"../json/setupChiral.json\", \"r\") do f\n", "# open(\"../json/setupTestCubeUni10.json\", \"r\") do f\n", " open(name, \"r\") do f\n", "# global setup\n", " dicttxt = String(read(f)) # file information to string\n", " setup=JSON.parse(dicttxt) # parse and transform data\n", " end\n", "\n", " setup=setup[\"setup\"]\n", " return setup\n", "end" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "ename": "BoundsError", "evalue": "BoundsError: attempt to access 24-element Array{Float64,1} at index [25]", "output_type": "error", "traceback": [ "BoundsError: attempt to access 24-element Array{Float64,1} at index [25]", "", "Stacktrace:", " [1] getindex at .\\array.jl:728 [inlined]", " [2] (::getfield(Main, Symbol(\"#updateDisplacement#11\")))(::Dict{String,Any}, ::Array{Float64,1}) at .\\In[16]:237", " [3] (::getfield(Main, Symbol(\"#solveFea#14\")){getfield(Main, Symbol(\"#get_matrices#10\")),getfield(Main, Symbol(\"#updateDisplacement#11\")),getfield(Main, Symbol(\"#get_stresses#12\")),getfield(Main, Symbol(\"#initialize#13\"))})(::Dict{String,Any}) at .\\In[16]:354", " [4] fea(::Dict{String,Any}) at .\\In[16]:363", " [5] top-level scope at In[19]:3" ] } ], "source": [ "latticeSize=1\n", "setup=getSetup(latticeSize)\n", "displacementFEA,Load,topNodesIndices=fea(setup)\n", "topNodesIndices" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5-element Array{Float64,1}:\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DDisplacements=[[],[],[],[],[]]\n", "DDisplacementsFEA=[[],[],[],[],[]]\n", "EsFEA=[0.0,0,0,0,0]\n", "Es=[0.0,0,0,0,0]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "ename": "BoundsError", "evalue": "BoundsError: attempt to access 360-element Array{Float64,1} at index [361]", "output_type": "error", "traceback": [ "BoundsError: attempt to access 360-element Array{Float64,1} at index [361]", "", "Stacktrace:", " [1] getindex at .\\array.jl:728 [inlined]", " [2] (::getfield(Main, Symbol(\"#updateDisplacement#11\")))(::Dict{String,Any}, ::Array{Float64,1}) at .\\In[16]:237", " [3] (::getfield(Main, Symbol(\"#solveFea#14\")){getfield(Main, Symbol(\"#get_matrices#10\")),getfield(Main, Symbol(\"#updateDisplacement#11\")),getfield(Main, Symbol(\"#get_stresses#12\")),getfield(Main, Symbol(\"#initialize#13\"))})(::Dict{String,Any}) at .\\In[16]:354", " [4] fea(::Dict{String,Any}) at .\\In[16]:363", " [5] top-level scope at In[21]:3" ] } ], "source": [ "latticeSize=3\n", "setup=getSetup(latticeSize)\n", "displacementFEA,Load,topNodesIndices=fea(setup)\n", "\n", "setup=getSetup(latticeSize)\n", "numTimeSteps=2000\n", "displacements=[]\n", "save=true\n", "returnEvery=1\n", "runMetavoxelGPU!(setup,numTimeSteps,latticeSize,displacements,returnEvery,true)\n", "\n", "numTimeStepsRecorded=length(displacements)\n", "d=[]\n", "dFEA=[]\n", "j=length(displacements[end])\n", "step=1\n", "for i in 1:step:numTimeStepsRecorded\n", " append!(d,displacements[i][j].y)\n", " append!(dFEA,displacementFEA[j].y)\n", "end\n", "\n", "DDisplacements[latticeSize]=d*100\n", "DDisplacementsFEA[latticeSize]=dFEA*100\n", "\n", "E1=getYoungsModulus(latticeSize,5,displacementFEA,Load,topNodesIndices)/1000\n", "E2=getYoungsModulus(latticeSize,5,displacements[end],Load,topNodesIndices)/1000\n", "\n", "EsFEA[latticeSize]=E1\n", "Es[latticeSize]=E2\n", "\n", "print(\"EsFEA:\" )\n", "println(EsFEA)\n", "print(\"Es:\" )\n", "println(Es)\n", "\n", "println(\"FEA displacement= $(displacementFEA[j].y),converged displacement= $(displacements[numTimeStepsRecorded][j].y)\")\n", "plot(1:step:numTimeStepsRecorded,d*100,label=\"Dynamic\",xlabel=\"timestep\",ylabel=\"displacement\",title=\"$latticeSize Voxel Convergence Study\")\n", "plot!(1:step:numTimeStepsRecorded,dFEA*100,label=\"FEA\")\n", "# savefig(\"5_voxel_convergence\")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "ename": "UndefVarError", "evalue": "UndefVarError: displacements not defined", "output_type": "error", "traceback": [ "UndefVarError: displacements not defined", "", "Stacktrace:", " [1] top-level scope at In[22]:3" ] } ], "source": [ "n=[]\n", "nFEA=[]\n", "j=length(displacements[end])\n", "for i in 1:j\n", " append!(n,displacements[end][i].y)\n", " append!(nFEA,displacementFEA[i].y)\n", "end\n", "scatter(1:j,n,label=\"Dyanmic\",xlabel=\"Node ID\",ylabel=\"displacement\",title=\"Node Displacement\")\n", "scatter!(1:j,nFEA,label=\"FEA\")\n", "# savefig(\"node_displacement_one_voxel\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "ename": "UndefVarError", "evalue": "UndefVarError: E1 not defined", "output_type": "error", "traceback": [ "UndefVarError: E1 not defined", "", "Stacktrace:", " [1] top-level scope at In[23]:15" ] } ], "source": [ "function getYoungsModulus(latticeSize,voxelSize,disp,Load,topNodesIndices)\n", " F=-Load\n", " l0=voxelSize*sqrt(2)/100.0*latticeSize\n", " A=(voxelSize*sqrt(2)/100.0)^2*latticeSize^2\n", "\n", " δl1=-mean( x.y for x in disp[topNodesIndices])\n", "\n", " stresses=F/A\n", " strain=δl1/l0\n", "\n", " E=stresses/strain *1e-9\n", "\n", " return E\n", "end\n", "\n", "# F=-Load\n", "# l0=5*sqrt(2)/100.0*latticeSize\n", "# A=(5*sqrt(2)/100.0)^2*latticeSize^2\n", "\n", "# δl1=-mean( x.y for x in displacementFEA[topNodesIndices])\n", "# δl2=-mean( x.y for x in displacements[end][topNodesIndices])\n", "\n", "# stresses=F/A\n", "# strain1=δl1/l0\n", "# strain2=δl2/l0\n", "\n", "# # DDisplacements[latticeSize]=[displacements[end][end].y]\n", "# # DDisplacementsFEA[latticeSize]=[displacementFEA[end].y]\n", "\n", "# E1=getYoungsModulus(latticeSize,5,displacementFEA,Load,topNodesIndices)/1000\n", "# E2=getYoungsModulus(latticeSize,5,displacements[end],Load,topNodesIndices)/1000\n", "# EsFEA[latticeSize]=E1\n", "# Es[latticeSize]=E2\n", "\n", "println(\"E FEA= $E1,E dynamic= $E2\")\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "# Es1=[0.060884503402759034, 0.028613329550419765,0.04290673059936012,0.05720947849175027,0.07151182744350526 ]\n", "# Es2=[4.476556777767441 ,2.4245859780625727, 2.450108731865717,2.4714994633266203,2.464207835015529]\n", "\n", "# EsFEA=[9.777375254441967, 4.997590597979953, 7.496951555575914,9.995905987397883,12.494879504999625 ] #FEA\n", "# Es=[4.476556777767441 ,2.4245859780625727, 2.450108731865717,2.4714994633266203,2.464207835015529] #DYNAMIC" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n", "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"600\" height=\"400\" viewBox=\"0 0 2400 1600\">\n", "<defs>\n", " <clipPath id=\"clip9900\">\n", " <rect x=\"0\" y=\"0\" width=\"2400\" height=\"1600\"/>\n", " </clipPath>\n", "</defs>\n", "<path clip-path=\"url(#clip9900)\" d=\"\n", "M0 1600 L2400 1600 L2400 0 L0 0 Z\n", " \" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n", "<defs>\n", " <clipPath id=\"clip9901\">\n", " <rect x=\"480\" y=\"0\" width=\"1681\" height=\"1600\"/>\n", " </clipPath>\n", "</defs>\n", "<path clip-path=\"url(#clip9900)\" d=\"\n", "M242.516 1425.62 L2352.76 1425.62 L2352.76 121.675 L242.516 121.675 Z\n", " \" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n", "<defs>\n", " <clipPath id=\"clip9902\">\n", " <rect x=\"242\" y=\"121\" width=\"2111\" height=\"1305\"/>\n", " </clipPath>\n", "</defs>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 302.24,1425.62 302.24,121.675 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 799.938,1425.62 799.938,121.675 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 1297.64,1425.62 1297.64,121.675 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 1795.33,1425.62 1795.33,121.675 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 2293.03,1425.62 2293.03,121.675 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 242.516,1388.71 2352.76,1388.71 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 242.516,1081.18 2352.76,1081.18 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 242.516,773.647 2352.76,773.647 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 242.516,466.113 2352.76,466.113 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n", " 242.516,158.579 2352.76,158.579 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 242.516,1425.62 2352.76,1425.62 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 242.516,1425.62 242.516,121.675 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 302.24,1425.62 302.24,1409.97 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 799.938,1425.62 799.938,1409.97 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 1297.64,1425.62 1297.64,1409.97 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 1795.33,1425.62 1795.33,1409.97 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 2293.03,1425.62 2293.03,1409.97 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 242.516,1388.71 267.839,1388.71 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 242.516,1081.18 267.839,1081.18 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 242.516,773.647 267.839,773.647 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 242.516,466.113 267.839,466.113 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 242.516,158.579 267.839,158.579 \n", " \"/>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 302.24, 1479.62)\" x=\"302.24\" y=\"1479.62\">1</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 799.938, 1479.62)\" x=\"799.938\" y=\"1479.62\">2</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 1297.64, 1479.62)\" x=\"1297.64\" y=\"1479.62\">3</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 1795.33, 1479.62)\" x=\"1795.33\" y=\"1479.62\">4</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 2293.03, 1479.62)\" x=\"2293.03\" y=\"1479.62\">5</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 1406.21)\" x=\"218.516\" y=\"1406.21\">0.00</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 1098.68)\" x=\"218.516\" y=\"1098.68\">0.25</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 791.147)\" x=\"218.516\" y=\"791.147\">0.50</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 483.613)\" x=\"218.516\" y=\"483.613\">0.75</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 176.079)\" x=\"218.516\" y=\"176.079\">1.00</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:84px; text-anchor:middle;\" transform=\"rotate(0, 1297.64, 73.2)\" x=\"1297.64\" y=\"73.2\">Young's Modulus</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:66px; text-anchor:middle;\" transform=\"rotate(0, 1297.64, 1559.48)\" x=\"1297.64\" y=\"1559.48\">lattice size</text>\n", "</g>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:66px; text-anchor:middle;\" transform=\"rotate(-90, 89.2861, 773.647)\" x=\"89.2861\" y=\"773.647\">E</text>\n", "</g>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#009af9; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 302.24,1388.71 799.938,1388.71 1297.64,1388.71 1795.33,1388.71 2293.03,1388.71 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#e26f46; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 302.24,1388.71 799.938,1388.71 1297.64,1388.71 1795.33,1388.71 2293.03,1388.71 \n", " \"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"302.24\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"799.938\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"1297.64\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"1795.33\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"2293.03\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"302.24\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"799.938\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"1297.64\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"1795.33\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<circle clip-path=\"url(#clip9902)\" cx=\"2293.03\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n", "<path clip-path=\"url(#clip9900)\" d=\"\n", "M1853.56 386.635 L2280.76 386.635 L2280.76 205.195 L1853.56 205.195 Z\n", " \" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 1853.56,386.635 2280.76,386.635 2280.76,205.195 1853.56,205.195 1853.56,386.635 \n", " \"/>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#009af9; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 1877.56,265.675 2021.56,265.675 \n", " \"/>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:start;\" transform=\"rotate(0, 2045.56, 283.175)\" x=\"2045.56\" y=\"283.175\">Dyanmic</text>\n", "</g>\n", "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#e26f46; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n", " 1877.56,326.155 2021.56,326.155 \n", " \"/>\n", "<g clip-path=\"url(#clip9900)\">\n", "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:start;\" transform=\"rotate(0, 2045.56, 343.655)\" x=\"2045.56\" y=\"343.655\">FEA</text>\n", "</g>\n", "</svg>\n" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot(1:5,Es,label=\"Dyanmic\",xlabel=\"lattice size\",ylabel=\"E\",title=\"Young's Modulus\")\n", "plot!(1:5,EsFEA,label=\"FEA\")\n", "scatter!(1:5,Es,color=\"black\",label=\"\")\n", "scatter!(1:5,EsFEA,color=\"black\",label=\"\")\n", "# savefig(\"youngs_modulus\")" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "ename": "UndefVarError", "evalue": "UndefVarError: numTimeStepsRecorded not defined", "output_type": "error", "traceback": [ "UndefVarError: numTimeStepsRecorded not defined", "", "Stacktrace:", " [1] top-level scope at .\\In[26]:3" ] } ], "source": [ "plot()\n", "for i in 1:5\n", " plot!(1:step:numTimeStepsRecorded,DDisplacements[i],label=\"Lattice size: $i\",xlabel=\"timestep\",ylabel=\"displacement\",title=\"Dynamic Model Convergence\")\n", "\n", "end\n", "plot!()\n", "# savefig(\"dynamic_convergence\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "@webio": { "lastCommId": null, "lastKernelId": null }, "kernelspec": { "display_name": "Julia 1.2.0", "language": "julia", "name": "julia-1.2" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.2.0" } }, "nbformat": 4, "nbformat_minor": 4 }