{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "using LinearAlgebra\n",
    "using Plots\n",
    "import JSON\n",
    "# using Quaternions\n",
    "using StaticArrays, Rotations\n",
    "using Distributed\n",
    "using StaticArrays, BenchmarkTools\n",
    "using Base.Threads\n",
    "using CUDAnative\n",
    "using CuArrays,CUDAdrv \n",
    "using Test\n",
    "import Base: +, * , -, ^"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Todo\n",
    "- create struct for material and get for each edge its properties\n",
    "- implement getTimestep (done)\n",
    "- implement on single voxel (done)\n",
    "- get reat E and L (done)\n",
    "- compare to Frame3dd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "struct Vector3\n",
    "    x::Float64\n",
    "    y::Float64\n",
    "    z::Float64\n",
    "    function Vector3()\n",
    "        x=0.0\n",
    "        y=0.0\n",
    "        z=0.0\n",
    "        new(x,y,z)\n",
    "    end\n",
    "    function Vector3(x,y,z)\n",
    "       new(x,y,z)\n",
    "    end\n",
    "end\n",
    "struct Quaternion\n",
    "    x::Float64\n",
    "    y::Float64\n",
    "    z::Float64\n",
    "    w::Float64\n",
    "    function Quaternion()\n",
    "        x=0.0\n",
    "        y=0.0\n",
    "        z=0.0\n",
    "        w=1.0\n",
    "        new(x,y,z,w)\n",
    "    end\n",
    "    function Quaternion(x,y,z,w)\n",
    "        new(x,y,z,w)\n",
    "    end\n",
    "end\n",
    "struct RotationMatrix\n",
    "    te1::Float64\n",
    "    te2::Float64\n",
    "    te3::Float64\n",
    "    te4::Float64\n",
    "    te5::Float64\n",
    "    te6::Float64\n",
    "    te7::Float64\n",
    "    te8::Float64\n",
    "    te9::Float64\n",
    "    te10::Float64\n",
    "    te11::Float64\n",
    "    te12::Float64\n",
    "    te13::Float64\n",
    "    te14::Float64\n",
    "    te15::Float64\n",
    "    te16::Float64\n",
    "    function RotationMatrix()\n",
    "        te1 =0.0\n",
    "        te2 =0.0\n",
    "        te3 =0.0\n",
    "        te4 =0.0\n",
    "        te5 =0.0\n",
    "        te6 =0.0\n",
    "        te7 =0.0\n",
    "        te8 =0.0\n",
    "        te9 =0.0\n",
    "        te10=0.0\n",
    "        te11=0.0\n",
    "        te12=0.0\n",
    "        te13=0.0\n",
    "        te14=0.0\n",
    "        te15=0.0\n",
    "        te16=0.0\n",
    "        new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)\n",
    "    end\n",
    "    function RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)\n",
    "        new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)\n",
    "    end\n",
    "end\n",
    "\n",
    "+(f::Vector3, g::Vector3)=Vector3(f.x+g.x , f.y+g.y,f.z+g.z )\n",
    "-(f::Vector3, g::Vector3)=Vector3(f.x-g.x , f.y-g.y,f.z-g.z )\n",
    "*(f::Vector3, g::Vector3)=Vector3(f.x*g.x , f.y*g.y,f.z*g.z )\n",
    "\n",
    "+(f::Vector3, g::Number)=Vector3(f.x+g , f.y+g,f.z+g )\n",
    "-(f::Vector3, g::Number)=Vector3(f.x-g , f.y-g,f.z-g )\n",
    "*(f::Vector3, g::Number)=Vector3(f.x*g , f.y*g,f.z*g )\n",
    "\n",
    "+(g::Vector3, f::Number)=Vector3(f.x+g , f.y+g,f.z+g )\n",
    "-(g::Vector3, f::Number)=Vector3(g-f.x , g-f.y,g-f.z )\n",
    "*(g::Vector3, f::Number)=Vector3(f.x*g , f.y*g,f.z*g )\n",
    "\n",
    "addX(f::Vector3, g::Number)=Vector3(f.x+g , f.y,f.z)\n",
    "addY(f::Vector3, g::Number)=Vector3(f.x , f.y+g,f.z )\n",
    "addZ(f::Vector3, g::Number)=Vector3(f.x , f.y,f.z+g )\n",
    "\n",
    "function normalizeVector3(f::Vector3)\n",
    "    leng=sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z))\n",
    "    return Vector3(f.x/leng,f.y/leng,f.z/leng)\n",
    "    \n",
    "end\n",
    "function normalizeQuaternion(f::Quaternion)\n",
    "    l = sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z)+ (f.w * f.w))\n",
    "    if l === 0 \n",
    "        qx = 0\n",
    "        qy = 0\n",
    "        qz = 0\n",
    "        qw = 1\n",
    "    else \n",
    "        l = 1 / l\n",
    "        qx = f.x * l\n",
    "        qy = f.y * l\n",
    "        qz = f.z * l\n",
    "        qw = f.w * l\n",
    "    end\n",
    "    return Quaternion(qx,qy,qz,qw)\n",
    "end\n",
    "\n",
    "function normalizeQuaternion1!(fx::Float64,fy::Float64,fz::Float64,fw::Float64)\n",
    "    l = sqrt((fx * fx) + (fy * fy) + (fz * fz)+ (fw * fw))\n",
    "    if l === 0 \n",
    "        qx = 0.0\n",
    "        qy = 0.0\n",
    "        qz = 0.0\n",
    "        qw = 1.0\n",
    "    else \n",
    "        l = 1.0 / l\n",
    "        qx = fx * l\n",
    "        qy = fy * l\n",
    "        qz = fz * l\n",
    "        qw = fw * l\n",
    "    end\n",
    "    return qx,qy,qz,qw\n",
    "end\n",
    "\n",
    "\n",
    "function dotVector3(f::Vector3, g::Vector3)\n",
    "    return (f.x * g.x) + (f.y * g.y) + (f.z * g.z)\n",
    "end\n",
    "\n",
    "function Base.show(io::IO, v::Vector3)\n",
    "    print(io, \"x:$(v.x), y:$(v.y), z:$(v.z)\")\n",
    "end\n",
    "\n",
    "function Base.show(io::IO, v::Quaternion)\n",
    "    print(io, \"x:$(v.x), y:$(v.y), z:$(v.z), w:$(v.z)\")\n",
    "end\n",
    "\n",
    "Base.Broadcast.broadcastable(q::Vector3) = Ref(q)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "simulateParallel (generic function with 2 methods)"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function simulateParallel(numTimeSteps,dt)\n",
    "    # initialize(setup)\n",
    "    \n",
    "    for i in 1:numTimeSteps\n",
    "        #println(\"Timestep:\",i)\n",
    "        doTimeStep(dt,i)\n",
    "    end\n",
    "end\n",
    "\n",
    "function simulateParallel(metavoxel,numTimeSteps,dt)\n",
    "    # initialize(setup)\n",
    "    \n",
    "    for i in 1:numTimeSteps\n",
    "        #println(\"Timestep:\",i)\n",
    "        doTimeStep(metavoxel,dt,i)\n",
    "    end\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "initialize (generic function with 1 method)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function initialize(setup)\n",
    "    nodes      = setup[\"nodes\"]\n",
    "    edges      = setup[\"edges\"]\n",
    "\n",
    "    i=1\n",
    "    # pre-calculate current position\n",
    "    for node in nodes\n",
    "        # element=parse(Int,node[\"id\"][2:end])\n",
    "        N_position[i]=Vector3(node[\"position\"][\"x\"]/100.0,node[\"position\"][\"y\"]/100.0,node[\"position\"][\"z\"]/100.0)\n",
    "        N_restrained[i]=node[\"restrained_degrees_of_freedom\"][1] ## todo later consider other degrees of freedom\n",
    "        N_displacement[i]=Vector3(node[\"displacement\"][\"x\"],node[\"displacement\"][\"y\"],node[\"displacement\"][\"z\"])\n",
    "        N_angle[i]=Vector3(node[\"angle\"][\"x\"],node[\"angle\"][\"y\"],node[\"angle\"][\"z\"])\n",
    "        N_force[i]=Vector3(node[\"force\"][\"x\"]/1,node[\"force\"][\"y\"]/1,node[\"force\"][\"z\"]/1)\n",
    "        N_currPosition[i]=Vector3(node[\"position\"][\"x\"]/100.0,node[\"position\"][\"y\"]/100.0,node[\"position\"][\"z\"]/100.0)\n",
    "\n",
    "        # for dynamic simulations\n",
    "        # append!(N_posTimeSteps,[[]])\n",
    "        # append!(N_angTimeSteps,[[]])\n",
    "\n",
    "        i=i+1\n",
    "    end \n",
    "\n",
    "    i=1\n",
    "    # pre-calculate the axis\n",
    "    for edge in edges\n",
    "        # element=parse(Int,edge[\"id\"][2:end])\n",
    "\n",
    "        # find the nodes that the lements connects\n",
    "        fromNode = nodes[edge[\"source\"]+1]\n",
    "        toNode = nodes[edge[\"target\"]+1]\n",
    "\n",
    "\n",
    "        node1 = [fromNode[\"position\"][\"x\"]/100.0 fromNode[\"position\"][\"y\"]/100.0 fromNode[\"position\"][\"z\"]/100.0]\n",
    "        node2 = [toNode[\"position\"][\"x\"]/100.0 toNode[\"position\"][\"y\"]/100.0 toNode[\"position\"][\"z\"]/100.0]\n",
    "\n",
    "        length=norm(node2-node1)\n",
    "        axis=normalize(collect(Iterators.flatten(node2-node1)))\n",
    "\n",
    "        E_source[i]=edge[\"source\"]+1\n",
    "        E_target[i]=edge[\"target\"]+1\n",
    "        E_area[i]=edge[\"area\"]\n",
    "        E_density[i]=edge[\"density\"]\n",
    "        E_stiffness[i]=edge[\"stiffness\"]\n",
    "        E_axis[i]=Vector3(axis[1],axis[2],axis[3])\n",
    "        E_currentRestLength[i]=length #?????????? todo change\n",
    "#         E_currentRestLength[i]=75/sqrt(2)\n",
    "\n",
    "        N_edgeID[E_source[i],N_currEdge[E_source[i]]]=i\n",
    "        N_edgeFirst[E_source[i],N_currEdge[E_source[i]]]=true\n",
    "        N_currEdge[E_source[i]]+=1\n",
    "\n",
    "        N_edgeID[E_target[i],N_currEdge[E_target[i]]]=i\n",
    "        N_edgeFirst[E_target[i],N_currEdge[E_target[i]]]=false\n",
    "        N_currEdge[E_target[i]]+=1\n",
    "\n",
    "\n",
    "        # for dynamic simulations\n",
    "        # append!(E_stressTimeSteps,[[]])\n",
    "\n",
    "        i=i+1\n",
    "    end \n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "doTimeStep! (generic function with 1 method)"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function doTimeStep(dt,currentTimeStep)\n",
    "    # update forces: go through edges, get currentposition from nodes, calc pos2 and update stresses and interior forces of nodes\n",
    "    run_updateEdges!(\n",
    "        E_sourceGPU, \n",
    "        E_targetGPU,\n",
    "        E_areaGPU,\n",
    "        E_densityGPU,\n",
    "        E_stiffnessGPU,\n",
    "        E_stressGPU,\n",
    "        E_axisGPU,\n",
    "        E_currentRestLengthGPU,\n",
    "        E_pos2GPU,\n",
    "        E_angle1vGPU,\n",
    "        E_angle2vGPU,\n",
    "        E_angle1GPU,\n",
    "        E_angle2GPU,\n",
    "        E_intForce1GPU,\n",
    "        E_intMoment1GPU,\n",
    "        E_intForce2GPU,\n",
    "        E_intMoment2GPU,\n",
    "        E_dampGPU,\n",
    "        N_currPositionGPU,\n",
    "        N_orientGPU)\n",
    "    \n",
    "    # update forces: go through nodes and update interior force (according to int forces from edges), integrate and update currpos\n",
    "    run_updateNodes!(dt,currentTimeStep,\n",
    "        N_positionGPU, \n",
    "        N_restrainedGPU,\n",
    "        N_displacementGPU,\n",
    "        N_angleGPU,\n",
    "        N_currPositionGPU,\n",
    "        N_linMomGPU,\n",
    "        N_angMomGPU,\n",
    "        N_intForceGPU,\n",
    "        N_intMomentGPU,\n",
    "        N_forceGPU,\n",
    "        N_momentGPU,\n",
    "        N_orientGPU,\n",
    "        N_edgeIDGPU, \n",
    "        N_edgeFirstGPU, \n",
    "        E_intForce1GPU,\n",
    "        E_intMoment1GPU,\n",
    "        E_intForce2GPU,\n",
    "        E_intMoment2GPU)\n",
    "    \n",
    "end\n",
    "\n",
    "function doTimeStep!(metavoxel,dt,currentTimeStep)\n",
    "    # update forces: go through edges, get currentposition from nodes, calc pos2 and update stresses and interior forces of nodes\n",
    "    run_updateEdges!(\n",
    "        metavoxel[\"E_sourceGPU\"], \n",
    "        metavoxel[\"E_targetGPU\"],\n",
    "        metavoxel[\"E_areaGPU\"],\n",
    "        metavoxel[\"E_densityGPU\"],\n",
    "        metavoxel[\"E_stiffnessGPU\"],\n",
    "        metavoxel[\"E_stressGPU\"],\n",
    "        metavoxel[\"E_axisGPU\"],\n",
    "        metavoxel[\"E_currentRestLengthGPU\"],\n",
    "        metavoxel[\"E_pos2GPU\"],\n",
    "        metavoxel[\"E_angle1vGPU\"],\n",
    "        metavoxel[\"E_angle2vGPU\"],\n",
    "        metavoxel[\"E_angle1GPU\"],\n",
    "        metavoxel[\"E_angle2GPU\"],\n",
    "        metavoxel[\"E_intForce1GPU\"],\n",
    "        metavoxel[\"E_intMoment1GPU\"],\n",
    "        metavoxel[\"E_intForce2GPU\"],\n",
    "        metavoxel[\"E_intMoment2GPU\"],\n",
    "        metavoxel[\"E_dampGPU\"],\n",
    "        metavoxel[\"N_currPositionGPU\"],\n",
    "        metavoxel[\"N_orientGPU\"])\n",
    "    \n",
    "    # update forces: go through nodes and update interior force (according to int forces from edges), integrate and update currpos\n",
    "    run_updateNodes!(dt,currentTimeStep,\n",
    "        metavoxel[\"N_positionGPU\"], \n",
    "        metavoxel[\"N_restrainedGPU\"],\n",
    "        metavoxel[\"N_displacementGPU\"],\n",
    "        metavoxel[\"N_angleGPU\"],\n",
    "        metavoxel[\"N_currPositionGPU\"],\n",
    "        metavoxel[\"N_linMomGPU\"],\n",
    "        metavoxel[\"N_angMomGPU\"],\n",
    "        metavoxel[\"N_intForceGPU\"],\n",
    "        metavoxel[\"N_intMomentGPU\"],\n",
    "        metavoxel[\"N_forceGPU\"],\n",
    "        metavoxel[\"N_momentGPU\"],\n",
    "        metavoxel[\"N_orientGPU\"],\n",
    "        metavoxel[\"N_edgeIDGPU\"], \n",
    "        metavoxel[\"N_edgeFirstGPU\"], \n",
    "        metavoxel[\"E_intForce1GPU\"],\n",
    "        metavoxel[\"E_intMoment1GPU\"],\n",
    "        metavoxel[\"E_intForce2GPU\"],\n",
    "        metavoxel[\"E_intMoment2GPU\"])\n",
    "    \n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "run_updateEdges! (generic function with 1 method)"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,E_stress,E_axis,\n",
    "        E_currentRestLength,E_pos2,E_angle1v,E_angle2v,\n",
    "        E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,E_damp,\n",
    "        N_currPosition,N_orient)\n",
    "\n",
    "    index = (blockIdx().x - 1) * blockDim().x + threadIdx().x\n",
    "    stride = blockDim().x * gridDim().x\n",
    "    ## @cuprintln(\"thread $index, block $stride\")\n",
    "    N=length(E_source)\n",
    "    for i = index:stride:N\n",
    "        \n",
    "        @inbounds pVNeg=N_currPosition[E_source[i]]\n",
    "        @inbounds pVPos=N_currPosition[E_target[i]]\n",
    "        \n",
    "        @inbounds oVNeg=N_orient[E_source[i]]\n",
    "        @inbounds oVPos=N_orient[E_target[i]]\n",
    "        \n",
    "        @inbounds oldPos2=Vector3(E_pos2[i].x,E_pos2[i].y,E_pos2[i].z) #?copy?\n",
    "        @inbounds oldAngle1v = Vector3(E_angle1v[i].x,E_angle1v[i].y,E_angle1v[i].z)\n",
    "        @inbounds oldAngle2v = Vector3(E_angle2v[i].x,E_angle2v[i].y,E_angle2v[i].z)# remember the positions/angles from last timestep to calculate velocity\n",
    "        \n",
    "        \n",
    "        @inbounds E_pos2[i],E_angle1v[i],E_angle2v[i],E_angle1[i],E_angle2[i],totalRot= orientLink!(E_currentRestLength[i],pVNeg,pVPos,oVNeg,oVPos,E_axis[i])\n",
    "        \n",
    "        @inbounds dPos2   = Vector3(0.5,0.5,0.5) * (E_pos2[i]-oldPos2)  #deltas for local damping. velocity at center is half the total velocity\n",
    "        @inbounds dAngle1 = Vector3(0.5,0.5,0.5) *(E_angle1v[i]-oldAngle1v)\n",
    "        @inbounds dAngle2 = Vector3(0.5,0.5,0.5) *(E_angle2v[i]-oldAngle2v)\n",
    "        \n",
    "        \n",
    "        @inbounds strain=(E_pos2[i].x/E_currentRestLength[i])\n",
    "        \n",
    "        positiveEnd=true\n",
    "        if axialStrain( positiveEnd,strain)>100.0\n",
    "            diverged=true\n",
    "            @cuprintln(\"DIVERGED!!!!!!!!!!\")\n",
    "            return \n",
    "        end\n",
    "        \n",
    "        @inbounds E = E_stiffness[i]\n",
    "        \n",
    "        \n",
    "        \n",
    "        @inbounds l   = E_currentRestLength[i]\n",
    "        \n",
    "        \n",
    "        nu=0\n",
    "#         L = 5.0 #?? change!!!!!!\n",
    "        L=l\n",
    "        a1 = E*L # EA/L : Units of N/m\n",
    "        a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m\n",
    "        b1 = E*L # 12EI/L^3 : Units of N/m\n",
    "        b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)\n",
    "        b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m\n",
    "        \n",
    "        nu=0.35\n",
    "        W = 75\n",
    "#         L = W/sqrt(2)\n",
    "        l=L\n",
    "        n_min = 1\n",
    "        n_max = 7\n",
    "        # Cross Section inputs, must be floats\n",
    "        mass=125000 #before for voxel\n",
    "        mass=1\n",
    "        E = 2000e9  # MPa\n",
    "        G = E * 1 / 3  # MPa\n",
    "        h = 2.38/100.0  # mm\n",
    "        b = 2.38/100.0 # mm\n",
    "        rho = 7.85e-9 / 3  # kg/mm^3\n",
    "        S = h * b\n",
    "        Sy = (S * (6 + 12 * nu + 6 * nu^2)/ (7 + 12 * nu + 4 * nu^2))\n",
    "        # For solid rectangular cross section (width=b, depth=d & ( b < d )):\n",
    "        Q = 1 / 3 - 0.2244 / (min(h / b, b / h) + 0.1607)\n",
    "        Jxx = Q * min(h * b^3, b * h^3)\n",
    "        s=b\n",
    "    \n",
    "        MaxFreq2=E*s/mass\n",
    "        dt= 1/(6.283185*sqrt(MaxFreq2))\n",
    "\n",
    "\n",
    "        ##if voxels\n",
    "        #nu=0\n",
    "        #L=l\n",
    "        #a1 = E*L # EA/L : Units of N/m\n",
    "        #a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m\n",
    "        #b1 = E*L # 12EI/L^3 : Units of N/m\n",
    "        #b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)\n",
    "        #b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m\n",
    "\n",
    "        I= b*h^3/12\n",
    "        J=b*h*(b*b+h*h)/12\n",
    "        a1=E*b*h/L\n",
    "        a2=G*J/L\n",
    "        b1=12*E*I/(L^3)\n",
    "        b2=6*E*I/(L^2)\n",
    "        b3=2*E*I/(L)\n",
    "        \n",
    "        \n",
    "\n",
    "        \n",
    "        #inbounds currentTransverseArea=25.0 #?? change!!!!!! E_area[i]\n",
    "        @inbounds currentTransverseArea= b*h\n",
    "        @inbounds _stress=updateStrain(strain,E)\n",
    "        \n",
    "        #@inbounds currentTransverseArea= E_area[i]\n",
    "        #@inbounds _stress=updateStrain(strain,E_stiffness[i])\n",
    "        \n",
    "        @inbounds E_stress[i]=_stress\n",
    "        \n",
    "        #@cuprintln(\"_stress $_stress\")\n",
    "        x=(_stress*currentTransverseArea)\n",
    "        @inbounds y=(b1*E_pos2[i].y-b2*(E_angle1v[i].z + E_angle2v[i].z))\n",
    "        @inbounds z=(b1*E_pos2[i].z + b2*(E_angle1v[i].y + E_angle2v[i].y))\n",
    "        \n",
    "        x=convert(Float64,x)\n",
    "        y=convert(Float64,y)\n",
    "        z=convert(Float64,z)\n",
    "        \n",
    "        # Use Curstress instead of -a1*Pos2.x to account for non-linear deformation \n",
    "        forceNeg = Vector3(x,y,z)\n",
    "        \n",
    "        forcePos = Vector3(-x,-y,-z)\n",
    "        \n",
    "        @inbounds x= (a2*(E_angle2v[i].x-E_angle1v[i].x))\n",
    "        @inbounds y= (-b2*E_pos2[i].z-b3*(2.0*E_angle1v[i].y+E_angle2v[i].y))\n",
    "        @inbounds z=(b2*E_pos2[i].y - b3*(2.0*E_angle1v[i].z + E_angle2v[i].z))  \n",
    "        x=convert(Float64,x)\n",
    "        y=convert(Float64,y)\n",
    "        z=convert(Float64,z)\n",
    "        momentNeg = Vector3(x,y,z)\n",
    "        \n",
    "\n",
    "        @inbounds x= (a2*(E_angle1v[i].x-E_angle2v[i].x))\n",
    "        @inbounds y= (-b2*E_pos2[i].z- b3*(E_angle1v[i].y+2.0*E_angle2v[i].y))\n",
    "        @inbounds z=(b2*E_pos2[i].y - b3*(E_angle1v[i].z + 2.0*E_angle2v[i].z))\n",
    "        x=convert(Float64,x)\n",
    "        y=convert(Float64,y)\n",
    "        z=convert(Float64,z)\n",
    "        momentPos = Vector3(x,y,z)\n",
    "        \n",
    "        \n",
    "        ### damping\n",
    "        @inbounds if E_damp[i] #first pass no damping\n",
    "            sqA1=CUDAnative.sqrt(a1) \n",
    "            sqA2xIp=CUDAnative.sqrt(a2*L*L/6.0) \n",
    "            sqB1=CUDAnative.sqrt(b1) \n",
    "            sqB2xFMp=CUDAnative.sqrt(b2*L/2) \n",
    "            sqB3xIp=CUDAnative.sqrt(b3*L*L/6.0)\n",
    "            \n",
    "            dampingMultiplier=Vector3(28099.3,28099.3,28099.3) # 2*mat->_sqrtMass*mat->zetaInternal/previousDt;?? todo link to material\n",
    "            \n",
    "            zeta=1\n",
    "            dampingM= 2*sqrt(mass)*zeta/dt\n",
    "            dampingMultiplier=Vector3(dampingM,dampingM,dampingM)\n",
    "            \n",
    "            posCalc=Vector3(sqA1*dPos2.x, sqB1*dPos2.y - sqB2xFMp*(dAngle1.z+dAngle2.z),sqB1*dPos2.z + sqB2xFMp*(dAngle1.y+dAngle2.y))\n",
    "            \n",
    "            \n",
    "            forceNeg =forceNeg + (dampingMultiplier*posCalc);\n",
    "            forcePos =forcePos - (dampingMultiplier*posCalc);\n",
    "\n",
    "            momentNeg -= Vector3(0.5,0.5,0.5)*dampingMultiplier*Vector3(-sqA2xIp*(dAngle2.x - dAngle1.x),\n",
    "                                                                    sqB2xFMp*dPos2.z + sqB3xIp*(2*dAngle1.y + dAngle2.y),\n",
    "                                                                    -sqB2xFMp*dPos2.y + sqB3xIp*(2*dAngle1.z + dAngle2.z));\n",
    "            momentPos -= Vector3(0.5,0.5,0.5)*dampingMultiplier*Vector3(sqA2xIp*(dAngle2.x - dAngle1.x),\n",
    "                                                                sqB2xFMp*dPos2.z + sqB3xIp*(dAngle1.y + 2*dAngle2.y),\n",
    "                                                                -sqB2xFMp*dPos2.y + sqB3xIp*(dAngle1.z + 2*dAngle2.z));\n",
    "\n",
    "        else\n",
    "           @inbounds E_damp[i]=true \n",
    "        end\n",
    "\n",
    "        smallAngle=true\n",
    "        if !smallAngle # ?? check\n",
    "            @inbounds forceNeg = RotateVec3DInv(E_angle1[i],forceNeg)\n",
    "            @inbounds momentNeg = RotateVec3DInv(E_angle1[i],momentNeg)\n",
    "        end\n",
    "        \n",
    "        @inbounds forcePos = RotateVec3DInv(E_angle2[i],forcePos)\n",
    "        @inbounds momentPos = RotateVec3DInv(E_angle2[i],momentPos)\n",
    "\n",
    "        @inbounds forceNeg =toAxisOriginalVector3(forceNeg,E_axis[i])\n",
    "        @inbounds forcePos =toAxisOriginalVector3(forcePos,E_axis[i])\n",
    "\n",
    "        @inbounds momentNeg=toAxisOriginalQuat(momentNeg,E_axis[i])# TODOO CHECKKKKKK\n",
    "        @inbounds momentPos=toAxisOriginalQuat(momentPos,E_axis[i])\n",
    "\n",
    "\n",
    "        @inbounds E_intForce1[i] =forceNeg\n",
    "        @inbounds E_intForce2[i] =forcePos\n",
    "        \n",
    "\n",
    "\n",
    "        @inbounds x= momentNeg.x\n",
    "        @inbounds y= momentNeg.y\n",
    "        @inbounds z= momentNeg.z  \n",
    "        x=convert(Float64,x)\n",
    "        y=convert(Float64,y)\n",
    "        z=convert(Float64,z)\n",
    "        \n",
    "        @inbounds E_intMoment1[i]=Vector3(x,y,z)\n",
    "\n",
    "        @inbounds x= momentNeg.x\n",
    "        @inbounds y= momentNeg.y\n",
    "        @inbounds z= momentNeg.z\n",
    "        x=convert(Float64,x)\n",
    "        y=convert(Float64,y)\n",
    "        z=convert(Float64,z)\n",
    "        \n",
    "        @inbounds E_intMoment2[i]=Vector3(x,y,z)\n",
    "        \n",
    "        #x=E_pos2[i].x*10000000000\n",
    "        #y=E_pos2[i].y*10000000000\n",
    "        #z=E_pos2[i].z*10000000000\n",
    "        #@cuprintln(\"pos2 x $x, y $y, z $z \")\n",
    "        ##x=E_intMoment2[i].x*10000000000\n",
    "        #y=E_intMoment2[i].y*10000000000\n",
    "        #z=E_intMoment2[i].z*10000000000\n",
    "        #@cuprintln(\"E_intMoment2 x $x, y $y, z $z \")\n",
    "\n",
    "        \n",
    "        \n",
    "    end\n",
    "    return\n",
    "end\n",
    "\n",
    "function run_updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,\n",
    "        E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,E_angle2v,\n",
    "        E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,\n",
    "        E_damp,N_currPosition,N_orient)\n",
    "    N=length(E_source)\n",
    "    numblocks = ceil(Int, N/256)\n",
    "    CuArrays.@sync begin\n",
    "        @cuda threads=256 blocks=numblocks updateEdges!(E_source,E_target,E_area,E_density,\n",
    "            E_stiffness,E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,\n",
    "            E_angle2v,E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,\n",
    "            E_intMoment2,E_damp,N_currPosition,N_orient)\n",
    "    end\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "run_updateNodes! (generic function with 1 method)"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement,N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)\n",
    "\n",
    "    index = (blockIdx().x - 1) * blockDim().x + threadIdx().x\n",
    "    stride = blockDim().x * gridDim().x\n",
    "    ## @cuprintln(\"thread $index, block $stride\")\n",
    "    N,M=size(N_edgeID)\n",
    "    for i = index:stride:N\n",
    "        @inbounds if N_restrained[i]\n",
    "            return\n",
    "        else\n",
    "            for j in 1:M\n",
    "                temp=N_edgeID[i,j]\n",
    "                @inbounds if (N_edgeID[i,j]!=-1)\n",
    "                    #@cuprintln(\"i $i, j $j, N_edgeID[i,j] $temp\")\n",
    "                    @inbounds N_intForce[i]=ifelse(N_edgeFirst[i,j], N_intForce[i]+E_intForce1[N_edgeID[i,j]], N_intForce[i]+E_intForce2[N_edgeID[i,j]] )\n",
    "                    @inbounds N_intMoment[i]=ifelse(N_edgeFirst[i,j], N_intMoment[i]+E_intMoment1[N_edgeID[i,j]], N_intMoment[i]+E_intMoment2[N_edgeID[i,j]] )\n",
    "                end\n",
    "            end\n",
    "            @inbounds curForce = force(N_intForce[i],N_orient[i],N_force[i],true,currentTimeStep)\n",
    "            \n",
    "            #@inbounds N_force[i]=Vector3(0,0,0) ##????\n",
    "            \n",
    "            @inbounds N_intForce[i]=Vector3(0,0,0)\n",
    "        \n",
    "            #x=curForce.x\n",
    "            #y=curForce.y\n",
    "            #z=curForce.z\n",
    "            #@cuprintln(\"curForce x $x, y $y, z $z \")\n",
    "            \n",
    "            #x=N_linMom[i].x*10000000000\n",
    "            #y=N_linMom[i].y*10000000000\n",
    "            #z=N_linMom[i].z*10000000000\n",
    "            #@cuprintln(\"N_linMom[i] x $x, y $y, z $z \")\n",
    "            \n",
    "            \n",
    "            @inbounds N_linMom[i]=N_linMom[i]+curForce*Vector3(dt,dt,dt) #todo make sure right\n",
    "            massInverse=8e-6 # todo ?? later change //8e-6\n",
    "            mass=1\n",
    "            massInverse=1.0/mass #\n",
    "            @inbounds translate=N_linMom[i]*Vector3((dt*massInverse),(dt*massInverse),(dt*massInverse)) # ??massInverse\n",
    "            \n",
    "            #x=translate.x*10000000000\n",
    "            #y=translate.y*10000000000\n",
    "            #z=translate.z*10000000000\n",
    "            #@cuprintln(\"translate x $x, y $y, z $z \")\n",
    "            \n",
    "            @inbounds N_currPosition[i]=N_currPosition[i]+translate\n",
    "            @inbounds N_displacement[i]=N_displacement[i]+translate\n",
    "            \n",
    "            \n",
    "            \n",
    "            # Rotation\n",
    "            @inbounds curMoment = moment(N_intMoment[i],N_orient[i],N_moment[i]) \n",
    "            \n",
    "            \n",
    "            \n",
    "            @inbounds N_intMoment[i]=Vector3(0,0,0) # do i really need it?\n",
    "            \n",
    "            @inbounds N_angMom[i]=N_angMom[i]+curMoment*Vector3(dt,dt,dt)\n",
    "            \n",
    "            \n",
    "            \n",
    "            \n",
    "            momentInertiaInverse=1.92e-6 # todo ?? later change 1/Inertia (1/(kg*m^2))\n",
    "            \n",
    "            \n",
    "            @inbounds temp=FromRotationVector(N_angMom[i]*Vector3((dt*momentInertiaInverse),(dt*momentInertiaInverse),(dt*momentInertiaInverse)))\n",
    "            \n",
    "            \n",
    "            #x=temp.x*10000000000\n",
    "            #y=temp.y*10000000000\n",
    "            #z=temp.z*10000000000\n",
    "            #@cuprintln(\"temp x $x, y $y, z $z \")\n",
    "            \n",
    "            @inbounds N_orient[i]=multiplyQuaternions(temp,N_orient[i])\n",
    "            \n",
    "            #@inbounds x= N_orient[i].x*temp.x\n",
    "            #@inbounds y= N_orient[i].y*temp.y\n",
    "            #@inbounds z= N_orient[i].z*temp.z\n",
    "            #@inbounds w= N_orient[i].w*temp.w\n",
    "            #x=convert(Float64,x)\n",
    "            #y=convert(Float64,y)\n",
    "            #z=convert(Float64,z)\n",
    "            #w=convert(Float64,w)\n",
    "            \n",
    "            #@inbounds N_orient[i]=Quaternion(x,y,z,w)\n",
    "            \n",
    "            #x=N_orient[i].x*10000000000\n",
    "            #y=N_orient[i].y*10000000000\n",
    "            #z=N_orient[i].z*10000000000\n",
    "            #w=N_orient[i].w\n",
    "            #@cuprintln(\"N_orient x $x, y $y, z $z, w $w \")\n",
    "            \n",
    "            \n",
    "        end\n",
    "    end\n",
    "    return\n",
    "end\n",
    "\n",
    "\n",
    "function run_updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement, N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)\n",
    "    N=length(N_intForce)\n",
    "    numblocks = ceil(Int, N/256)\n",
    "    CuArrays.@sync begin\n",
    "        @cuda threads=256 blocks=numblocks updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement, N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)\n",
    "    end\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "orientLink! (generic function with 1 method)"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function orientLink!(currentRestLength,pVNeg,pVPos,oVNeg,oVPos,axis)  # updates pos2, angle1, angle2, and smallAngle //Quat3D<double> /*double restLength*/\n",
    "        \n",
    "    pos2 = toAxisXVector3(pVPos-pVNeg,axis) # digit truncation happens here...\n",
    "    angle1 = toAxisXQuat(oVNeg,axis)\n",
    "    angle2 = toAxisXQuat(oVPos,axis)\n",
    "    \n",
    "    #x=pos2.x*10000000000\n",
    "    #y=pos2.y*10000000000\n",
    "    #z=pos2.z*10000000000\n",
    "    #@cuprintln(\"pos2 x $x, y $y, z $z \")\n",
    "    \n",
    "    #x=angle1.x*10000000000\n",
    "    #y=angle1.y*10000000000\n",
    "    #z=angle1.z*10000000000\n",
    "    #@cuprintln(\"angle1 x $x, y $y, z $z \")\n",
    "    #x=oVNeg.x*10000000000\n",
    "    #y=oVNeg.y*10000000000\n",
    "    #z=oVNeg.z*10000000000\n",
    "    #@cuprintln(\"oVNeg x $x, y $y, z $z \")\n",
    "    \n",
    "    \n",
    "    \n",
    "    totalRot = conjugate(angle1) #keep track of the total rotation of this bond (after toAxisX()) # Quat3D<double>\n",
    "    pos2 = RotateVec3D(totalRot,pos2)\n",
    "    \n",
    "    #x=pos2.x*10000000000\n",
    "    #y=pos2.y*10000000000\n",
    "    #z=pos2.z*10000000000\n",
    "    #@cuprintln(\"pos2 2 x $x, y $y, z $z \")\n",
    "    \n",
    "    \n",
    "    #x=totalRot.x*10000000000\n",
    "    #y=totalRot.y*10000000000\n",
    "    #z=totalRot.z*10000000000\n",
    "    #@cuprintln(\"totalRot x $x, y $y, z $z \")\n",
    "    \n",
    "    \n",
    "#     x=pos2.x*10000000000\n",
    "#     y=pos2.y*10000000000\n",
    "#     z=pos2.z*10000000000\n",
    "#     @cuprintln(\"pos2 x $x, y $y, z $z \")\n",
    "    \n",
    "    angle2 = Quaternion(angle2.x*totalRot.x,angle2.y*totalRot.y,angle2.z*totalRot.z,angle2.w*totalRot.w)\n",
    "    angle1 = Quaternion(0.0,0.0,0.0,1.0)#new THREE.Quaternion() #zero for now...\n",
    "\n",
    "    smallAngle=true #todo later remove\n",
    "    \n",
    "    \n",
    "    if (smallAngle)\t #Align so Angle1 is all zeros\n",
    "        #pos2[1] =pos2[1]- currentRestLength #only valid for small angles\n",
    "        pos2=Vector3(pos2.x-currentRestLength,pos2.y,pos2.z)\n",
    "    else  #Large angle. Align so that Pos2.y, Pos2.z are zero.\n",
    "        # FromAngleToPosX(angle1,pos2) #get the angle to align Pos2 with the X axis\n",
    "        # totalRot = angle1.clone().multiply(totalRot)  #update our total rotation to reflect this\n",
    "        # angle2 = angle1.clone().multiply(  angle2) #rotate angle2\n",
    "        # pos2 = new THREE.Vector3(pos2.length() - currentRestLength, 0, 0);\n",
    "    end\n",
    "    \n",
    "    angle1v = ToRotationVector(angle1)\n",
    "    angle2v = ToRotationVector(angle2)\n",
    "    \n",
    "    \n",
    "    \n",
    "    \n",
    "#     pos2,angle1v,angle2v,angle1,angle2,\n",
    "    return pos2,angle1v,angle2v,angle1,angle2,totalRot\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "toAxisOriginalQuat (generic function with 1 method)"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function toAxisXVector3(pV::Vector3,axis::Vector3) #TODO CHANGE\n",
    "\n",
    "    xaxis=Vector3(1.0,0.0,0.0)\n",
    "\n",
    "    vector=normalizeVector3(axis)\n",
    "    q=setFromUnitVectors(vector,xaxis)\n",
    "    \n",
    "    \n",
    " \n",
    "#     rot=setFromRotationMatrix(quatToMatrix( q  ))\n",
    "    \n",
    "    \n",
    "#     v= applyQuaternion1( pV ,setQuaternionFromEuler(rot) )\n",
    "    v=applyQuaternion1( pV ,q )\n",
    "    \n",
    "    #d=15\n",
    "    #vx=round(v.x, digits=d)\n",
    "    #vy=round(v.y, digits=d)\n",
    "    #vz=round(v.z, digits=d)\n",
    "    \n",
    "    \n",
    "    return Vector3(v.x,v.y,v.z)\n",
    "end\n",
    "\n",
    "function toAxisOriginalVector3(pV::Vector3,axis::Vector3)\n",
    "    \n",
    "    xaxis=Vector3(1.0,0.0,0.0)\n",
    "\n",
    "    vector=normalizeVector3(axis)\n",
    "\n",
    "    q=setFromUnitVectors(xaxis,vector)\n",
    "    \n",
    "\n",
    "#     rot=setFromRotationMatrix(quatToMatrix( q  ))\n",
    "\n",
    "#     v= applyQuaternion1( pV ,setQuaternionFromEuler(rot) )\n",
    "    v=applyQuaternion1( pV ,q )\n",
    "    \n",
    "    #d=15\n",
    "    #vx=round(v.x, digits=d)\n",
    "    #vy=round(v.y, digits=d)\n",
    "    #vz=round(v.z, digits=d)\n",
    "    \n",
    "    \n",
    "    return Vector3(v.x,v.y,v.z)\n",
    "end\n",
    "\n",
    "function  toAxisXQuat(pQ::Quaternion,axis::Vector3)\n",
    "    \n",
    "    xaxis=Vector3(1.0,0.0,0.0)\n",
    "\n",
    "    vector=normalizeVector3(axis)\n",
    "\n",
    "\n",
    "    q=setFromUnitVectors(vector,xaxis)\n",
    "        \n",
    "    #d=17\n",
    "    #qw=round(q[1], digits=d)\n",
    "    #qx=round(q[2], digits=d)\n",
    "    #qy=round(q[3], digits=d)\n",
    "    #qz=round(q[4], digits=d)\n",
    "    #\n",
    "\n",
    "#     rot=setFromRotationMatrix(quatToMatrix( q  ))\n",
    "    \n",
    "    pV=Vector3(pQ.x,pQ.y,pQ.z)\n",
    "    \n",
    "#     v=applyQuaternion1( pV ,setQuaternionFromEuler(rot) )\n",
    "    v=applyQuaternion1( pV ,q )\n",
    "    \n",
    "    #d=15\n",
    "    #vx=round(v.x, digits=d)\n",
    "    #vy=round(v.y, digits=d)\n",
    "    #vz=round(v.z, digits=d)\n",
    "    \n",
    "    return Quaternion(v.x,v.y,v.z,1.0)\n",
    "    \n",
    "    # return [1.0 v[1] v[2] v[3]]\n",
    "end\n",
    "\n",
    "function toAxisOriginalQuat(pQ::Vector3,axis::Vector3)\n",
    "    xaxis=Vector3(1.0,0.0,0.0)\n",
    "\n",
    "    vector=normalizeVector3(axis)\n",
    "    \n",
    "    q=setFromUnitVectors(xaxis,vector)\n",
    "    \n",
    "\n",
    "#     rot=setFromRotationMatrix(quatToMatrix( q  ))\n",
    "    \n",
    "    pV=Vector3(pQ.x,pQ.y,pQ.z)\n",
    "#     v=applyQuaternion1( pV ,setQuaternionFromEuler(rot) )\n",
    "    v=applyQuaternion1( pV ,q )\n",
    "    \n",
    "    #d=15\n",
    "    #vx=round(v.x, digits=d)\n",
    "    #vy=round(v.y, digits=d)\n",
    "    #vz=round(v.z, digits=d)\n",
    "    \n",
    "    return Quaternion(v.x,v.y,v.z,1.0)\n",
    "    \n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "applyQuaternion1 (generic function with 1 method)"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function setFromUnitVectors(vFrom::Vector3, vTo::Vector3)\n",
    "    # assumes direction vectors vFrom and vTo are normalized\n",
    "    EPS = 0.000000001;\n",
    "    r= dotVector3(vFrom,vTo)+1.0\n",
    "    # r =  dot(vFrom,vTo)+1\n",
    "\n",
    "    if r < EPS\n",
    "        r = 0;\n",
    "        if abs( vFrom.x ) > abs( vFrom.z ) \n",
    "            qx = - vFrom.y\n",
    "            qy = vFrom.x\n",
    "            qz = 0.0\n",
    "            qw = r\n",
    "        else \n",
    "            qx = 0.0\n",
    "            qy = -(vFrom.z)\n",
    "            qz = vFrom.y\n",
    "            qw = r\n",
    "        end\n",
    "   else \n",
    "        # crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3\n",
    "        qx = vFrom.y * vTo.z - vFrom.z * vTo.y\n",
    "        qy = vFrom.z * vTo.x - vFrom.x * vTo.z\n",
    "        qz = vFrom.x * vTo.y - vFrom.y * vTo.x\n",
    "        qw = r\n",
    "\n",
    "    end\n",
    "    qx= (qx==-0.0) ? 0.0 : qx\n",
    "    qy= (qy==-0.0) ? 0.0 : qy\n",
    "    qz= (qz==-0.0) ? 0.0 : qz\n",
    "    qw= (qw==-0.0) ? 0.0 : qw\n",
    "        \n",
    "    \n",
    "    mx=qx*qx\n",
    "    my=qy*qy\n",
    "    mz=qz*qz\n",
    "    mw=qw*qw\n",
    "    mm=mx+my\n",
    "    mm=mm+mz\n",
    "    mm=mm+mw\n",
    "    mm=convert(Float64,mm)#??????????????????? todo check later\n",
    "    \n",
    "    l=CUDAnative.sqrt(mm)\n",
    "    \n",
    "    #l = sqrt((qx * qx) + (qy * qy) + (qz * qz)+ (qw * qw))\n",
    "    if l === 0 \n",
    "        qx = 0.0\n",
    "        qy = 0.0\n",
    "        qz = 0.0\n",
    "        qw = 1.0\n",
    "    else \n",
    "        l = 1.0 / l\n",
    "        qx = qx * l\n",
    "        qy = qy * l\n",
    "        qz = qz * l\n",
    "        qw = qw * l\n",
    "    end\n",
    "    \n",
    "    \n",
    "\n",
    "    # return qx,qy,qz,qw\n",
    "    return Quaternion(qx,qy,qz,qw)\n",
    "    \n",
    "    # return normalizeQ(Quat(qw,qx,qy,qz))\n",
    "    # return Quat(nn[1], nn[2], nn[3], nn[4])\n",
    "\n",
    "end\n",
    "\n",
    "function quatToMatrix( quaternion::Quaternion)\n",
    "\n",
    "    #te = RotationMatrix()\n",
    "    \n",
    "    x = quaternion.x\n",
    "    y = quaternion.y\n",
    "    z = quaternion.z\n",
    "    w = quaternion.w\n",
    "    \n",
    "    x2 = x + x\n",
    "    y2 = y + y\n",
    "    z2 = z + z\n",
    "    xx = x * x2\n",
    "    xy = x * y2\n",
    "    xz = x * z2\n",
    "    yy = y * y2\n",
    "    yz = y * z2\n",
    "    zz = z * z2\n",
    "    wx = w * x2\n",
    "    wy = w * y2\n",
    "    wz = w * z2\n",
    "\n",
    "    sx = 1.0\n",
    "    sy = 1.0\n",
    "    sz = 1.0\n",
    "\n",
    "    te1 = ( 1.0 - ( yy + zz ) ) * sx\n",
    "    te2 = ( xy + wz ) * sx\n",
    "    te3 = ( xz - wy ) * sx\n",
    "    te4 = 0.0\n",
    "\n",
    "    te5 = ( xy - wz ) * sy\n",
    "    te6 = ( 1.0 - ( xx + zz ) ) * sy\n",
    "    te7 = ( yz + wx ) * sy\n",
    "    te8 = 0.0\n",
    "\n",
    "    te9 = ( xz + wy ) * sz\n",
    "    te10 = ( yz - wx ) * sz\n",
    "    te11 = ( 1.0 - ( xx + yy ) ) * sz\n",
    "    te12 = 0.0\n",
    "\n",
    "    te13 = 0.0 #position.x;\n",
    "    te14 = 0.0 #position.y;\n",
    "    te15 = 0.0 #position.z;\n",
    "    te16 = 1.0\n",
    "    \n",
    "        \n",
    "    te= RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)\n",
    "\n",
    "    return te\n",
    "\n",
    "end\n",
    "\n",
    "function  setFromRotationMatrix(m::RotationMatrix)\n",
    "    #te = m\n",
    "    #m11 = (te[ 1 ]== -0.0) ? 0.0 : te[ 1 ]\n",
    "    #m12 = (te[ 5 ]== -0.0) ? 0.0 : te[ 5 ]\n",
    "    #m13 = (te[ 9 ]== -0.0) ? 0.0 : te[ 9 ]\n",
    "    #m21 = (te[ 2 ]== -0.0) ? 0.0 : te[ 2 ]\n",
    "    #m22 = (te[ 6 ]== -0.0) ? 0.0 : te[ 6 ]\n",
    "    #m23 = (te[ 10]== -0.0) ? 0.0 : te[ 10]\n",
    "    #m31 = (te[ 3 ]== -0.0) ? 0.0 : te[ 3 ]\n",
    "    #m32 = (te[ 7 ]== -0.0) ? 0.0 : te[ 7 ]\n",
    "    #m33 = (te[ 11]== -0.0) ? 0.0 : te[ 11]\n",
    "\n",
    "    m11 = convert(Float64,m.te1 )\n",
    "    m12 = convert(Float64,m.te5 )\n",
    "    m13 = convert(Float64,m.te9 )\n",
    "    m21 = convert(Float64,m.te2 )\n",
    "    m22 = convert(Float64,m.te6 )\n",
    "    m23 = convert(Float64,m.te10)\n",
    "    m31 = convert(Float64,m.te3 )\n",
    "    m32 = convert(Float64,m.te7 )\n",
    "    m33 = convert(Float64,m.te11)\n",
    "    \n",
    "\n",
    "    y = CUDAnative.asin( clamp( m13, -1.0, 1.0 ) ) ##check if has to be changed to cuda\n",
    "\n",
    "    if ( abs( m13 ) < 0.9999999999 ) \n",
    "        \n",
    "        x = CUDAnative.atan2( - m23, m33 )\n",
    "        z = CUDAnative.atan2( - m12, m11 )#-m12, m11\n",
    "        # if(m23==0.0)\n",
    "        #     x = atan( m23, m33 )\n",
    "        # end\n",
    "        # if(m12==0.0)\n",
    "        #     z = atan( m12, m11 )\n",
    "        # end\n",
    "\n",
    "    else\n",
    "\n",
    "        x = CUDAnative.atan2( m32, m22 )\n",
    "        z = 0.0;\n",
    "\n",
    "    end\n",
    "    \n",
    "    \n",
    "    return Vector3(x,y,z)\n",
    "    \n",
    "end\n",
    "\n",
    "function setQuaternionFromEuler(euler::Vector3)\n",
    "    x=euler.x\n",
    "    y=euler.y\n",
    "    z=euler.z\n",
    "    \n",
    "    \n",
    "    c1 = CUDAnative.cos( x / 2.0 )\n",
    "    c2 = CUDAnative.cos( y / 2.0 )\n",
    "    c3 = CUDAnative.cos( z / 2.0 )\n",
    "\n",
    "    s1 = CUDAnative.sin( x / 2.0 )\n",
    "    s2 = CUDAnative.sin( y / 2.0 )\n",
    "    s3 = CUDAnative.sin( z / 2.0 )\n",
    "    \n",
    "   \n",
    "    x = s1 * c2 * c3 + c1 * s2 * s3\n",
    "    y = c1 * s2 * c3 - s1 * c2 * s3\n",
    "    z = c1 * c2 * s3 + s1 * s2 * c3\n",
    "    w = c1 * c2 * c3 - s1 * s2 * s3\n",
    "        \n",
    "    return Quaternion(x,y,z,w)\n",
    "end\n",
    "\n",
    "function applyQuaternion1(e::Vector3,q2::Quaternion)\n",
    "    x = e.x\n",
    "    y = e.y\n",
    "    z = e.z\n",
    "\n",
    "    qx = q2.x\n",
    "    qy = q2.y\n",
    "    qz = q2.z\n",
    "    qw = q2.w\n",
    "\n",
    "    # calculate quat * vector\n",
    "\n",
    "    ix = qw * x + qy * z - qz * y\n",
    "    iy = qw * y + qz * x - qx * z\n",
    "    iz = qw * z + qx * y - qy * x\n",
    "    iw = - qx * x - qy * y - qz * z\n",
    "\n",
    "    # calculate result * inverse quat\n",
    "\n",
    "    xx = ix * qw + iw * - qx + iy * - qz - iz * - qy\n",
    "    yy = iy * qw + iw * - qy + iz * - qx - ix * - qz\n",
    "    zz = iz * qw + iw * - qz + ix * - qy - iy * - qx\n",
    "    \n",
    "    d=15\n",
    "\n",
    "    return Vector3(xx,yy,zz)\n",
    "end\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "multiplyQuaternions (generic function with 1 method)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function conjugate(q::Quaternion)\n",
    "    x= (-q.x==-0) ? 0.0 : -q.x\n",
    "    y= (-q.y==-0) ? 0.0 : -q.y\n",
    "    z= (-q.z==-0) ? 0.0 : -q.z\n",
    "    w=q.w\n",
    "    x=convert(Float64,x)\n",
    "    y=convert(Float64,y)\n",
    "    z=convert(Float64,z)\n",
    "    w=convert(Float64,w)\n",
    "    return Quaternion(x,y,z,w)\n",
    "end\n",
    "\n",
    "function RotateVec3D(a::Quaternion, f::Vector3)   \n",
    "    fx= (f.x==-0) ? 0 : f.x\n",
    "    fy= (f.y==-0) ? 0 : f.y\n",
    "    fz= (f.z==-0) ? 0 : f.z\n",
    "    # fx= f.x\n",
    "    # fy= f.y\n",
    "    # fz= f.z\n",
    "    tw = fx*a.x + fy*a.y + fz*a.z\n",
    "    tx = fx*a.w - fy*a.z + fz*a.y\n",
    "    ty = fx*a.z + fy*a.w - fz*a.x\n",
    "    tz = -fx*a.y + fy*a.x + fz*a.w\n",
    "\n",
    "    return Vector3((a.w*tx+a.x*tw+a.y*tz-a.z*ty),(a.w*ty-a.x*tz+a.y*tw+a.z*tx),(a.w*tz+a.x*ty-a.y*tx+a.z*tw))\n",
    "end\n",
    "#!< Returns a vector representing the specified vector \"f\" rotated by this quaternion. @param[in] f The vector to transform.\n",
    "\n",
    "function RotateVec3DInv(a::Quaternion, f::Vector3)  \n",
    "    fx=f.x\n",
    "    fy=f.y\n",
    "    fz=f.z\n",
    "    tw = a.x*fx + a.y*fy + a.z*fz\n",
    "    tx = a.w*fx - a.y*fz + a.z*fy\n",
    "    ty = a.w*fy + a.x*fz - a.z*fx\n",
    "    tz = a.w*fz - a.x*fy + a.y*fx\n",
    "    return Vector3((tw*a.x + tx*a.w + ty*a.z - tz*a.y),(tw*a.y - tx*a.z + ty*a.w + tz*a.x),(tw*a.z + tx*a.y - ty*a.x + tz*a.w))\n",
    "end\n",
    "#!< Returns a vector representing the specified vector \"f\" rotated by the inverse of this quaternion. This is the opposite of RotateVec3D. @param[in] f The vector to transform.\n",
    "\n",
    "function ToRotationVector(a::Quaternion)  \n",
    "    if (a.w >= 1.0 || a.w <= -1.0) \n",
    "        return Vector3(0.0,0.0,0.0)\n",
    "    end\n",
    "    squareLength = 1.0-a.w*a.w; # because x*x + y*y + z*z + w*w = 1.0, but more susceptible to w noise (when \n",
    "    SLTHRESH_ACOS2SQRT= 2.4e-3; # SquareLength threshhold for when we can use square root optimization for acos. From SquareLength = 1-w*w. (calculate according to 1.0-W_THRESH_ACOS2SQRT*W_THRESH_ACOS2SQRT\n",
    "\n",
    "    if (squareLength < SLTHRESH_ACOS2SQRT) # ???????\n",
    "        x=a.x*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))\n",
    "        y=a.y*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))\n",
    "        z=a.z*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))\n",
    "        x=convert(Float64,x)\n",
    "        y=convert(Float64,y)\n",
    "        z=convert(Float64,z)\n",
    " \n",
    "        return Vector3(x,y,z) ; # acos(w) = sqrt(2*(1-x)) for w close to 1. for w=0.001, error is 1.317e-6\n",
    "    else \n",
    "        x=a.x*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))\n",
    "        y=a.y*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))\n",
    "        z=a.z*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))\n",
    "        x=convert(Float64,x)\n",
    "        y=convert(Float64,y)\n",
    "        z=convert(Float64,z)\n",
    "\n",
    "        return Vector3(x,y,z)\n",
    "    end                                    \n",
    "end \n",
    "# !< Returns a rotation vector representing this quaternion rotation. Adapted from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/\n",
    "\n",
    "function FromRotationVector(VecIn::Vector3)\n",
    "    theta=VecIn*Vector3(0.5,0.5,0.5)\n",
    "    ntheta=CUDAnative.sqrt((theta.x * theta.x) + (theta.y * theta.y) + (theta.z * theta.z))\n",
    "    thetaMag2=ntheta*ntheta\n",
    "    \n",
    "    DBL_EPSILONx24 =5.328e-15\n",
    "    if thetaMag2*thetaMag2 < DBL_EPSILONx24\n",
    "        qw=1.0 - 0.5*thetaMag2\n",
    "\t\ts=1.0 - thetaMag2 / 6.0\n",
    "    else\n",
    "        thetaMag = CUDAnative.sqrt(thetaMag2)\n",
    "\t\tqw=CUDAnative.cos(thetaMag)\n",
    "\t\ts=CUDAnative.sin(thetaMag) / thetaMag\n",
    "    end\n",
    "    qx=theta.x*s\n",
    "    qy=theta.y*s\n",
    "    qz=theta.z*s\n",
    "    \n",
    "    qx=convert(Float64,qx)\n",
    "    qy=convert(Float64,qy)\n",
    "    qz=convert(Float64,qz)\n",
    "    qw=convert(Float64,qw)\n",
    "    \n",
    "    return Quaternion(qx,qy,qz,qw)\n",
    "end\n",
    "\n",
    "function multiplyQuaternions(q::Quaternion,f::Quaternion)\n",
    "    x=q.x\n",
    "    y=q.y\n",
    "    z=q.z\n",
    "    w=q.w\n",
    "    x1=w*f.x + x*f.w + y*f.z - z*f.y \n",
    "    y1=w*f.y - x*f.z + y*f.w + z*f.x\n",
    "    z1=w*f.z + x*f.y - y*f.x + z*f.w\n",
    "    w1=w*f.w - x*f.x - y*f.y - z*f.z\n",
    "#     x1=convert(Float64,x1)\n",
    "#     y1=convert(Float64,y1)\n",
    "#     z1=convert(Float64,z1)\n",
    "#     w1=convert(Float64,w1)\n",
    "\treturn Quaternion(x1,y1,z1,w1 ); #!< overload quaternion multiplication.\n",
    "end\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "axialStrain (generic function with 1 method)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function updateStrain( axialStrain,E) # ?from where strain\n",
    "    strain = axialStrain # redundant?\n",
    "    currentTransverseStrainSum=0.0 # ??? todo\n",
    "    linear=true\n",
    "    maxStrain=1000000000000000;# ?? todo later change\n",
    "    if linear\n",
    "        if axialStrain > maxStrain\n",
    "            maxStrain = axialStrain # remember this maximum for easy reference\n",
    "        end\n",
    "        return stress(axialStrain,E)\n",
    "    else \n",
    "        if (axialStrain > maxStrain) # if new territory on the stress/strain curve\n",
    "            maxStrain = axialStrain # remember this maximum for easy reference\n",
    "            returnStress = stress(axialStrain,E) # ??currentTransverseStrainSum\n",
    "            if (nu != 0.0) \n",
    "                strainOffset = maxStrain-stress(axialStrain,E)/(_eHat*(1.0-nu)) # precalculate strain offset for when we back off\n",
    "            else \n",
    "                strainOffset = maxStrain-returnStress/E # precalculate strain offset for when we back off\n",
    "            end\n",
    "        else  # backed off a non-linear material, therefore in linear region.\n",
    "            relativeStrain = axialStrain-strainOffset #  treat the material as linear with a strain offset according to the maximum plastic deformation\n",
    "            if (nu != 0.0) \n",
    "                returnStress = stress(relativeStrain,E)\n",
    "            else \n",
    "                returnStress = E*relativeStrain\n",
    "            end\n",
    "        end\n",
    "        return returnStress\n",
    "    end\n",
    "end\n",
    "\n",
    "function stress( strain , E ) #end,transverseStrainSum, forceLinear){\n",
    "    #  reference: http://www.colorado.edu/engineering/CAS/courses.d/Structures.d/IAST.Lect05.d/IAST.Lect05.pdf page 10\n",
    "    #  if (isFailed(strain)) return 0.0f; //if a failure point is set and exceeded, we've broken!\n",
    "    #   var E =setup.edges[0].stiffness; //todo change later to material ??\n",
    "    #   var E=1000000;//todo change later to material ??\n",
    "    #   var scaleFactor=1;\n",
    "    return E*strain;\n",
    "\n",
    "    #  #   if (strain <= strainData[1] || linear || forceLinear){ //for compression/first segment and linear materials (forced or otherwise), simple calculation\n",
    "\n",
    "        #   if (nu==0.0) return E*strain;\n",
    "        #   else return _eHat*((1-nu)*strain + nu*transverseStrainSum); \n",
    "        #  else return eHat()*((1-nu)*strain + nu*transverseStrainSum); \n",
    "    #  #  }\n",
    "\n",
    "      #//the non-linear feature with non-zero poissons ratio is currently experimental\n",
    "      #int DataCount = modelDataPoints();\n",
    "      #for (int i=2; i<DataCount; i++){ //go through each segment in the material model (skipping the first segment because it has already been handled.\n",
    "      #  if (strain <= strainData[i] || i==DataCount-1){ //if in the segment ending with this point (or if this is the last point extrapolate out) \n",
    "      #      float Perc = (strain-strainData[i-1])/(strainData[i]-strainData[i-1]);\n",
    "      #      float basicStress = stressData[i-1] + Perc*(stressData[i]-stressData[i-1]);\n",
    "      #      if (nu==0.0f) return basicStress;\n",
    "      #      else { //accounting for volumetric effects\n",
    "      #          float modulus = (stressData[i]-stressData[i-1])/(strainData[i]-strainData[i-1]);\n",
    "      #          float modulusHat = modulus/((1-2*nu)*(1+nu));\n",
    "      #          float effectiveStrain = basicStress/modulus; //this is the strain at which a simple linear stress strain line would hit this point at the definied modulus\n",
    "      #          float effectiveTransverseStrainSum = transverseStrainSum*(effectiveStrain/strain);\n",
    "      #          return modulusHat*((1-nu)*effectiveStrain + nu*effectiveTransverseStrainSum);\n",
    "      #      }\n",
    "      #  }\n",
    "      #}\n",
    "\n",
    "    #  assert(false); //should never reach this point\n",
    "    #  return 0.0f;\n",
    "end \n",
    "\n",
    "function axialStrain( positiveEnd,strain)\n",
    "\t#strainRatio = pVPos->material()->E/pVNeg->material()->E;\n",
    "\tstrainRatio=1.0;\n",
    "\treturn positiveEnd ? 2.0 *strain*strainRatio/(1.0+strainRatio) : 2.0*strain/(1.0+strainRatio)\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "moment (generic function with 1 method)"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function force(N_intForce,N_orient,N_force,static,currentTimeStep) \n",
    "    # forces from internal bonds\n",
    "    totalForce=Vector3(0,0,0)\n",
    "    # new THREE.Vector3(node.force.x,node.force.y,node.force.z);\n",
    "    #  todo \n",
    "\n",
    "\n",
    "    totalForce=totalForce+N_intForce\n",
    "\n",
    "    #  for (int i=0; i<6; i++){ \n",
    "    #  \tif (links[i]) totalForce += links[i]->force(isNegative((linkDirection)i)); # total force in LCS\n",
    "    #  }\n",
    "    totalForce = RotateVec3D(N_orient,totalForce); # from local to global coordinates\n",
    "\n",
    "\n",
    "    # assert(!(totalForce.x != totalForce.x) || !(totalForce.y != totalForce.y) || !(totalForce.z != totalForce.z)); //assert non QNAN\n",
    "\n",
    "    # other forces\n",
    "    if(static)\n",
    "        totalForce=totalForce+N_force\n",
    "    #  }else if(currentTimeStep<50){\n",
    "    #  \ttotalForce.add(new THREE.Vector3(node.force.x,node.force.y,node.force.z));\n",
    "    else\n",
    "        #  var ex=0.1;\n",
    "        #  if(node.force.y!=0){\n",
    "        #  \tvar f=400*Math.sin(currentTimeStep*ex);\n",
    "        #  \ttotalForce.add(new THREE.Vector3(0,f,0));\n",
    "\n",
    "        #  }\n",
    "        #x=N_position[node][3]\n",
    "        #t=currentTimeStep\n",
    "        #wave=getForce(x,t)\n",
    "        #totalForce=totalForce+[0 wave 0]\n",
    "    end\n",
    "\n",
    "\n",
    "    #  if (externalExists()) totalForce += external()->force(); //external forces\n",
    "    #  totalForce -= velocity()*mat->globalDampingTranslateC(); //global damping f-cv\n",
    "    #  totalForce.z += mat->gravityForce(); //gravity, according to f=mg\n",
    "\n",
    "    #  if (isCollisionsEnabled()){\n",
    "    #  \tfor (std::vector<CVX_Collision*>::iterator it=colWatch->begin(); it!=colWatch->end(); it++){\n",
    "    #  \t\ttotalForce -= (*it)->contactForce(this);\n",
    "    #  \t}\n",
    "    #  }\n",
    "    # todo make internal forces 0 again\n",
    "    # N_intForce[node]=[0 0 0] # do i really need it?\n",
    "\n",
    "    #  node.force.x=0;\n",
    "    #  node.force.y=0;\n",
    "    #  node.force.z=0;\n",
    "\n",
    "\n",
    "    return totalForce\n",
    "end\n",
    "\n",
    "\n",
    "function moment(intMoment,orient,moment) \n",
    "    #moments from internal bonds\n",
    "    totalMoment=Vector3(0,0,0)\n",
    "    # for (int i=0; i<6; i++){ \n",
    "    # \tif (links[i]) totalMoment += links[i]->moment(isNegative((linkDirection)i)); //total force in LCS\n",
    "    # }\n",
    "\n",
    "    totalMoment=totalMoment+intMoment\n",
    "    \n",
    "    \n",
    "\n",
    "    totalMoment = RotateVec3D(orient,totalMoment);\n",
    "    \n",
    "    \n",
    "\n",
    "    totalMoment=totalMoment+moment\n",
    "\n",
    "\n",
    "    #other moments\n",
    "    # if (externalExists()) totalMoment += external()->moment(); //external moments\n",
    "    # totalMoment -= angularVelocity()*mat->globalDampingRotateC(); //global damping\n",
    "\n",
    "    return totalMoment\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "updateDataAndSave! (generic function with 1 method)"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function updateDataAndSave!(metavoxel,setup,fileName)\n",
    "    nodes      = setup[\"nodes\"]\n",
    "    edges      = setup[\"edges\"]\n",
    "    \n",
    "    setup[\"animation\"][\"showDisplacement\"]=false\n",
    "    voxCount=size(nodes)[1]\n",
    "    linkCount=size(edges)[1]\n",
    "    \n",
    "    N_displacement=Array(metavoxel[\"N_displacementGPU\"])\n",
    "    N_angle=Array(metavoxel[\"N_angleGPU\"])\n",
    "    E_stress=Array(metavoxel[\"E_stressGPU\"])\n",
    "    \n",
    "    setup[\"viz\"][\"maxStress\"]=maximum(E_stress)\n",
    "    setup[\"viz\"][\"minStress\"]=minimum(E_stress) \n",
    "\n",
    "\n",
    "    i=1\n",
    "\tfor edge in edges\n",
    "        edge[\"stress\"]=E_stress[i]\n",
    "        i=i+1\n",
    "\n",
    "    end\n",
    "    \n",
    " \n",
    "    i=1          \n",
    "\tfor node in nodes\n",
    "        node[\"displacement\"][\"x\"]=N_displacement[i].x*100\n",
    "        node[\"displacement\"][\"y\"]=N_displacement[i].y*100\n",
    "        node[\"displacement\"][\"z\"]=N_displacement[i].z*100\n",
    "        \n",
    "        node[\"angle\"][\"x\"]=N_angle[i].x\n",
    "        node[\"angle\"][\"y\"]=N_angle[i].y\n",
    "        node[\"angle\"][\"z\"]=N_angle[i].z\n",
    "        i=i+1\n",
    "\n",
    "    end\n",
    "    \n",
    "    # pass data as a json string (how it shall be displayed in a file)\n",
    "    stringdata = JSON.json(setup)\n",
    "\n",
    "    # write the file with the stringdata variable information\n",
    "    open(fileName, \"w\") do f\n",
    "            write(f, stringdata)\n",
    "         end\n",
    "    \n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "runMetavoxelGPU! (generic function with 1 method)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function runMetavoxelGPU!(setup,numTimeSteps,latticeSize,displacements,returnEvery,save)\n",
    "    function initialize!(setup)\n",
    "        nodes      = setup[\"nodes\"]\n",
    "        edges      = setup[\"edges\"]\n",
    "\n",
    "        i=1\n",
    "        # pre-calculate current position\n",
    "        for node in nodes\n",
    "            # element=parse(Int,node[\"id\"][2:end])\n",
    "            N_position[i]=Vector3(node[\"position\"][\"x\"]/100.0,node[\"position\"][\"y\"]/100.0,node[\"position\"][\"z\"]/100.0)\n",
    "            N_restrained[i]=node[\"restrained_degrees_of_freedom\"][1] ## todo later consider other degrees of freedom\n",
    "            N_displacement[i]=Vector3(node[\"displacement\"][\"x\"],node[\"displacement\"][\"y\"],node[\"displacement\"][\"z\"])\n",
    "            N_angle[i]=Vector3(node[\"angle\"][\"x\"],node[\"angle\"][\"y\"],node[\"angle\"][\"z\"])\n",
    "            N_force[i]=Vector3(node[\"force\"][\"x\"],node[\"force\"][\"y\"]/1,node[\"force\"][\"z\"])\n",
    "            N_currPosition[i]=Vector3(node[\"position\"][\"x\"]/100.0,node[\"position\"][\"y\"]/100.0,node[\"position\"][\"z\"]/100.0)\n",
    "\n",
    "            # for dynamic simulations\n",
    "            # append!(N_posTimeSteps,[[]])\n",
    "            # append!(N_angTimeSteps,[[]])\n",
    "\n",
    "            i=i+1\n",
    "        end \n",
    "\n",
    "        i=1\n",
    "        # pre-calculate the axis\n",
    "        for edge in edges\n",
    "            # element=parse(Int,edge[\"id\"][2:end])\n",
    "\n",
    "            # find the nodes that the lements connects\n",
    "            fromNode = nodes[edge[\"source\"]+1]\n",
    "            toNode = nodes[edge[\"target\"]+1]\n",
    "\n",
    "\n",
    "            node1 = [fromNode[\"position\"][\"x\"]/100.0 fromNode[\"position\"][\"y\"]/100.0 fromNode[\"position\"][\"z\"]/100.0]\n",
    "            node2 = [toNode[\"position\"][\"x\"]/100.0 toNode[\"position\"][\"y\"]/100.0 toNode[\"position\"][\"z\"]/100.0]\n",
    "\n",
    "            length=norm(node2-node1)\n",
    "            axis=normalize(collect(Iterators.flatten(node2-node1)))\n",
    "\n",
    "            E_source[i]=edge[\"source\"]+1\n",
    "            E_target[i]=edge[\"target\"]+1\n",
    "            E_area[i]=edge[\"area\"]\n",
    "            E_density[i]=edge[\"density\"]\n",
    "            E_stiffness[i]=edge[\"stiffness\"]\n",
    "            E_axis[i]=Vector3(axis[1],axis[2],axis[3])\n",
    "            E_currentRestLength[i]=length #?????? todo change\n",
    "#             E_currentRestLength[i]=75/sqrt(2)\n",
    "            \n",
    "\n",
    "            N_edgeID[E_source[i],N_currEdge[E_source[i]]]=i\n",
    "            N_edgeFirst[E_source[i],N_currEdge[E_source[i]]]=true\n",
    "            N_currEdge[E_source[i]]+=1\n",
    "\n",
    "            N_edgeID[E_target[i],N_currEdge[E_target[i]]]=i\n",
    "            N_edgeFirst[E_target[i],N_currEdge[E_target[i]]]=false\n",
    "            N_currEdge[E_target[i]]+=1\n",
    "\n",
    "\n",
    "            # for dynamic simulations\n",
    "            # append!(E_stressTimeSteps,[[]])\n",
    "\n",
    "            i=i+1\n",
    "        end \n",
    "    end\n",
    "    function simulateParallel!(metavoxel,numTimeSteps,dt,returnEvery)\n",
    "        # initialize(setup)\n",
    "\n",
    "        for i in 1:numTimeSteps\n",
    "            #println(\"Timestep:\",i)\n",
    "            doTimeStep!(metavoxel,dt,i)\n",
    "            if(mod(i,returnEvery)==0)\n",
    "                append!(displacements,[Array(metavoxel[\"N_displacementGPU\"])])\n",
    "            end\n",
    "        end\n",
    "    end\n",
    "    \n",
    "    ########\n",
    "    voxCount=0\n",
    "    linkCount=0\n",
    "    nodes      = setup[\"nodes\"]\n",
    "    edges      = setup[\"edges\"]\n",
    "    voxCount=size(nodes)[1]\n",
    "    linkCount=size(edges)[1]\n",
    "    strain =0 #todooo moveeee\n",
    "    maxNumEdges=10\n",
    "\n",
    "    ########\n",
    "    voxCount=0\n",
    "    linkCount=0\n",
    "    nodes      = setup[\"nodes\"]\n",
    "    edges      = setup[\"edges\"]\n",
    "    voxCount=size(nodes)[1]\n",
    "    linkCount=size(edges)[1]\n",
    "    strain =0 #todooo moveeee\n",
    "\n",
    "    ############# nodes\n",
    "    N_position=fill(Vector3(),voxCount)\n",
    "    N_restrained=zeros(Bool, voxCount)\n",
    "    N_displacement=fill(Vector3(),voxCount)\n",
    "    N_angle=fill(Vector3(),voxCount)\n",
    "    N_currPosition=fill(Vector3(),voxCount)\n",
    "    N_linMom=fill(Vector3(),voxCount)\n",
    "    N_angMom=fill(Vector3(),voxCount)\n",
    "    N_intForce=fill(Vector3(),voxCount)\n",
    "    N_intMoment=fill(Vector3(),voxCount)\n",
    "    N_moment=fill(Vector3(),voxCount)\n",
    "    # N_posTimeSteps=[]\n",
    "    # N_angTimeSteps=[]\n",
    "    N_force=fill(Vector3(),voxCount)\n",
    "    N_orient=fill(Quaternion(),voxCount)\n",
    "    N_edgeID=fill(-1,(voxCount,maxNumEdges))\n",
    "    N_edgeFirst=fill(true,(voxCount,maxNumEdges))\n",
    "    N_currEdge=fill(1,voxCount)\n",
    "\n",
    "    ############# edges\n",
    "    E_source=fill(0,linkCount)\n",
    "    E_target=fill(0,linkCount)\n",
    "    E_area=fill(0.0f0,linkCount)\n",
    "    E_density=fill(0.0f0,linkCount)\n",
    "    E_stiffness=fill(0.0f0,linkCount)\n",
    "    E_stress=fill(0.0f0,linkCount)\n",
    "    E_axis=fill(Vector3(1.0,0.0,0.0),linkCount)\n",
    "    E_currentRestLength=fill(0.0f0,linkCount)\n",
    "    E_pos2=fill(Vector3(),linkCount)\n",
    "    E_angle1v=fill(Vector3(),linkCount)\n",
    "    E_angle2v=fill(Vector3(),linkCount)\n",
    "    E_angle1=fill(Quaternion(),linkCount)\n",
    "    E_angle2=fill(Quaternion(),linkCount)\n",
    "\n",
    "    E_intForce1=fill(Vector3(),linkCount)\n",
    "    E_intMoment1=fill(Vector3(),linkCount) \n",
    "\n",
    "    E_intForce2=fill(Vector3(),linkCount)\n",
    "    E_intMoment2=fill(Vector3(),linkCount)\n",
    "    E_damp=fill(false,linkCount)\n",
    "\n",
    "    E_currentTransverseStrainSum=fill(0.0f0,linkCount)# TODO remove ot incorporate\n",
    "    # E_stressTimeSteps=[]\n",
    "\n",
    "\n",
    "    #################################################################\n",
    "    initialize!(setup)\n",
    "    #################################################################\n",
    "\n",
    "    ########################## turn to cuda arrays\n",
    "    ############# nodes\n",
    "    N_positionGPU=    CuArray(N_position)      \n",
    "    N_restrainedGPU=  CuArray(N_restrained)  \n",
    "    N_displacementGPU=CuArray(N_displacement)   \n",
    "    N_angleGPU=       CuArray(N_angle)       \n",
    "    N_currPositionGPU=CuArray(N_currPosition)    \n",
    "    N_linMomGPU=      CuArray(N_linMom)        \n",
    "    N_angMomGPU=      CuArray(N_angMom)        \n",
    "    N_intForceGPU=    CuArray(N_intForce)     \n",
    "    N_intMomentGPU=   CuArray(N_intMoment)        \n",
    "    N_momentGPU=      CuArray(N_moment)         \n",
    "    N_forceGPU=       CuArray(N_force)           \n",
    "    N_orientGPU=      CuArray(N_orient)       \n",
    "    N_edgeIDGPU=      CuArray(N_edgeID)         \n",
    "    N_edgeFirstGPU=   CuArray(N_edgeFirst)         \n",
    "\n",
    "\n",
    "    ############# edges\n",
    "    E_sourceGPU=                    CuArray(E_source)   \n",
    "    E_targetGPU=                    CuArray(E_target)\n",
    "    E_areaGPU=                      CuArray(E_area)                             \n",
    "    E_densityGPU=                   CuArray(E_density)\n",
    "    E_stiffnessGPU=                 CuArray(E_stiffness)\n",
    "    E_stressGPU=                    CuArray(E_stress)\n",
    "    E_axisGPU=                      CuArray(E_axis)          \n",
    "    E_currentRestLengthGPU=         CuArray(E_currentRestLength)\n",
    "    E_pos2GPU=                      CuArray(E_pos2)\n",
    "    E_angle1vGPU=                   CuArray(E_angle1v)\n",
    "    E_angle2vGPU=                   CuArray(E_angle2v)\n",
    "    E_angle1GPU=                    CuArray(E_angle1)\n",
    "    E_angle2GPU=                    CuArray(E_angle2)\n",
    "    E_currentTransverseStrainSumGPU=CuArray(E_currentTransverseStrainSum)\n",
    "    E_intForce1GPU=                 CuArray(E_intForce1) \n",
    "    E_intMoment1GPU=                CuArray(E_intMoment1)  \n",
    "    E_intForce2GPU=                 CuArray(E_intForce2) \n",
    "    E_intMoment2GPU=                CuArray(E_intMoment2)\n",
    "    E_dampGPU=                      CuArray(E_damp) \n",
    "    # E_stressTimeSteps=[]\n",
    "\n",
    "\n",
    "    #########################################\n",
    "    metavoxel = Dict(\n",
    "        \"N_positionGPU\" => N_positionGPU,    \n",
    "        \"N_restrainedGPU\" => N_restrainedGPU,  \n",
    "        \"N_displacementGPU\" => N_displacementGPU,\n",
    "        \"N_angleGPU\" => N_angleGPU,       \n",
    "        \"N_currPositionGPU\" => N_currPositionGPU,\n",
    "        \"N_linMomGPU\" => N_linMomGPU,      \n",
    "        \"N_angMomGPU\" => N_angMomGPU,      \n",
    "        \"N_intForceGPU\" => N_intForceGPU,    \n",
    "        \"N_intMomentGPU\" => N_intMomentGPU,   \n",
    "        \"N_momentGPU\" => N_momentGPU,      \n",
    "        \"N_forceGPU\" => N_forceGPU,       \n",
    "        \"N_orientGPU\" => N_orientGPU,      \n",
    "        \"N_edgeIDGPU\" => N_edgeIDGPU,      \n",
    "        \"N_edgeFirstGPU\" => N_edgeFirstGPU,\n",
    "        \"E_sourceGPU\" =>E_sourceGPU,                    \n",
    "        \"E_targetGPU\" =>E_targetGPU,                    \n",
    "        \"E_areaGPU\" =>E_areaGPU,                      \n",
    "        \"E_densityGPU\" =>E_densityGPU,                   \n",
    "        \"E_stiffnessGPU\" =>E_stiffnessGPU,                 \n",
    "        \"E_stressGPU\" =>E_stressGPU,                    \n",
    "        \"E_axisGPU\" =>E_axisGPU,                      \n",
    "        \"E_currentRestLengthGPU\" =>E_currentRestLengthGPU,         \n",
    "        \"E_pos2GPU\" =>E_pos2GPU,                      \n",
    "        \"E_angle1vGPU\" =>E_angle1vGPU,                   \n",
    "        \"E_angle2vGPU\" =>E_angle2vGPU,                   \n",
    "        \"E_angle1GPU\" =>E_angle1GPU,                    \n",
    "        \"E_angle2GPU\" =>E_angle2GPU,                    \n",
    "        \"E_currentTransverseStrainSumGPU\" =>E_currentTransverseStrainSumGPU,\n",
    "        \"E_intForce1GPU\" =>E_intForce1GPU,                 \n",
    "        \"E_intMoment1GPU\" =>E_intMoment1GPU,                \n",
    "        \"E_intForce2GPU\" =>E_intForce2GPU,                 \n",
    "        \"E_intMoment2GPU\" =>E_intMoment2GPU,                \n",
    "        \"E_dampGPU\" =>E_dampGPU                      \n",
    "    )\n",
    "\n",
    "    #########################################\n",
    "    \n",
    "\n",
    "    dt=0.0251646\n",
    "    E = 2000e9  # MPa\n",
    "    s=2.38/100.0\n",
    "    mass=1    \n",
    "    \n",
    "    \n",
    "    \n",
    "    MaxFreq2=E*s/mass\n",
    "    dt= 1/(6.283185*sqrt(MaxFreq2))\n",
    "#     dt=0.0001646\n",
    "    println(\"dt: $dt\")\n",
    "    \n",
    "    append!(displacements,[Array(metavoxel[\"N_displacementGPU\"])])\n",
    "    \n",
    "    t=@timed doTimeStep!(metavoxel,dt,0)\n",
    "    append!(displacements,[Array(metavoxel[\"N_displacementGPU\"])])\n",
    "    time=t[2]\n",
    "    println(\"first timestep took $time seconds\")\n",
    "    t=@timed simulateParallel!(metavoxel,numTimeSteps-1,dt,returnEvery)\n",
    "    time=t[2]\n",
    "    \n",
    "    if save\n",
    "        updateDataAndSave!(metavoxel,setup,\"../json/trialJuliaParallelGPU.json\")\n",
    "    end\n",
    "    println(\"ran latticeSize $latticeSize with $voxCount voxels and $linkCount edges for $numTimeSteps time steps took $time seconds\")\n",
    "    return\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "fea (generic function with 1 method)"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function fea(setup)\n",
    "    #######################################################\n",
    "    function points(element, properties)\n",
    "        elements = properties[\"elements\"]\n",
    "        nodes = properties[\"nodes\"]\n",
    "        degrees_of_freedom = properties[\"degrees_of_freedom\"]\n",
    "\n",
    "        # find the nodes that the lements connects\n",
    "        fromNode = elements[element][1]\n",
    "        toNode = elements[element][2]\n",
    "\n",
    "        # the coordinates for each node\n",
    "        fromPoint = nodes[fromNode]\n",
    "        toPoint = nodes[toNode]\n",
    "\n",
    "        # find the degrees of freedom for each node\n",
    "        dofs = degrees_of_freedom[fromNode]\n",
    "        dofs=vcat(dofs,degrees_of_freedom[toNode])\n",
    "\n",
    "        return fromPoint, toPoint, dofs\n",
    "    end\n",
    "\n",
    "    function direction_cosine(vec1, vec2)\n",
    "        return dot(vec1,vec2) / (norm(vec1) * norm(vec2))\n",
    "    end\n",
    "\n",
    "    function rotation_matrix(element_vector, x_axis, y_axis,z_axis)\n",
    "        # find the direction cosines\n",
    "        x_proj = direction_cosine(element_vector, x_axis)\n",
    "        y_proj = direction_cosine(element_vector, y_axis)\n",
    "        z_proj = direction_cosine(element_vector, z_axis);\n",
    "        return [[x_proj y_proj z_proj 0 0 0];[0 0 0 x_proj y_proj z_proj]]\n",
    "    end\n",
    "\n",
    "    function rotation_matrix(element_vector, x_axis, y_axis,z_axis)\n",
    "        # find the direction cosines\n",
    "        L=norm(element_vector)\n",
    "        l = (element_vector[1])/L\n",
    "        m = (element_vector[2])/L\n",
    "        n = (element_vector[3])/L\n",
    "        D = ( l^2+ m^2+n^2)^0.5\n",
    "\n",
    "        transMatrix=[[l m  n  0  0  0  0  0  0  0  0  0];[-m/D l/D  0  0  0  0  0  0  0  0  0  0];[ -l*n/D  -m*n/D  D  0  0  0  0  0  0  0  0  0];[ 0  0  0       l       m  n  0  0  0  0  0  0];[ 0  0  0    -m/D     l/D  0  0  0  0  0  0  0];[ 0  0  0  -l*n/D  -m*n/D  D  0  0  0  0  0  0];[ 0  0  0  0  0  0       l       m  n  0  0  0];[ 0  0  0  0  0  0    -m/D     l/D  0  0  0  0];[ 0  0  0  0  0  0  -l*n/D  -m*n/D  D  0  0  0];[ 0  0  0  0  0  0  0  0  0       l       m  n];[ 0  0  0  0  0  0  0  0  0    -m/D     l/D  0];[ 0  0  0  0  0  0  0  0  0  -l*n/D  -m*n/D  D]]\n",
    "\n",
    "        return transMatrix\n",
    "    end\n",
    "    \n",
    "    #######################################################\n",
    "    function get_matrices(setup)\n",
    "\n",
    "        nodes      = setup[\"nodes\"]\n",
    "        edges      = setup[\"edges\"]\n",
    "        ndofs      = length(nodes)*6\n",
    "\n",
    "        x_axis     = [1 0 0]\n",
    "        y_axis     = [0 1 0]\n",
    "        z_axis     = [0 0 1]\n",
    "\n",
    "        M = zeros((ndofs,ndofs))\n",
    "        K = zeros((ndofs,ndofs))\n",
    "        \n",
    "        \n",
    "        for edge in edges\n",
    "            #degrees_of_freedom = properties[\"degrees_of_freedom\"]\n",
    "\n",
    "            element=parse(Int,edge[\"id\"][2:end])\n",
    "\n",
    "            # find the nodes that the lements connects\n",
    "            fromNode = nodes[edge[\"source\"]+1]\n",
    "            toNode = nodes[edge[\"target\"]+1]\n",
    "            \n",
    "\n",
    "            # the coordinates for each node\n",
    "            fromPoint = [fromNode[\"position\"][\"x\"]/100.0 fromNode[\"position\"][\"y\"]/100.0 fromNode[\"position\"][\"z\"]/100.0]\n",
    "            toPoint = [toNode[\"position\"][\"x\"]/100.0 toNode[\"position\"][\"y\"]/100.0 toNode[\"position\"][\"z\"]/100.0]\n",
    "\n",
    "            # find the degrees of freedom for each node\n",
    "            dofs = convert(Array{Int}, fromNode[\"degrees_of_freedom\"])\n",
    "            dofs=vcat(dofs,convert(Array{Int}, toNode[\"degrees_of_freedom\"]))\n",
    "\n",
    "            element_vector=toPoint-fromPoint\n",
    "\n",
    "            # find element mass and stifness matrices\n",
    "            length   = norm(element_vector)\n",
    "            rho      = edge[\"density\"]\n",
    "            area     = edge[\"area\"]\n",
    "            E        = edge[\"stiffness\"]# youngs modulus\n",
    "\n",
    "            A = edge[\"area\"]\n",
    "            G=1.0#todo shear_modulus\n",
    "            ixx = 1.0#todo section ixx\n",
    "            iyy = 1.0#todo section.iyy#\n",
    "            l0=length\n",
    "            j=1.0;#todo check\n",
    "            l02 = l0 * l0\n",
    "            l03 = l0 * l0 * l0\n",
    "            \n",
    "            ################################\n",
    "            mass=1\n",
    "            nu=0.35\n",
    "            W = 75\n",
    "            L = W/sqrt(2)\n",
    "            L=length\n",
    "            n_min = 1\n",
    "            n_max = 7\n",
    "            # Cross Section inputs, must be floats\n",
    "            E = 2000e9  # MPa\n",
    "            G = E * 1 / 3  # MPa\n",
    "            h = 2.38/100.0  # mm\n",
    "            b = 2.38/100.0  # mm\n",
    "            rho = 7.85e-9 / 3  # kg/mm^3\n",
    "            S = h * b\n",
    "            Sy = (S * (6 + 12 * nu + 6 * nu^2)/ (7 + 12 * nu + 4 * nu^2))\n",
    "            # For solid rectangular cross section (width=b, depth=d & ( b < d )):\n",
    "            Q = 1 / 3 - 0.2244 / (min(h / b, b / h) + 0.1607)\n",
    "            J = Q * min(h * b^3, b * h^3)\n",
    "            \n",
    "            \n",
    "            ##if voxels\n",
    "            #nu=0\n",
    "            #L=l\n",
    "            #a1 = E*L # EA/L : Units of N/m\n",
    "            #a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m\n",
    "            #b1 = E*L # 12EI/L^3 : Units of N/m\n",
    "            #b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)\n",
    "            #b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m\n",
    "            \n",
    "            I= b*h^3/12\n",
    "#             J=b*h*(b*b+h*h)/12\n",
    "            a1=E*b*h/L\n",
    "            a2=G*J/L\n",
    "            b1=12*E*I/(L^3)\n",
    "            b2=6*E*I/(L^2)\n",
    "            b3=2*E*I/(L)\n",
    "            \n",
    "            # Cm = rho * area * length /6.0\n",
    "            # Ck= E * area / length \n",
    "\n",
    "            # m = [[2 1];[1 2]]\n",
    "            # k = [[1 -1];[-1 1]]\n",
    "            \n",
    "\n",
    "            k = [[E*A/l0  0  0  0  0  0  -E*A/l0  0  0  0  0  0];[0  12*E*ixx/l03  0  0  0  6*E*ixx/l02  0  -12*E*ixx/l03  0  0  0  6*E*ixx/l02];[0  0  12*E*iyy/l03  0  -6*E*iyy/l02  0  0  0  -12*E*iyy/l03  0  -6*E*iyy/l02  0];[0  0  0  G*j/l0  0  0  0  0  0  -G*j/l0  0  0];[0  0  -6*E*iyy/l02  0  4*E*iyy/l0  0  0  0  6*E*iyy/l02  0  2*E*iyy/l0  0];[0  6*E*ixx/l02  0  0  0  4*E*ixx/l0  0  -6*E*ixx/l02  0  0  0  2*E*ixx/l0];[-E*A/l0  0  0  0  0  0  E*A/l0  0  0  0  0  0];[0  -12*E*ixx/l03  0  0  0  -6*E*ixx/l02  0  12*E*ixx/l03  0  0  0  -6*E*ixx/l02];[0  0  -12*E*iyy/l03  0  6*E*iyy/l02  0  0  0  12*E*iyy/l03  0  6*E*iyy/l02  0];[0  0  0  -G*j/l0  0  0  0  0  0  G*j/l0  0  0];[0  0  -6*E*iyy/l02  0  2*E*iyy/l0  0  0  0  6*E*iyy/l02  0  4*E*iyy/l0  0];[0  6*E*ixx/l02  0  0  0  2*E*ixx/l0  0  -6*E*ixx/l02  0  0  0  4*E*ixx/l0]]\n",
    "            k= [[ a1  0  0  0   0   0  -a1  0   0   0   0   0  ];\n",
    "                [  0 b1  0  0   0   b2  0  -b1  0   0   0   b2 ];\n",
    "                [  0  0  b1 0  -b2  0   0   0  -b1  0  -b2  0  ];\n",
    "                [  0  0  0  a2  0   0   0   0   0  -a2  0   0  ];\n",
    "                [  0  0  0  0  2b3  0   0   0   b2  0   b3  0  ];\n",
    "                [  0  0  0  0   0  2b3  0  -b2  0   0   0   b3 ];\n",
    "                [  0  0  0  0   0   0   a1  0   0   0   0   0  ];\n",
    "                [  0  0  0  0   0   0   0   b1  0   0   0  -b2 ];\n",
    "                [  0  0  0  0   0   0   0   0   b1  0   b2  0  ];\n",
    "                [  0  0  0  0   0   0   0   0   0   a2  0   0  ];\n",
    "                [  0  0  0  0   0   0   0   0   0    0 2b3  0  ];\n",
    "                [  0  0  0  0   0   0   0   0   0    0  0  2b3 ]]\n",
    "            # find rotated mass and stifness matrices\n",
    "            tau = rotation_matrix(element_vector, x_axis,y_axis,z_axis)\n",
    "\n",
    "            # m_r=transpose(tau)*m*tau\n",
    "            k_r=transpose(tau)*k*tau\n",
    "\n",
    "            # change from element to global coordinate\n",
    "            index= dofs.+1\n",
    "\n",
    "            B=zeros((12,ndofs))\n",
    "            for i in 1:12\n",
    "                  B[i,index[i]]=1.0\n",
    "            end\n",
    "\n",
    "\n",
    "            # M_rG= transpose(B)*m_r*B\n",
    "            K_rG= transpose(B)*k_r*B\n",
    "\n",
    "            # M += Cm .* M_rG\n",
    "            # K += Ck .* K_rG\n",
    "            K +=  K_rG\n",
    "\n",
    "        end\n",
    "        \n",
    "        \n",
    "        # construct the force vector\n",
    "        F=zeros(ndofs)\n",
    "        remove_indices=[];\n",
    "        for node in nodes\n",
    "            #insert!(F,i, value);\n",
    "            #F=vcat(F,value)\n",
    "            \n",
    "            \n",
    "            i=parse(Int,node[\"id\"][2:end])\n",
    "            f=node[\"force\"]\n",
    "            \n",
    "            # println(f)\n",
    "            F[(i)*6+1]=f[\"x\"]/1.0\n",
    "            F[(i)*6+2]=f[\"y\"]/1.0\n",
    "            F[(i)*6+3]=f[\"z\"]/1.0\n",
    "            F[(i)*6+4]=0\n",
    "            F[(i)*6+5]=0\n",
    "            F[(i)*6+6]=0\n",
    "            Load+=f[\"y\"]/1.0\n",
    "            if (F[(i)*6+2]!=0)\n",
    "                append!(topNodesIndices,i)\n",
    "            end\n",
    "            \n",
    "            dofs = convert(Array{Int}, node[\"degrees_of_freedom\"]).+1\n",
    "            restrained_dofs=node[\"restrained_degrees_of_freedom\"]\n",
    "            for (index, value) in enumerate(dofs)\n",
    "                if restrained_dofs[index]\n",
    "                    append!( remove_indices, value)\n",
    "                end\n",
    "            end\n",
    "            \n",
    "        end\n",
    "\n",
    "        #println(remove_indices)\n",
    "        #print(K)\n",
    "        #print(F)\n",
    "        \n",
    "\n",
    "        #M = M[setdiff(1:end, remove_indices), :]\n",
    "        K = K[setdiff(1:end, remove_indices), :]\n",
    "\n",
    "        #M = M[:,setdiff(1:end, remove_indices)]\n",
    "        K = K[:,setdiff(1:end, remove_indices)]\n",
    "\n",
    "        F = F[setdiff(1:end, remove_indices)]\n",
    "        return M,K,F\n",
    "    end\n",
    "    \n",
    "    \n",
    "    function updateDisplacement(setup, X)\n",
    "        nodes= setup[\"nodes\"]\n",
    "        i=0\n",
    "        for node in nodes\n",
    "            \n",
    "            if !node[\"restrained_degrees_of_freedom\"][1]\n",
    "                #i=parse(Int,node[\"id\"][2:end])\n",
    "                node[\"displacement\"][\"x\"]=X[(i)*6+1]\n",
    "                node[\"displacement\"][\"y\"]=X[(i)*6+2]\n",
    "                node[\"displacement\"][\"z\"]=X[(i)*6+3]\n",
    "                node[\"angle\"][\"x\"]=X[(i)*6+4]\n",
    "                node[\"angle\"][\"y\"]=X[(i)*6+5]\n",
    "                node[\"angle\"][\"z\"]=X[(i)*6+6]\n",
    "                append!(displacementFEA,[Vector3(X[(i)*6+1],X[(i)*6+2],X[(i)*6+3])])\n",
    "                i=i+1\n",
    "            else\n",
    "                append!(displacementFEA,[Vector3(0,0,0)])\n",
    "            end\n",
    "        end\n",
    "    end\n",
    "    \n",
    "    #######################################################\n",
    "\n",
    "    function get_stresses(setup)\n",
    "        nodes      = setup[\"nodes\"]\n",
    "        edges      = setup[\"edges\"]\n",
    "        ndofs      = length(nodes)*6\n",
    "\n",
    "        x_axis     = [1 0 0]\n",
    "        y_axis     = [0 1 0]\n",
    "        z_axis     = [0 0 1]\n",
    "\n",
    "        # find the stresses in each member\n",
    "        stresses=zeros(length(edges))\n",
    "        max11=-10e6\n",
    "        min11=10e6\n",
    "        for edge in edges\n",
    "            #degrees_of_freedom = properties[\"degrees_of_freedom\"]\n",
    "\n",
    "            element=parse(Int,edge[\"id\"][2:end])\n",
    "\n",
    "            # find the nodes that the lements connects\n",
    "            fromNode = nodes[edge[\"source\"]+1]\n",
    "            toNode = nodes[edge[\"target\"]+1]\n",
    "\n",
    "            # the coordinates for each node\n",
    "            fromPoint = [fromNode[\"position\"][\"x\"]/100.0 fromNode[\"position\"][\"y\"]/100.0 fromNode[\"position\"][\"z\"]/100.0]\n",
    "            toPoint = [toNode[\"position\"][\"x\"]/100.0 toNode[\"position\"][\"y\"]/100.0 toNode[\"position\"][\"z\"]/100.0]\n",
    "\n",
    "            # find the degrees of freedom for each node\n",
    "            dofs = convert(Array{Int}, fromNode[\"degrees_of_freedom\"])\n",
    "            dofs=vcat(dofs,convert(Array{Int}, toNode[\"degrees_of_freedom\"]))\n",
    "\n",
    "            element_vector=toPoint-fromPoint\n",
    "\n",
    "\n",
    "            # find rotated mass and stifness matrices\n",
    "            tau = rotation_matrix(element_vector, x_axis,y_axis,z_axis)\n",
    "\n",
    "            # i1=parse(Int,fromNode[\"id\"][2:end])\n",
    "            # i2=parse(Int,toNode[\"id\"][2:end])\n",
    "\n",
    "            # global_displacements=[X[(i1)*6+1] X[(i1)*6+2] X[(i1)*6+3] X[(i1)*6+4] X[(i1)*6+5] X[(i1)*6+6] X[(i2)*6+1] X[(i2)*6+2] X[(i2)*6+3] X[(i2)*6+4] X[(i2)*6+5] X[(i2)*6+6]] # todo change\n",
    "            global_displacements=[fromNode[\"displacement\"][\"x\"] fromNode[\"displacement\"][\"y\"] fromNode[\"displacement\"][\"z\"] fromNode[\"angle\"][\"x\"] fromNode[\"angle\"][\"y\"] fromNode[\"angle\"][\"z\"] toNode[\"displacement\"][\"x\"] toNode[\"displacement\"][\"y\"] toNode[\"displacement\"][\"z\"] toNode[\"angle\"][\"x\"] toNode[\"angle\"][\"y\"] toNode[\"angle\"][\"z\"]] # todo change\n",
    "\n",
    "            # nodal displacement\n",
    "\n",
    "            q=tau*transpose(global_displacements)\n",
    "            # println(q)\n",
    "            # calculate the strain and stresses\n",
    "            strain =(q[7]-q[1])/norm(element_vector)\n",
    "            E = edge[\"stiffness\"]# youngs modulus\n",
    "            stress=E.*strain\n",
    "            edge[\"stress\"]=stress\n",
    "            if stress>max11\n",
    "                max11=stress\n",
    "            end\n",
    "            if stress<min11\n",
    "                min11=stress\n",
    "            end\n",
    "            # println(element)\n",
    "            # println(stress)\n",
    "        end\n",
    "\n",
    "\n",
    "\n",
    "        setup[\"viz\"][\"minStress\"]=min11\n",
    "        setup[\"viz\"][\"maxStress\"]=max11\n",
    "        return stresses\n",
    "    end\n",
    "    \n",
    "    function initialize(setup)\n",
    "        nodes      = setup[\"nodes\"]\n",
    "        ndofs      = length(nodes)*6\n",
    "        \n",
    "        i=0\n",
    "        for node in nodes\n",
    "            dg=[]\n",
    "            for ii in 0:5\n",
    "                append!(dg,i+ii) \n",
    "            end\n",
    "            i+=6\n",
    "            node[\"degrees_of_freedom\"]=dg\n",
    "        end\n",
    "    end\n",
    "\n",
    "    #######################################################\n",
    "    function solveFea(setup)\n",
    "        // # determine the global matrices\n",
    "        initialize(setup)\n",
    "        \n",
    "        M,K,F=get_matrices(setup)\n",
    "        \n",
    "        #println(M)\n",
    "        #println(K)\n",
    "        #println(F)\n",
    "\n",
    "        #evals=eigvals(K,M)\n",
    "        #evecs=eigvecs(K,M)\n",
    "        #frequencies=sqrt.(evals)\n",
    "        X=inv(K)*F\n",
    "        # println(X)\n",
    "\n",
    "        #updateDisplacement(displacements);\n",
    "        updateDisplacement(setup, X)\n",
    "\n",
    "        # determine the stresses in each element\n",
    "        stresses=get_stresses(setup)\n",
    "    end\n",
    "    #######################################################\n",
    "    displacementFEA=[]\n",
    "    Load=0\n",
    "    topNodesIndices=[]\n",
    "    solveFea(setup)\n",
    "    return displacementFEA,Load,topNodesIndices\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "recommendedTimeStep (generic function with 1 method)"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function recommendedTimeStep()\n",
    "    \n",
    "    \n",
    "#     #find the largest natural frequency (sqrt(k/m)) that anything in the simulation will experience, then multiply by 2*pi and invert to get the optimally largest timestep that should retain stability\n",
    "#     MaxFreq2 = 0.0; #maximum frequency in the simulation in rad/sec\n",
    "    \n",
    "#     for e in 1:length(edges) #for each edge\n",
    "#         CVX_Link* pL = (*it);\n",
    "#         #axial\n",
    "#         m1 = mass(),  m2 = mass()\n",
    "#         thisMaxFreq2 = axialStiffness()/(m1<m2?m1:m2)\n",
    "#         if (thisMaxFreq2 > MaxFreq2) \n",
    "#             MaxFreq2 = thisMaxFreq2;\n",
    "#         end\n",
    "\n",
    "#         #rotational will always be less than or equal\n",
    "#     end\n",
    "        \n",
    "\n",
    "#     if (MaxFreq2 <= 0.0) #didn't find anything (i.e no links) check for individual voxelss\n",
    "#         for n in 1:length(nodes) #for each node\n",
    "#             thisMaxFreq2 = youngsModulus*nomSize/mass;\n",
    "#             #thisMaxFreq2 = (*it)->mat->youngsModulus()*(*it)->mat->nomSize/(*it)->mat->mass();\n",
    "#             if (thisMaxFreq2 > MaxFreq2) \n",
    "#                     MaxFreq2 = thisMaxFreq2;\n",
    "#             end\n",
    "#         end\n",
    "#     end\n",
    "\n",
    "#     if (MaxFreq2 <= 0.0) \n",
    "#         return 0.0\n",
    "#     else \n",
    "#         return 1.0/(6.283185*sqrt(MaxFreq2)) #the optimal timestep is to advance one radian of the highest natural frequency\n",
    "#     end\n",
    "    MaxFreq2=E*size/mass\n",
    "    return 1/(6.283185*sqrt(MaxFreq2))\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "getSetup (generic function with 1 method)"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "function getSetup(latticeSize)\n",
    "    setup = Dict()\n",
    "    name=string(\"../json/setupTestUni$latticeSize\",\".json\")\n",
    "#     open(\"../json/setupValid2.json\", \"r\") do f\n",
    "#     open(\"../json/setupTest.json\", \"r\") do f\n",
    "    # open(\"../json/trialJulia.json\", \"r\") do f\n",
    "#     open(\"../json/setupTestUni4.json\", \"r\") do f\n",
    "    # open(\"../json/setupChiral.json\", \"r\") do f\n",
    "#     open(\"../json/setupTestCubeUni10.json\", \"r\") do f\n",
    "    open(name, \"r\") do f\n",
    "#         global setup\n",
    "        dicttxt = String(read(f))  # file information to string\n",
    "        setup=JSON.parse(dicttxt)  # parse and transform data\n",
    "    end\n",
    "\n",
    "    setup=setup[\"setup\"]\n",
    "    return setup\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "ename": "BoundsError",
     "evalue": "BoundsError: attempt to access 24-element Array{Float64,1} at index [25]",
     "output_type": "error",
     "traceback": [
      "BoundsError: attempt to access 24-element Array{Float64,1} at index [25]",
      "",
      "Stacktrace:",
      " [1] getindex at .\\array.jl:728 [inlined]",
      " [2] (::getfield(Main, Symbol(\"#updateDisplacement#11\")))(::Dict{String,Any}, ::Array{Float64,1}) at .\\In[16]:237",
      " [3] (::getfield(Main, Symbol(\"#solveFea#14\")){getfield(Main, Symbol(\"#get_matrices#10\")),getfield(Main, Symbol(\"#updateDisplacement#11\")),getfield(Main, Symbol(\"#get_stresses#12\")),getfield(Main, Symbol(\"#initialize#13\"))})(::Dict{String,Any}) at .\\In[16]:354",
      " [4] fea(::Dict{String,Any}) at .\\In[16]:363",
      " [5] top-level scope at In[19]:3"
     ]
    }
   ],
   "source": [
    "latticeSize=1\n",
    "setup=getSetup(latticeSize)\n",
    "displacementFEA,Load,topNodesIndices=fea(setup)\n",
    "topNodesIndices"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "5-element Array{Float64,1}:\n",
       " 0.0\n",
       " 0.0\n",
       " 0.0\n",
       " 0.0\n",
       " 0.0"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "DDisplacements=[[],[],[],[],[]]\n",
    "DDisplacementsFEA=[[],[],[],[],[]]\n",
    "EsFEA=[0.0,0,0,0,0]\n",
    "Es=[0.0,0,0,0,0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "ename": "BoundsError",
     "evalue": "BoundsError: attempt to access 360-element Array{Float64,1} at index [361]",
     "output_type": "error",
     "traceback": [
      "BoundsError: attempt to access 360-element Array{Float64,1} at index [361]",
      "",
      "Stacktrace:",
      " [1] getindex at .\\array.jl:728 [inlined]",
      " [2] (::getfield(Main, Symbol(\"#updateDisplacement#11\")))(::Dict{String,Any}, ::Array{Float64,1}) at .\\In[16]:237",
      " [3] (::getfield(Main, Symbol(\"#solveFea#14\")){getfield(Main, Symbol(\"#get_matrices#10\")),getfield(Main, Symbol(\"#updateDisplacement#11\")),getfield(Main, Symbol(\"#get_stresses#12\")),getfield(Main, Symbol(\"#initialize#13\"))})(::Dict{String,Any}) at .\\In[16]:354",
      " [4] fea(::Dict{String,Any}) at .\\In[16]:363",
      " [5] top-level scope at In[21]:3"
     ]
    }
   ],
   "source": [
    "latticeSize=3\n",
    "setup=getSetup(latticeSize)\n",
    "displacementFEA,Load,topNodesIndices=fea(setup)\n",
    "\n",
    "setup=getSetup(latticeSize)\n",
    "numTimeSteps=2000\n",
    "displacements=[]\n",
    "save=true\n",
    "returnEvery=1\n",
    "runMetavoxelGPU!(setup,numTimeSteps,latticeSize,displacements,returnEvery,true)\n",
    "\n",
    "numTimeStepsRecorded=length(displacements)\n",
    "d=[]\n",
    "dFEA=[]\n",
    "j=length(displacements[end])\n",
    "step=1\n",
    "for i in 1:step:numTimeStepsRecorded\n",
    "    append!(d,displacements[i][j].y)\n",
    "    append!(dFEA,displacementFEA[j].y)\n",
    "end\n",
    "\n",
    "DDisplacements[latticeSize]=d*100\n",
    "DDisplacementsFEA[latticeSize]=dFEA*100\n",
    "\n",
    "E1=getYoungsModulus(latticeSize,5,displacementFEA,Load,topNodesIndices)/1000\n",
    "E2=getYoungsModulus(latticeSize,5,displacements[end],Load,topNodesIndices)/1000\n",
    "\n",
    "EsFEA[latticeSize]=E1\n",
    "Es[latticeSize]=E2\n",
    "\n",
    "print(\"EsFEA:\" )\n",
    "println(EsFEA)\n",
    "print(\"Es:\" )\n",
    "println(Es)\n",
    "\n",
    "println(\"FEA displacement= $(displacementFEA[j].y),converged displacement= $(displacements[numTimeStepsRecorded][j].y)\")\n",
    "plot(1:step:numTimeStepsRecorded,d*100,label=\"Dynamic\",xlabel=\"timestep\",ylabel=\"displacement\",title=\"$latticeSize Voxel Convergence Study\")\n",
    "plot!(1:step:numTimeStepsRecorded,dFEA*100,label=\"FEA\")\n",
    "# savefig(\"5_voxel_convergence\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "ename": "UndefVarError",
     "evalue": "UndefVarError: displacements not defined",
     "output_type": "error",
     "traceback": [
      "UndefVarError: displacements not defined",
      "",
      "Stacktrace:",
      " [1] top-level scope at In[22]:3"
     ]
    }
   ],
   "source": [
    "n=[]\n",
    "nFEA=[]\n",
    "j=length(displacements[end])\n",
    "for i in 1:j\n",
    "    append!(n,displacements[end][i].y)\n",
    "    append!(nFEA,displacementFEA[i].y)\n",
    "end\n",
    "scatter(1:j,n,label=\"Dyanmic\",xlabel=\"Node ID\",ylabel=\"displacement\",title=\"Node Displacement\")\n",
    "scatter!(1:j,nFEA,label=\"FEA\")\n",
    "# savefig(\"node_displacement_one_voxel\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "ename": "UndefVarError",
     "evalue": "UndefVarError: E1 not defined",
     "output_type": "error",
     "traceback": [
      "UndefVarError: E1 not defined",
      "",
      "Stacktrace:",
      " [1] top-level scope at In[23]:15"
     ]
    }
   ],
   "source": [
    "function getYoungsModulus(latticeSize,voxelSize,disp,Load,topNodesIndices)\n",
    "    F=-Load\n",
    "    l0=voxelSize*sqrt(2)/100.0*latticeSize\n",
    "    A=(voxelSize*sqrt(2)/100.0)^2*latticeSize^2\n",
    "\n",
    "    δl1=-mean( x.y for x in disp[topNodesIndices])\n",
    "\n",
    "    stresses=F/A\n",
    "    strain=δl1/l0\n",
    "\n",
    "    E=stresses/strain *1e-9\n",
    "\n",
    "    return E\n",
    "end\n",
    "\n",
    "# F=-Load\n",
    "# l0=5*sqrt(2)/100.0*latticeSize\n",
    "# A=(5*sqrt(2)/100.0)^2*latticeSize^2\n",
    "\n",
    "# δl1=-mean( x.y for x in displacementFEA[topNodesIndices])\n",
    "# δl2=-mean( x.y for x in displacements[end][topNodesIndices])\n",
    "\n",
    "# stresses=F/A\n",
    "# strain1=δl1/l0\n",
    "# strain2=δl2/l0\n",
    "\n",
    "# # DDisplacements[latticeSize]=[displacements[end][end].y]\n",
    "# # DDisplacementsFEA[latticeSize]=[displacementFEA[end].y]\n",
    "\n",
    "# E1=getYoungsModulus(latticeSize,5,displacementFEA,Load,topNodesIndices)/1000\n",
    "# E2=getYoungsModulus(latticeSize,5,displacements[end],Load,topNodesIndices)/1000\n",
    "# EsFEA[latticeSize]=E1\n",
    "# Es[latticeSize]=E2\n",
    "\n",
    "println(\"E FEA= $E1,E dynamic= $E2\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Es1=[0.060884503402759034, 0.028613329550419765,0.04290673059936012,0.05720947849175027,0.07151182744350526 ]\n",
    "# Es2=[4.476556777767441   ,2.4245859780625727, 2.450108731865717,2.4714994633266203,2.464207835015529]\n",
    "\n",
    "# EsFEA=[9.777375254441967, 4.997590597979953, 7.496951555575914,9.995905987397883,12.494879504999625 ] #FEA\n",
    "# Es=[4.476556777767441   ,2.4245859780625727, 2.450108731865717,2.4714994633266203,2.464207835015529] #DYNAMIC"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/svg+xml": [
       "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n",
       "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"600\" height=\"400\" viewBox=\"0 0 2400 1600\">\n",
       "<defs>\n",
       "  <clipPath id=\"clip9900\">\n",
       "    <rect x=\"0\" y=\"0\" width=\"2400\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip9900)\" d=\"\n",
       "M0 1600 L2400 1600 L2400 0 L0 0  Z\n",
       "  \" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip9901\">\n",
       "    <rect x=\"480\" y=\"0\" width=\"1681\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip9900)\" d=\"\n",
       "M242.516 1425.62 L2352.76 1425.62 L2352.76 121.675 L242.516 121.675  Z\n",
       "  \" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip9902\">\n",
       "    <rect x=\"242\" y=\"121\" width=\"2111\" height=\"1305\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  302.24,1425.62 302.24,121.675 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  799.938,1425.62 799.938,121.675 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  1297.64,1425.62 1297.64,121.675 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  1795.33,1425.62 1795.33,121.675 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  2293.03,1425.62 2293.03,121.675 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  242.516,1388.71 2352.76,1388.71 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  242.516,1081.18 2352.76,1081.18 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  242.516,773.647 2352.76,773.647 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  242.516,466.113 2352.76,466.113 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#000000; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"\n",
       "  242.516,158.579 2352.76,158.579 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  242.516,1425.62 2352.76,1425.62 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  242.516,1425.62 242.516,121.675 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  302.24,1425.62 302.24,1409.97 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  799.938,1425.62 799.938,1409.97 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  1297.64,1425.62 1297.64,1409.97 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  1795.33,1425.62 1795.33,1409.97 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  2293.03,1425.62 2293.03,1409.97 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  242.516,1388.71 267.839,1388.71 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  242.516,1081.18 267.839,1081.18 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  242.516,773.647 267.839,773.647 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  242.516,466.113 267.839,466.113 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  242.516,158.579 267.839,158.579 \n",
       "  \"/>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 302.24, 1479.62)\" x=\"302.24\" y=\"1479.62\">1</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 799.938, 1479.62)\" x=\"799.938\" y=\"1479.62\">2</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 1297.64, 1479.62)\" x=\"1297.64\" y=\"1479.62\">3</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 1795.33, 1479.62)\" x=\"1795.33\" y=\"1479.62\">4</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:middle;\" transform=\"rotate(0, 2293.03, 1479.62)\" x=\"2293.03\" y=\"1479.62\">5</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 1406.21)\" x=\"218.516\" y=\"1406.21\">0.00</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 1098.68)\" x=\"218.516\" y=\"1098.68\">0.25</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 791.147)\" x=\"218.516\" y=\"791.147\">0.50</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 483.613)\" x=\"218.516\" y=\"483.613\">0.75</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:end;\" transform=\"rotate(0, 218.516, 176.079)\" x=\"218.516\" y=\"176.079\">1.00</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:84px; text-anchor:middle;\" transform=\"rotate(0, 1297.64, 73.2)\" x=\"1297.64\" y=\"73.2\">Young&apos;s Modulus</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:66px; text-anchor:middle;\" transform=\"rotate(0, 1297.64, 1559.48)\" x=\"1297.64\" y=\"1559.48\">lattice size</text>\n",
       "</g>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:66px; text-anchor:middle;\" transform=\"rotate(-90, 89.2861, 773.647)\" x=\"89.2861\" y=\"773.647\">E</text>\n",
       "</g>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#009af9; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  302.24,1388.71 799.938,1388.71 1297.64,1388.71 1795.33,1388.71 2293.03,1388.71 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9902)\" style=\"stroke:#e26f46; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  302.24,1388.71 799.938,1388.71 1297.64,1388.71 1795.33,1388.71 2293.03,1388.71 \n",
       "  \"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"302.24\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"799.938\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"1297.64\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"1795.33\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"2293.03\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"302.24\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"799.938\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"1297.64\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"1795.33\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<circle clip-path=\"url(#clip9902)\" cx=\"2293.03\" cy=\"1388.71\" r=\"14\" fill=\"#000000\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"none\"/>\n",
       "<path clip-path=\"url(#clip9900)\" d=\"\n",
       "M1853.56 386.635 L2280.76 386.635 L2280.76 205.195 L1853.56 205.195  Z\n",
       "  \" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#000000; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  1853.56,386.635 2280.76,386.635 2280.76,205.195 1853.56,205.195 1853.56,386.635 \n",
       "  \"/>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#009af9; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  1877.56,265.675 2021.56,265.675 \n",
       "  \"/>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:start;\" transform=\"rotate(0, 2045.56, 283.175)\" x=\"2045.56\" y=\"283.175\">Dyanmic</text>\n",
       "</g>\n",
       "<polyline clip-path=\"url(#clip9900)\" style=\"stroke:#e26f46; stroke-width:4; stroke-opacity:1; fill:none\" points=\"\n",
       "  1877.56,326.155 2021.56,326.155 \n",
       "  \"/>\n",
       "<g clip-path=\"url(#clip9900)\">\n",
       "<text style=\"fill:#000000; fill-opacity:1; font-family:Arial,Helvetica Neue,Helvetica,sans-serif; font-size:48px; text-anchor:start;\" transform=\"rotate(0, 2045.56, 343.655)\" x=\"2045.56\" y=\"343.655\">FEA</text>\n",
       "</g>\n",
       "</svg>\n"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "plot(1:5,Es,label=\"Dyanmic\",xlabel=\"lattice size\",ylabel=\"E\",title=\"Young's Modulus\")\n",
    "plot!(1:5,EsFEA,label=\"FEA\")\n",
    "scatter!(1:5,Es,color=\"black\",label=\"\")\n",
    "scatter!(1:5,EsFEA,color=\"black\",label=\"\")\n",
    "# savefig(\"youngs_modulus\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "ename": "UndefVarError",
     "evalue": "UndefVarError: numTimeStepsRecorded not defined",
     "output_type": "error",
     "traceback": [
      "UndefVarError: numTimeStepsRecorded not defined",
      "",
      "Stacktrace:",
      " [1] top-level scope at .\\In[26]:3"
     ]
    }
   ],
   "source": [
    "plot()\n",
    "for i in 1:5\n",
    "    plot!(1:step:numTimeStepsRecorded,DDisplacements[i],label=\"Lattice size: $i\",xlabel=\"timestep\",ylabel=\"displacement\",title=\"Dynamic Model Convergence\")\n",
    "\n",
    "end\n",
    "plot!()\n",
    "# savefig(\"dynamic_convergence\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "@webio": {
   "lastCommId": null,
   "lastKernelId": null
  },
  "kernelspec": {
   "display_name": "Julia 1.2.0",
   "language": "julia",
   "name": "julia-1.2"
  },
  "language_info": {
   "file_extension": ".jl",
   "mimetype": "application/julia",
   "name": "julia",
   "version": "1.2.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}