// Version 1.66.6 3d-force-graph - https://github.com/vasturiano/3d-force-graph
(function (global, factory) {
  typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
  typeof define === 'function' && define.amd ? define(factory) :
  (global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.ForceGraph3D = factory());
}(this, (function () { 'use strict';

  function styleInject(css, ref) {
    if ( ref === void 0 ) ref = {};
    var insertAt = ref.insertAt;

    if (!css || typeof document === 'undefined') { return; }

    var head = document.head || document.getElementsByTagName('head')[0];
    var style = document.createElement('style');
    style.type = 'text/css';

    if (insertAt === 'top') {
      if (head.firstChild) {
        head.insertBefore(style, head.firstChild);
      } else {
        head.appendChild(style);
      }
    } else {
      head.appendChild(style);
    }

    if (style.styleSheet) {
      style.styleSheet.cssText = css;
    } else {
      style.appendChild(document.createTextNode(css));
    }
  }

  var css_248z = ".graph-info-msg {\n  top: 50%;\n  width: 100%;\n  text-align: center;\n  color: lavender;\n  opacity: 0.7;\n  font-size: 22px;\n  position: absolute;\n  font-family: Sans-serif;\n}\n\n.grabbable {\n  cursor: move;\n  cursor: grab;\n  cursor: -moz-grab;\n  cursor: -webkit-grab;\n}\n\n.grabbable:active {\n  cursor: grabbing;\n  cursor: -moz-grabbing;\n  cursor: -webkit-grabbing;\n}";
  styleInject(css_248z);

  function _defineProperty(obj, key, value) {
    if (key in obj) {
      Object.defineProperty(obj, key, {
        value: value,
        enumerable: true,
        configurable: true,
        writable: true
      });
    } else {
      obj[key] = value;
    }

    return obj;
  }

  function ownKeys(object, enumerableOnly) {
    var keys = Object.keys(object);

    if (Object.getOwnPropertySymbols) {
      var symbols = Object.getOwnPropertySymbols(object);
      if (enumerableOnly) symbols = symbols.filter(function (sym) {
        return Object.getOwnPropertyDescriptor(object, sym).enumerable;
      });
      keys.push.apply(keys, symbols);
    }

    return keys;
  }

  function _objectSpread2(target) {
    for (var i = 1; i < arguments.length; i++) {
      var source = arguments[i] != null ? arguments[i] : {};

      if (i % 2) {
        ownKeys(Object(source), true).forEach(function (key) {
          _defineProperty(target, key, source[key]);
        });
      } else if (Object.getOwnPropertyDescriptors) {
        Object.defineProperties(target, Object.getOwnPropertyDescriptors(source));
      } else {
        ownKeys(Object(source)).forEach(function (key) {
          Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key));
        });
      }
    }

    return target;
  }

  function _toConsumableArray(arr) {
    return _arrayWithoutHoles(arr) || _iterableToArray(arr) || _unsupportedIterableToArray(arr) || _nonIterableSpread();
  }

  function _arrayWithoutHoles(arr) {
    if (Array.isArray(arr)) return _arrayLikeToArray(arr);
  }

  function _iterableToArray(iter) {
    if (typeof Symbol !== "undefined" && Symbol.iterator in Object(iter)) return Array.from(iter);
  }

  function _unsupportedIterableToArray(o, minLen) {
    if (!o) return;
    if (typeof o === "string") return _arrayLikeToArray(o, minLen);
    var n = Object.prototype.toString.call(o).slice(8, -1);
    if (n === "Object" && o.constructor) n = o.constructor.name;
    if (n === "Map" || n === "Set") return Array.from(o);
    if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen);
  }

  function _arrayLikeToArray(arr, len) {
    if (len == null || len > arr.length) len = arr.length;

    for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i];

    return arr2;
  }

  function _nonIterableSpread() {
    throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
  }

  // Polyfills

  if ( Number.EPSILON === undefined ) {

  	Number.EPSILON = Math.pow( 2, - 52 );

  }

  if ( Number.isInteger === undefined ) {

  	// Missing in IE
  	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger

  	Number.isInteger = function ( value ) {

  		return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;

  	};

  }

  //

  if ( Math.sign === undefined ) {

  	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign

  	Math.sign = function ( x ) {

  		return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;

  	};

  }

  if ( 'name' in Function.prototype === false ) {

  	// Missing in IE
  	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name

  	Object.defineProperty( Function.prototype, 'name', {

  		get: function () {

  			return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];

  		}

  	} );

  }

  if ( Object.assign === undefined ) {

  	// Missing in IE
  	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

  	Object.assign = function ( target ) {

  		if ( target === undefined || target === null ) {

  			throw new TypeError( 'Cannot convert undefined or null to object' );

  		}

  		const output = Object( target );

  		for ( let index = 1; index < arguments.length; index ++ ) {

  			const source = arguments[ index ];

  			if ( source !== undefined && source !== null ) {

  				for ( const nextKey in source ) {

  					if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {

  						output[ nextKey ] = source[ nextKey ];

  					}

  				}

  			}

  		}

  		return output;

  	};

  }

  const REVISION = '118';
  const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 };
  const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 };
  const CullFaceNone = 0;
  const CullFaceBack = 1;
  const CullFaceFront = 2;
  const PCFShadowMap = 1;
  const PCFSoftShadowMap = 2;
  const VSMShadowMap = 3;
  const FrontSide = 0;
  const BackSide = 1;
  const DoubleSide = 2;
  const FlatShading = 1;
  const NoBlending = 0;
  const NormalBlending = 1;
  const AdditiveBlending = 2;
  const SubtractiveBlending = 3;
  const MultiplyBlending = 4;
  const CustomBlending = 5;
  const AddEquation = 100;
  const SubtractEquation = 101;
  const ReverseSubtractEquation = 102;
  const MinEquation = 103;
  const MaxEquation = 104;
  const ZeroFactor = 200;
  const OneFactor = 201;
  const SrcColorFactor = 202;
  const OneMinusSrcColorFactor = 203;
  const SrcAlphaFactor = 204;
  const OneMinusSrcAlphaFactor = 205;
  const DstAlphaFactor = 206;
  const OneMinusDstAlphaFactor = 207;
  const DstColorFactor = 208;
  const OneMinusDstColorFactor = 209;
  const SrcAlphaSaturateFactor = 210;
  const NeverDepth = 0;
  const AlwaysDepth = 1;
  const LessDepth = 2;
  const LessEqualDepth = 3;
  const EqualDepth = 4;
  const GreaterEqualDepth = 5;
  const GreaterDepth = 6;
  const NotEqualDepth = 7;
  const MultiplyOperation = 0;
  const MixOperation = 1;
  const AddOperation = 2;
  const NoToneMapping = 0;
  const LinearToneMapping = 1;
  const ReinhardToneMapping = 2;
  const CineonToneMapping = 3;
  const ACESFilmicToneMapping = 4;
  const CustomToneMapping = 5;

  const UVMapping = 300;
  const CubeReflectionMapping = 301;
  const CubeRefractionMapping = 302;
  const EquirectangularReflectionMapping = 303;
  const EquirectangularRefractionMapping = 304;
  const CubeUVReflectionMapping = 306;
  const CubeUVRefractionMapping = 307;
  const RepeatWrapping = 1000;
  const ClampToEdgeWrapping = 1001;
  const MirroredRepeatWrapping = 1002;
  const NearestFilter = 1003;
  const NearestMipmapNearestFilter = 1004;
  const NearestMipmapLinearFilter = 1005;
  const LinearFilter = 1006;
  const LinearMipmapNearestFilter = 1007;
  const LinearMipmapLinearFilter = 1008;
  const UnsignedByteType = 1009;
  const ByteType = 1010;
  const ShortType = 1011;
  const UnsignedShortType = 1012;
  const IntType = 1013;
  const UnsignedIntType = 1014;
  const FloatType = 1015;
  const HalfFloatType = 1016;
  const UnsignedShort4444Type = 1017;
  const UnsignedShort5551Type = 1018;
  const UnsignedShort565Type = 1019;
  const UnsignedInt248Type = 1020;
  const AlphaFormat = 1021;
  const RGBFormat = 1022;
  const RGBAFormat = 1023;
  const LuminanceFormat = 1024;
  const LuminanceAlphaFormat = 1025;
  const DepthFormat = 1026;
  const DepthStencilFormat = 1027;
  const RedFormat = 1028;
  const RedIntegerFormat = 1029;
  const RGFormat = 1030;
  const RGIntegerFormat = 1031;
  const RGBIntegerFormat = 1032;
  const RGBAIntegerFormat = 1033;

  const RGB_S3TC_DXT1_Format = 33776;
  const RGBA_S3TC_DXT1_Format = 33777;
  const RGBA_S3TC_DXT3_Format = 33778;
  const RGBA_S3TC_DXT5_Format = 33779;
  const RGB_PVRTC_4BPPV1_Format = 35840;
  const RGB_PVRTC_2BPPV1_Format = 35841;
  const RGBA_PVRTC_4BPPV1_Format = 35842;
  const RGBA_PVRTC_2BPPV1_Format = 35843;
  const RGB_ETC1_Format = 36196;
  const RGB_ETC2_Format = 37492;
  const RGBA_ETC2_EAC_Format = 37496;
  const RGBA_ASTC_4x4_Format = 37808;
  const RGBA_ASTC_5x4_Format = 37809;
  const RGBA_ASTC_5x5_Format = 37810;
  const RGBA_ASTC_6x5_Format = 37811;
  const RGBA_ASTC_6x6_Format = 37812;
  const RGBA_ASTC_8x5_Format = 37813;
  const RGBA_ASTC_8x6_Format = 37814;
  const RGBA_ASTC_8x8_Format = 37815;
  const RGBA_ASTC_10x5_Format = 37816;
  const RGBA_ASTC_10x6_Format = 37817;
  const RGBA_ASTC_10x8_Format = 37818;
  const RGBA_ASTC_10x10_Format = 37819;
  const RGBA_ASTC_12x10_Format = 37820;
  const RGBA_ASTC_12x12_Format = 37821;
  const RGBA_BPTC_Format = 36492;
  const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
  const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
  const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
  const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
  const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
  const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
  const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
  const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
  const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
  const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
  const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
  const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
  const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
  const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
  const LoopOnce = 2200;
  const LoopRepeat = 2201;
  const LoopPingPong = 2202;
  const InterpolateDiscrete = 2300;
  const InterpolateLinear = 2301;
  const InterpolateSmooth = 2302;
  const ZeroCurvatureEnding = 2400;
  const ZeroSlopeEnding = 2401;
  const WrapAroundEnding = 2402;
  const NormalAnimationBlendMode = 2500;
  const AdditiveAnimationBlendMode = 2501;
  const TrianglesDrawMode = 0;
  const LinearEncoding = 3000;
  const sRGBEncoding = 3001;
  const GammaEncoding = 3007;
  const RGBEEncoding = 3002;
  const LogLuvEncoding = 3003;
  const RGBM7Encoding = 3004;
  const RGBM16Encoding = 3005;
  const RGBDEncoding = 3006;
  const BasicDepthPacking = 3200;
  const RGBADepthPacking = 3201;
  const TangentSpaceNormalMap = 0;
  const ObjectSpaceNormalMap = 1;
  const KeepStencilOp = 7680;
  const AlwaysStencilFunc = 519;

  const StaticDrawUsage = 35044;
  const DynamicDrawUsage = 35048;

  /**
   * https://github.com/mrdoob/eventdispatcher.js/
   */

  function EventDispatcher() {}

  Object.assign( EventDispatcher.prototype, {

  	addEventListener: function ( type, listener ) {

  		if ( this._listeners === undefined ) this._listeners = {};

  		const listeners = this._listeners;

  		if ( listeners[ type ] === undefined ) {

  			listeners[ type ] = [];

  		}

  		if ( listeners[ type ].indexOf( listener ) === - 1 ) {

  			listeners[ type ].push( listener );

  		}

  	},

  	hasEventListener: function ( type, listener ) {

  		if ( this._listeners === undefined ) return false;

  		const listeners = this._listeners;

  		return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;

  	},

  	removeEventListener: function ( type, listener ) {

  		if ( this._listeners === undefined ) return;

  		const listeners = this._listeners;
  		const listenerArray = listeners[ type ];

  		if ( listenerArray !== undefined ) {

  			const index = listenerArray.indexOf( listener );

  			if ( index !== - 1 ) {

  				listenerArray.splice( index, 1 );

  			}

  		}

  	},

  	dispatchEvent: function ( event ) {

  		if ( this._listeners === undefined ) return;

  		const listeners = this._listeners;
  		const listenerArray = listeners[ event.type ];

  		if ( listenerArray !== undefined ) {

  			event.target = this;

  			// Make a copy, in case listeners are removed while iterating.
  			const array = listenerArray.slice( 0 );

  			for ( let i = 0, l = array.length; i < l; i ++ ) {

  				array[ i ].call( this, event );

  			}

  		}

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author thezwap
   */

  const _lut = [];

  for ( let i = 0; i < 256; i ++ ) {

  	_lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 );

  }

  const MathUtils = {

  	DEG2RAD: Math.PI / 180,
  	RAD2DEG: 180 / Math.PI,

  	generateUUID: function () {

  		// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136

  		const d0 = Math.random() * 0xffffffff | 0;
  		const d1 = Math.random() * 0xffffffff | 0;
  		const d2 = Math.random() * 0xffffffff | 0;
  		const d3 = Math.random() * 0xffffffff | 0;
  		const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' +
  			_lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' +
  			_lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] +
  			_lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ];

  		// .toUpperCase() here flattens concatenated strings to save heap memory space.
  		return uuid.toUpperCase();

  	},

  	clamp: function ( value, min, max ) {

  		return Math.max( min, Math.min( max, value ) );

  	},

  	// compute euclidian modulo of m % n
  	// https://en.wikipedia.org/wiki/Modulo_operation

  	euclideanModulo: function ( n, m ) {

  		return ( ( n % m ) + m ) % m;

  	},

  	// Linear mapping from range <a1, a2> to range <b1, b2>

  	mapLinear: function ( x, a1, a2, b1, b2 ) {

  		return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );

  	},

  	// https://en.wikipedia.org/wiki/Linear_interpolation

  	lerp: function ( x, y, t ) {

  		return ( 1 - t ) * x + t * y;

  	},

  	// http://en.wikipedia.org/wiki/Smoothstep

  	smoothstep: function ( x, min, max ) {

  		if ( x <= min ) return 0;
  		if ( x >= max ) return 1;

  		x = ( x - min ) / ( max - min );

  		return x * x * ( 3 - 2 * x );

  	},

  	smootherstep: function ( x, min, max ) {

  		if ( x <= min ) return 0;
  		if ( x >= max ) return 1;

  		x = ( x - min ) / ( max - min );

  		return x * x * x * ( x * ( x * 6 - 15 ) + 10 );

  	},

  	// Random integer from <low, high> interval

  	randInt: function ( low, high ) {

  		return low + Math.floor( Math.random() * ( high - low + 1 ) );

  	},

  	// Random float from <low, high> interval

  	randFloat: function ( low, high ) {

  		return low + Math.random() * ( high - low );

  	},

  	// Random float from <-range/2, range/2> interval

  	randFloatSpread: function ( range ) {

  		return range * ( 0.5 - Math.random() );

  	},

  	degToRad: function ( degrees ) {

  		return degrees * MathUtils.DEG2RAD;

  	},

  	radToDeg: function ( radians ) {

  		return radians * MathUtils.RAD2DEG;

  	},

  	isPowerOfTwo: function ( value ) {

  		return ( value & ( value - 1 ) ) === 0 && value !== 0;

  	},

  	ceilPowerOfTwo: function ( value ) {

  		return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );

  	},

  	floorPowerOfTwo: function ( value ) {

  		return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );

  	},

  	setQuaternionFromProperEuler: function ( q, a, b, c, order ) {

  		// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles

  		// rotations are applied to the axes in the order specified by 'order'
  		// rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
  		// angles are in radians

  		const cos = Math.cos;
  		const sin = Math.sin;

  		const c2 = cos( b / 2 );
  		const s2 = sin( b / 2 );

  		const c13 = cos( ( a + c ) / 2 );
  		const s13 = sin( ( a + c ) / 2 );

  		const c1_3 = cos( ( a - c ) / 2 );
  		const s1_3 = sin( ( a - c ) / 2 );

  		const c3_1 = cos( ( c - a ) / 2 );
  		const s3_1 = sin( ( c - a ) / 2 );

  		switch ( order ) {

  			case 'XYX':
  				q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 );
  				break;

  			case 'YZY':
  				q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 );
  				break;

  			case 'ZXZ':
  				q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 );
  				break;

  			case 'XZX':
  				q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 );
  				break;

  			case 'YXY':
  				q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 );
  				break;

  			case 'ZYZ':
  				q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 );
  				break;

  			default:
  				console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order );

  		}

  	}

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author philogb / http://blog.thejit.org/
   * @author egraether / http://egraether.com/
   * @author zz85 / http://www.lab4games.net/zz85/blog
   */

  function Vector2( x = 0, y = 0 ) {

  	this.x = x;
  	this.y = y;

  }

  Object.defineProperties( Vector2.prototype, {

  	"width": {

  		get: function () {

  			return this.x;

  		},

  		set: function ( value ) {

  			this.x = value;

  		}

  	},

  	"height": {

  		get: function () {

  			return this.y;

  		},

  		set: function ( value ) {

  			this.y = value;

  		}

  	}

  } );

  Object.assign( Vector2.prototype, {

  	isVector2: true,

  	set: function ( x, y ) {

  		this.x = x;
  		this.y = y;

  		return this;

  	},

  	setScalar: function ( scalar ) {

  		this.x = scalar;
  		this.y = scalar;

  		return this;

  	},

  	setX: function ( x ) {

  		this.x = x;

  		return this;

  	},

  	setY: function ( y ) {

  		this.y = y;

  		return this;

  	},

  	setComponent: function ( index, value ) {

  		switch ( index ) {

  			case 0: this.x = value; break;
  			case 1: this.y = value; break;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  		return this;

  	},

  	getComponent: function ( index ) {

  		switch ( index ) {

  			case 0: return this.x;
  			case 1: return this.y;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  	},

  	clone: function () {

  		return new this.constructor( this.x, this.y );

  	},

  	copy: function ( v ) {

  		this.x = v.x;
  		this.y = v.y;

  		return this;

  	},

  	add: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
  			return this.addVectors( v, w );

  		}

  		this.x += v.x;
  		this.y += v.y;

  		return this;

  	},

  	addScalar: function ( s ) {

  		this.x += s;
  		this.y += s;

  		return this;

  	},

  	addVectors: function ( a, b ) {

  		this.x = a.x + b.x;
  		this.y = a.y + b.y;

  		return this;

  	},

  	addScaledVector: function ( v, s ) {

  		this.x += v.x * s;
  		this.y += v.y * s;

  		return this;

  	},

  	sub: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
  			return this.subVectors( v, w );

  		}

  		this.x -= v.x;
  		this.y -= v.y;

  		return this;

  	},

  	subScalar: function ( s ) {

  		this.x -= s;
  		this.y -= s;

  		return this;

  	},

  	subVectors: function ( a, b ) {

  		this.x = a.x - b.x;
  		this.y = a.y - b.y;

  		return this;

  	},

  	multiply: function ( v ) {

  		this.x *= v.x;
  		this.y *= v.y;

  		return this;

  	},

  	multiplyScalar: function ( scalar ) {

  		this.x *= scalar;
  		this.y *= scalar;

  		return this;

  	},

  	divide: function ( v ) {

  		this.x /= v.x;
  		this.y /= v.y;

  		return this;

  	},

  	divideScalar: function ( scalar ) {

  		return this.multiplyScalar( 1 / scalar );

  	},

  	applyMatrix3: function ( m ) {

  		const x = this.x, y = this.y;
  		const e = m.elements;

  		this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
  		this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];

  		return this;

  	},

  	min: function ( v ) {

  		this.x = Math.min( this.x, v.x );
  		this.y = Math.min( this.y, v.y );

  		return this;

  	},

  	max: function ( v ) {

  		this.x = Math.max( this.x, v.x );
  		this.y = Math.max( this.y, v.y );

  		return this;

  	},

  	clamp: function ( min, max ) {

  		// assumes min < max, componentwise

  		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
  		this.y = Math.max( min.y, Math.min( max.y, this.y ) );

  		return this;

  	},

  	clampScalar: function ( minVal, maxVal ) {

  		this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
  		this.y = Math.max( minVal, Math.min( maxVal, this.y ) );

  		return this;

  	},

  	clampLength: function ( min, max ) {

  		const length = this.length();

  		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

  	},

  	floor: function () {

  		this.x = Math.floor( this.x );
  		this.y = Math.floor( this.y );

  		return this;

  	},

  	ceil: function () {

  		this.x = Math.ceil( this.x );
  		this.y = Math.ceil( this.y );

  		return this;

  	},

  	round: function () {

  		this.x = Math.round( this.x );
  		this.y = Math.round( this.y );

  		return this;

  	},

  	roundToZero: function () {

  		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
  		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );

  		return this;

  	},

  	negate: function () {

  		this.x = - this.x;
  		this.y = - this.y;

  		return this;

  	},

  	dot: function ( v ) {

  		return this.x * v.x + this.y * v.y;

  	},

  	cross: function ( v ) {

  		return this.x * v.y - this.y * v.x;

  	},

  	lengthSq: function () {

  		return this.x * this.x + this.y * this.y;

  	},

  	length: function () {

  		return Math.sqrt( this.x * this.x + this.y * this.y );

  	},

  	manhattanLength: function () {

  		return Math.abs( this.x ) + Math.abs( this.y );

  	},

  	normalize: function () {

  		return this.divideScalar( this.length() || 1 );

  	},

  	angle: function () {

  		// computes the angle in radians with respect to the positive x-axis

  		const angle = Math.atan2( - this.y, - this.x ) + Math.PI;

  		return angle;

  	},

  	distanceTo: function ( v ) {

  		return Math.sqrt( this.distanceToSquared( v ) );

  	},

  	distanceToSquared: function ( v ) {

  		const dx = this.x - v.x, dy = this.y - v.y;
  		return dx * dx + dy * dy;

  	},

  	manhattanDistanceTo: function ( v ) {

  		return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );

  	},

  	setLength: function ( length ) {

  		return this.normalize().multiplyScalar( length );

  	},

  	lerp: function ( v, alpha ) {

  		this.x += ( v.x - this.x ) * alpha;
  		this.y += ( v.y - this.y ) * alpha;

  		return this;

  	},

  	lerpVectors: function ( v1, v2, alpha ) {

  		this.x = v1.x + ( v2.x - v1.x ) * alpha;
  		this.y = v1.y + ( v2.y - v1.y ) * alpha;

  		return this;

  	},

  	equals: function ( v ) {

  		return ( ( v.x === this.x ) && ( v.y === this.y ) );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.x = array[ offset ];
  		this.y = array[ offset + 1 ];

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this.x;
  		array[ offset + 1 ] = this.y;

  		return array;

  	},

  	fromBufferAttribute: function ( attribute, index, offset ) {

  		if ( offset !== undefined ) {

  			console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );

  		}

  		this.x = attribute.getX( index );
  		this.y = attribute.getY( index );

  		return this;

  	},

  	rotateAround: function ( center, angle ) {

  		const c = Math.cos( angle ), s = Math.sin( angle );

  		const x = this.x - center.x;
  		const y = this.y - center.y;

  		this.x = x * c - y * s + center.x;
  		this.y = x * s + y * c + center.y;

  		return this;

  	},

  	random: function () {

  		this.x = Math.random();
  		this.y = Math.random();

  		return this;

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author bhouston / http://clara.io
   * @author tschw
   */

  function Matrix3() {

  	this.elements = [

  		1, 0, 0,
  		0, 1, 0,
  		0, 0, 1

  	];

  	if ( arguments.length > 0 ) {

  		console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );

  	}

  }

  Object.assign( Matrix3.prototype, {

  	isMatrix3: true,

  	set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {

  		const te = this.elements;

  		te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
  		te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
  		te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;

  		return this;

  	},

  	identity: function () {

  		this.set(

  			1, 0, 0,
  			0, 1, 0,
  			0, 0, 1

  		);

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().fromArray( this.elements );

  	},

  	copy: function ( m ) {

  		const te = this.elements;
  		const me = m.elements;

  		te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
  		te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
  		te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];

  		return this;

  	},

  	extractBasis: function ( xAxis, yAxis, zAxis ) {

  		xAxis.setFromMatrix3Column( this, 0 );
  		yAxis.setFromMatrix3Column( this, 1 );
  		zAxis.setFromMatrix3Column( this, 2 );

  		return this;

  	},

  	setFromMatrix4: function ( m ) {

  		const me = m.elements;

  		this.set(

  			me[ 0 ], me[ 4 ], me[ 8 ],
  			me[ 1 ], me[ 5 ], me[ 9 ],
  			me[ 2 ], me[ 6 ], me[ 10 ]

  		);

  		return this;

  	},

  	multiply: function ( m ) {

  		return this.multiplyMatrices( this, m );

  	},

  	premultiply: function ( m ) {

  		return this.multiplyMatrices( m, this );

  	},

  	multiplyMatrices: function ( a, b ) {

  		const ae = a.elements;
  		const be = b.elements;
  		const te = this.elements;

  		const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
  		const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
  		const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];

  		const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
  		const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
  		const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];

  		te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
  		te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
  		te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;

  		te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
  		te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
  		te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;

  		te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
  		te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
  		te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;

  		return this;

  	},

  	multiplyScalar: function ( s ) {

  		const te = this.elements;

  		te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
  		te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
  		te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;

  		return this;

  	},

  	determinant: function () {

  		const te = this.elements;

  		const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
  			d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
  			g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];

  		return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;

  	},

  	getInverse: function ( matrix, throwOnDegenerate ) {

  		if ( throwOnDegenerate !== undefined ) {

  			console.warn( "THREE.Matrix3: .getInverse() can no longer be configured to throw on degenerate." );

  		}

  		const me = matrix.elements,
  			te = this.elements,

  			n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
  			n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
  			n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],

  			t11 = n33 * n22 - n32 * n23,
  			t12 = n32 * n13 - n33 * n12,
  			t13 = n23 * n12 - n22 * n13,

  			det = n11 * t11 + n21 * t12 + n31 * t13;

  		if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 );

  		const detInv = 1 / det;

  		te[ 0 ] = t11 * detInv;
  		te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
  		te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;

  		te[ 3 ] = t12 * detInv;
  		te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
  		te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;

  		te[ 6 ] = t13 * detInv;
  		te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
  		te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;

  		return this;

  	},

  	transpose: function () {

  		let tmp;
  		const m = this.elements;

  		tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
  		tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
  		tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;

  		return this;

  	},

  	getNormalMatrix: function ( matrix4 ) {

  		return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();

  	},

  	transposeIntoArray: function ( r ) {

  		const m = this.elements;

  		r[ 0 ] = m[ 0 ];
  		r[ 1 ] = m[ 3 ];
  		r[ 2 ] = m[ 6 ];
  		r[ 3 ] = m[ 1 ];
  		r[ 4 ] = m[ 4 ];
  		r[ 5 ] = m[ 7 ];
  		r[ 6 ] = m[ 2 ];
  		r[ 7 ] = m[ 5 ];
  		r[ 8 ] = m[ 8 ];

  		return this;

  	},

  	setUvTransform: function ( tx, ty, sx, sy, rotation, cx, cy ) {

  		const c = Math.cos( rotation );
  		const s = Math.sin( rotation );

  		this.set(
  			sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,
  			- sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,
  			0, 0, 1
  		);

  	},

  	scale: function ( sx, sy ) {

  		const te = this.elements;

  		te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx;
  		te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy;

  		return this;

  	},

  	rotate: function ( theta ) {

  		const c = Math.cos( theta );
  		const s = Math.sin( theta );

  		const te = this.elements;

  		const a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ];
  		const a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ];

  		te[ 0 ] = c * a11 + s * a21;
  		te[ 3 ] = c * a12 + s * a22;
  		te[ 6 ] = c * a13 + s * a23;

  		te[ 1 ] = - s * a11 + c * a21;
  		te[ 4 ] = - s * a12 + c * a22;
  		te[ 7 ] = - s * a13 + c * a23;

  		return this;

  	},

  	translate: function ( tx, ty ) {

  		const te = this.elements;

  		te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ];
  		te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ];

  		return this;

  	},

  	equals: function ( matrix ) {

  		const te = this.elements;
  		const me = matrix.elements;

  		for ( let i = 0; i < 9; i ++ ) {

  			if ( te[ i ] !== me[ i ] ) return false;

  		}

  		return true;

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		for ( let i = 0; i < 9; i ++ ) {

  			this.elements[ i ] = array[ i + offset ];

  		}

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		const te = this.elements;

  		array[ offset ] = te[ 0 ];
  		array[ offset + 1 ] = te[ 1 ];
  		array[ offset + 2 ] = te[ 2 ];

  		array[ offset + 3 ] = te[ 3 ];
  		array[ offset + 4 ] = te[ 4 ];
  		array[ offset + 5 ] = te[ 5 ];

  		array[ offset + 6 ] = te[ 6 ];
  		array[ offset + 7 ] = te[ 7 ];
  		array[ offset + 8 ] = te[ 8 ];

  		return array;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author szimek / https://github.com/szimek/
   */

  let _canvas;

  const ImageUtils = {

  	getDataURL: function ( image ) {

  		if ( /^data:/i.test( image.src ) ) {

  			return image.src;

  		}

  		if ( typeof HTMLCanvasElement == 'undefined' ) {

  			return image.src;

  		}

  		let canvas;

  		if ( image instanceof HTMLCanvasElement ) {

  			canvas = image;

  		} else {

  			if ( _canvas === undefined ) _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );

  			_canvas.width = image.width;
  			_canvas.height = image.height;

  			const context = _canvas.getContext( '2d' );

  			if ( image instanceof ImageData ) {

  				context.putImageData( image, 0, 0 );

  			} else {

  				context.drawImage( image, 0, 0, image.width, image.height );

  			}

  			canvas = _canvas;

  		}

  		if ( canvas.width > 2048 || canvas.height > 2048 ) {

  			return canvas.toDataURL( 'image/jpeg', 0.6 );

  		} else {

  			return canvas.toDataURL( 'image/png' );

  		}

  	}

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author szimek / https://github.com/szimek/
   */

  let textureId = 0;

  function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

  	Object.defineProperty( this, 'id', { value: textureId ++ } );

  	this.uuid = MathUtils.generateUUID();

  	this.name = '';

  	this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;
  	this.mipmaps = [];

  	this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;

  	this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;
  	this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;

  	this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
  	this.minFilter = minFilter !== undefined ? minFilter : LinearMipmapLinearFilter;

  	this.anisotropy = anisotropy !== undefined ? anisotropy : 1;

  	this.format = format !== undefined ? format : RGBAFormat;
  	this.internalFormat = null;
  	this.type = type !== undefined ? type : UnsignedByteType;

  	this.offset = new Vector2( 0, 0 );
  	this.repeat = new Vector2( 1, 1 );
  	this.center = new Vector2( 0, 0 );
  	this.rotation = 0;

  	this.matrixAutoUpdate = true;
  	this.matrix = new Matrix3();

  	this.generateMipmaps = true;
  	this.premultiplyAlpha = false;
  	this.flipY = true;
  	this.unpackAlignment = 4;	// valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)

  	// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
  	//
  	// Also changing the encoding after already used by a Material will not automatically make the Material
  	// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
  	this.encoding = encoding !== undefined ? encoding : LinearEncoding;

  	this.version = 0;
  	this.onUpdate = null;

  }

  Texture.DEFAULT_IMAGE = undefined;
  Texture.DEFAULT_MAPPING = UVMapping;

  Texture.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: Texture,

  	isTexture: true,

  	updateMatrix: function () {

  		this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.name = source.name;

  		this.image = source.image;
  		this.mipmaps = source.mipmaps.slice( 0 );

  		this.mapping = source.mapping;

  		this.wrapS = source.wrapS;
  		this.wrapT = source.wrapT;

  		this.magFilter = source.magFilter;
  		this.minFilter = source.minFilter;

  		this.anisotropy = source.anisotropy;

  		this.format = source.format;
  		this.internalFormat = source.internalFormat;
  		this.type = source.type;

  		this.offset.copy( source.offset );
  		this.repeat.copy( source.repeat );
  		this.center.copy( source.center );
  		this.rotation = source.rotation;

  		this.matrixAutoUpdate = source.matrixAutoUpdate;
  		this.matrix.copy( source.matrix );

  		this.generateMipmaps = source.generateMipmaps;
  		this.premultiplyAlpha = source.premultiplyAlpha;
  		this.flipY = source.flipY;
  		this.unpackAlignment = source.unpackAlignment;
  		this.encoding = source.encoding;

  		return this;

  	},

  	toJSON: function ( meta ) {

  		const isRootObject = ( meta === undefined || typeof meta === 'string' );

  		if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {

  			return meta.textures[ this.uuid ];

  		}

  		const output = {

  			metadata: {
  				version: 4.5,
  				type: 'Texture',
  				generator: 'Texture.toJSON'
  			},

  			uuid: this.uuid,
  			name: this.name,

  			mapping: this.mapping,

  			repeat: [ this.repeat.x, this.repeat.y ],
  			offset: [ this.offset.x, this.offset.y ],
  			center: [ this.center.x, this.center.y ],
  			rotation: this.rotation,

  			wrap: [ this.wrapS, this.wrapT ],

  			format: this.format,
  			type: this.type,
  			encoding: this.encoding,

  			minFilter: this.minFilter,
  			magFilter: this.magFilter,
  			anisotropy: this.anisotropy,

  			flipY: this.flipY,

  			premultiplyAlpha: this.premultiplyAlpha,
  			unpackAlignment: this.unpackAlignment

  		};

  		if ( this.image !== undefined ) {

  			// TODO: Move to THREE.Image

  			const image = this.image;

  			if ( image.uuid === undefined ) {

  				image.uuid = MathUtils.generateUUID(); // UGH

  			}

  			if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) {

  				let url;

  				if ( Array.isArray( image ) ) {

  					// process array of images e.g. CubeTexture

  					url = [];

  					for ( let i = 0, l = image.length; i < l; i ++ ) {

  						url.push( ImageUtils.getDataURL( image[ i ] ) );

  					}

  				} else {

  					// process single image

  					url = ImageUtils.getDataURL( image );

  				}

  				meta.images[ image.uuid ] = {
  					uuid: image.uuid,
  					url: url
  				};

  			}

  			output.image = image.uuid;

  		}

  		if ( ! isRootObject ) {

  			meta.textures[ this.uuid ] = output;

  		}

  		return output;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	},

  	transformUv: function ( uv ) {

  		if ( this.mapping !== UVMapping ) return uv;

  		uv.applyMatrix3( this.matrix );

  		if ( uv.x < 0 || uv.x > 1 ) {

  			switch ( this.wrapS ) {

  				case RepeatWrapping:

  					uv.x = uv.x - Math.floor( uv.x );
  					break;

  				case ClampToEdgeWrapping:

  					uv.x = uv.x < 0 ? 0 : 1;
  					break;

  				case MirroredRepeatWrapping:

  					if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {

  						uv.x = Math.ceil( uv.x ) - uv.x;

  					} else {

  						uv.x = uv.x - Math.floor( uv.x );

  					}

  					break;

  			}

  		}

  		if ( uv.y < 0 || uv.y > 1 ) {

  			switch ( this.wrapT ) {

  				case RepeatWrapping:

  					uv.y = uv.y - Math.floor( uv.y );
  					break;

  				case ClampToEdgeWrapping:

  					uv.y = uv.y < 0 ? 0 : 1;
  					break;

  				case MirroredRepeatWrapping:

  					if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {

  						uv.y = Math.ceil( uv.y ) - uv.y;

  					} else {

  						uv.y = uv.y - Math.floor( uv.y );

  					}

  					break;

  			}

  		}

  		if ( this.flipY ) {

  			uv.y = 1 - uv.y;

  		}

  		return uv;

  	}

  } );

  Object.defineProperty( Texture.prototype, "needsUpdate", {

  	set: function ( value ) {

  		if ( value === true ) this.version ++;

  	}

  } );

  /**
   * @author supereggbert / http://www.paulbrunt.co.uk/
   * @author philogb / http://blog.thejit.org/
   * @author mikael emtinger / http://gomo.se/
   * @author egraether / http://egraether.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  function Vector4( x = 0, y = 0, z = 0, w = 1 ) {

  	this.x = x;
  	this.y = y;
  	this.z = z;
  	this.w = w;

  }

  Object.defineProperties( Vector4.prototype, {

  	"width": {

  		get: function () {

  			return this.z;

  		},

  		set: function ( value ) {

  			this.z = value;

  		}

  	},

  	"height": {

  		get: function () {

  			return this.w;

  		},

  		set: function ( value ) {

  			this.w = value;

  		}

  	}

  } );

  Object.assign( Vector4.prototype, {

  	isVector4: true,

  	set: function ( x, y, z, w ) {

  		this.x = x;
  		this.y = y;
  		this.z = z;
  		this.w = w;

  		return this;

  	},

  	setScalar: function ( scalar ) {

  		this.x = scalar;
  		this.y = scalar;
  		this.z = scalar;
  		this.w = scalar;

  		return this;

  	},

  	setX: function ( x ) {

  		this.x = x;

  		return this;

  	},

  	setY: function ( y ) {

  		this.y = y;

  		return this;

  	},

  	setZ: function ( z ) {

  		this.z = z;

  		return this;

  	},

  	setW: function ( w ) {

  		this.w = w;

  		return this;

  	},

  	setComponent: function ( index, value ) {

  		switch ( index ) {

  			case 0: this.x = value; break;
  			case 1: this.y = value; break;
  			case 2: this.z = value; break;
  			case 3: this.w = value; break;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  		return this;

  	},

  	getComponent: function ( index ) {

  		switch ( index ) {

  			case 0: return this.x;
  			case 1: return this.y;
  			case 2: return this.z;
  			case 3: return this.w;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  	},

  	clone: function () {

  		return new this.constructor( this.x, this.y, this.z, this.w );

  	},

  	copy: function ( v ) {

  		this.x = v.x;
  		this.y = v.y;
  		this.z = v.z;
  		this.w = ( v.w !== undefined ) ? v.w : 1;

  		return this;

  	},

  	add: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
  			return this.addVectors( v, w );

  		}

  		this.x += v.x;
  		this.y += v.y;
  		this.z += v.z;
  		this.w += v.w;

  		return this;

  	},

  	addScalar: function ( s ) {

  		this.x += s;
  		this.y += s;
  		this.z += s;
  		this.w += s;

  		return this;

  	},

  	addVectors: function ( a, b ) {

  		this.x = a.x + b.x;
  		this.y = a.y + b.y;
  		this.z = a.z + b.z;
  		this.w = a.w + b.w;

  		return this;

  	},

  	addScaledVector: function ( v, s ) {

  		this.x += v.x * s;
  		this.y += v.y * s;
  		this.z += v.z * s;
  		this.w += v.w * s;

  		return this;

  	},

  	sub: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
  			return this.subVectors( v, w );

  		}

  		this.x -= v.x;
  		this.y -= v.y;
  		this.z -= v.z;
  		this.w -= v.w;

  		return this;

  	},

  	subScalar: function ( s ) {

  		this.x -= s;
  		this.y -= s;
  		this.z -= s;
  		this.w -= s;

  		return this;

  	},

  	subVectors: function ( a, b ) {

  		this.x = a.x - b.x;
  		this.y = a.y - b.y;
  		this.z = a.z - b.z;
  		this.w = a.w - b.w;

  		return this;

  	},

  	multiplyScalar: function ( scalar ) {

  		this.x *= scalar;
  		this.y *= scalar;
  		this.z *= scalar;
  		this.w *= scalar;

  		return this;

  	},

  	applyMatrix4: function ( m ) {

  		const x = this.x, y = this.y, z = this.z, w = this.w;
  		const e = m.elements;

  		this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
  		this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
  		this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
  		this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;

  		return this;

  	},

  	divideScalar: function ( scalar ) {

  		return this.multiplyScalar( 1 / scalar );

  	},

  	setAxisAngleFromQuaternion: function ( q ) {

  		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm

  		// q is assumed to be normalized

  		this.w = 2 * Math.acos( q.w );

  		const s = Math.sqrt( 1 - q.w * q.w );

  		if ( s < 0.0001 ) {

  			this.x = 1;
  			this.y = 0;
  			this.z = 0;

  		} else {

  			this.x = q.x / s;
  			this.y = q.y / s;
  			this.z = q.z / s;

  		}

  		return this;

  	},

  	setAxisAngleFromRotationMatrix: function ( m ) {

  		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm

  		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

  		let angle, x, y, z; // variables for result
  		const epsilon = 0.01,		// margin to allow for rounding errors
  			epsilon2 = 0.1,		// margin to distinguish between 0 and 180 degrees

  			te = m.elements,

  			m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
  			m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
  			m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

  		if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
  		     ( Math.abs( m13 - m31 ) < epsilon ) &&
  		     ( Math.abs( m23 - m32 ) < epsilon ) ) {

  			// singularity found
  			// first check for identity matrix which must have +1 for all terms
  			// in leading diagonal and zero in other terms

  			if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
  			     ( Math.abs( m13 + m31 ) < epsilon2 ) &&
  			     ( Math.abs( m23 + m32 ) < epsilon2 ) &&
  			     ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {

  				// this singularity is identity matrix so angle = 0

  				this.set( 1, 0, 0, 0 );

  				return this; // zero angle, arbitrary axis

  			}

  			// otherwise this singularity is angle = 180

  			angle = Math.PI;

  			const xx = ( m11 + 1 ) / 2;
  			const yy = ( m22 + 1 ) / 2;
  			const zz = ( m33 + 1 ) / 2;
  			const xy = ( m12 + m21 ) / 4;
  			const xz = ( m13 + m31 ) / 4;
  			const yz = ( m23 + m32 ) / 4;

  			if ( ( xx > yy ) && ( xx > zz ) ) {

  				// m11 is the largest diagonal term

  				if ( xx < epsilon ) {

  					x = 0;
  					y = 0.707106781;
  					z = 0.707106781;

  				} else {

  					x = Math.sqrt( xx );
  					y = xy / x;
  					z = xz / x;

  				}

  			} else if ( yy > zz ) {

  				// m22 is the largest diagonal term

  				if ( yy < epsilon ) {

  					x = 0.707106781;
  					y = 0;
  					z = 0.707106781;

  				} else {

  					y = Math.sqrt( yy );
  					x = xy / y;
  					z = yz / y;

  				}

  			} else {

  				// m33 is the largest diagonal term so base result on this

  				if ( zz < epsilon ) {

  					x = 0.707106781;
  					y = 0.707106781;
  					z = 0;

  				} else {

  					z = Math.sqrt( zz );
  					x = xz / z;
  					y = yz / z;

  				}

  			}

  			this.set( x, y, z, angle );

  			return this; // return 180 deg rotation

  		}

  		// as we have reached here there are no singularities so we can handle normally

  		let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
  			( m13 - m31 ) * ( m13 - m31 ) +
  			( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize

  		if ( Math.abs( s ) < 0.001 ) s = 1;

  		// prevent divide by zero, should not happen if matrix is orthogonal and should be
  		// caught by singularity test above, but I've left it in just in case

  		this.x = ( m32 - m23 ) / s;
  		this.y = ( m13 - m31 ) / s;
  		this.z = ( m21 - m12 ) / s;
  		this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );

  		return this;

  	},

  	min: function ( v ) {

  		this.x = Math.min( this.x, v.x );
  		this.y = Math.min( this.y, v.y );
  		this.z = Math.min( this.z, v.z );
  		this.w = Math.min( this.w, v.w );

  		return this;

  	},

  	max: function ( v ) {

  		this.x = Math.max( this.x, v.x );
  		this.y = Math.max( this.y, v.y );
  		this.z = Math.max( this.z, v.z );
  		this.w = Math.max( this.w, v.w );

  		return this;

  	},

  	clamp: function ( min, max ) {

  		// assumes min < max, componentwise

  		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
  		this.y = Math.max( min.y, Math.min( max.y, this.y ) );
  		this.z = Math.max( min.z, Math.min( max.z, this.z ) );
  		this.w = Math.max( min.w, Math.min( max.w, this.w ) );

  		return this;

  	},

  	clampScalar: function ( minVal, maxVal ) {

  		this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
  		this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
  		this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
  		this.w = Math.max( minVal, Math.min( maxVal, this.w ) );

  		return this;

  	},

  	clampLength: function ( min, max ) {

  		const length = this.length();

  		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

  	},

  	floor: function () {

  		this.x = Math.floor( this.x );
  		this.y = Math.floor( this.y );
  		this.z = Math.floor( this.z );
  		this.w = Math.floor( this.w );

  		return this;

  	},

  	ceil: function () {

  		this.x = Math.ceil( this.x );
  		this.y = Math.ceil( this.y );
  		this.z = Math.ceil( this.z );
  		this.w = Math.ceil( this.w );

  		return this;

  	},

  	round: function () {

  		this.x = Math.round( this.x );
  		this.y = Math.round( this.y );
  		this.z = Math.round( this.z );
  		this.w = Math.round( this.w );

  		return this;

  	},

  	roundToZero: function () {

  		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
  		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
  		this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
  		this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );

  		return this;

  	},

  	negate: function () {

  		this.x = - this.x;
  		this.y = - this.y;
  		this.z = - this.z;
  		this.w = - this.w;

  		return this;

  	},

  	dot: function ( v ) {

  		return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;

  	},

  	lengthSq: function () {

  		return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;

  	},

  	length: function () {

  		return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );

  	},

  	manhattanLength: function () {

  		return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );

  	},

  	normalize: function () {

  		return this.divideScalar( this.length() || 1 );

  	},

  	setLength: function ( length ) {

  		return this.normalize().multiplyScalar( length );

  	},

  	lerp: function ( v, alpha ) {

  		this.x += ( v.x - this.x ) * alpha;
  		this.y += ( v.y - this.y ) * alpha;
  		this.z += ( v.z - this.z ) * alpha;
  		this.w += ( v.w - this.w ) * alpha;

  		return this;

  	},

  	lerpVectors: function ( v1, v2, alpha ) {

  		this.x = v1.x + ( v2.x - v1.x ) * alpha;
  		this.y = v1.y + ( v2.y - v1.y ) * alpha;
  		this.z = v1.z + ( v2.z - v1.z ) * alpha;
  		this.w = v1.w + ( v2.w - v1.w ) * alpha;

  		return this;

  	},

  	equals: function ( v ) {

  		return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.x = array[ offset ];
  		this.y = array[ offset + 1 ];
  		this.z = array[ offset + 2 ];
  		this.w = array[ offset + 3 ];

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this.x;
  		array[ offset + 1 ] = this.y;
  		array[ offset + 2 ] = this.z;
  		array[ offset + 3 ] = this.w;

  		return array;

  	},

  	fromBufferAttribute: function ( attribute, index, offset ) {

  		if ( offset !== undefined ) {

  			console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );

  		}

  		this.x = attribute.getX( index );
  		this.y = attribute.getY( index );
  		this.z = attribute.getZ( index );
  		this.w = attribute.getW( index );

  		return this;

  	},

  	random: function () {

  		this.x = Math.random();
  		this.y = Math.random();
  		this.z = Math.random();
  		this.w = Math.random();

  		return this;

  	}

  } );

  /**
   * @author szimek / https://github.com/szimek/
   * @author alteredq / http://alteredqualia.com/
   * @author Marius Kintel / https://github.com/kintel
   */

  /*
   In options, we can specify:
   * Texture parameters for an auto-generated target texture
   * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
  */
  function WebGLRenderTarget( width, height, options ) {

  	this.width = width;
  	this.height = height;

  	this.scissor = new Vector4( 0, 0, width, height );
  	this.scissorTest = false;

  	this.viewport = new Vector4( 0, 0, width, height );

  	options = options || {};

  	this.texture = new Texture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );

  	this.texture.image = {};
  	this.texture.image.width = width;
  	this.texture.image.height = height;

  	this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
  	this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;

  	this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
  	this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
  	this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;

  }

  WebGLRenderTarget.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: WebGLRenderTarget,

  	isWebGLRenderTarget: true,

  	setSize: function ( width, height ) {

  		if ( this.width !== width || this.height !== height ) {

  			this.width = width;
  			this.height = height;

  			this.texture.image.width = width;
  			this.texture.image.height = height;

  			this.dispose();

  		}

  		this.viewport.set( 0, 0, width, height );
  		this.scissor.set( 0, 0, width, height );

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.width = source.width;
  		this.height = source.height;

  		this.viewport.copy( source.viewport );

  		this.texture = source.texture.clone();

  		this.depthBuffer = source.depthBuffer;
  		this.stencilBuffer = source.stencilBuffer;
  		this.depthTexture = source.depthTexture;

  		return this;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	}

  } );

  /**
   * @author Mugen87 / https://github.com/Mugen87
   * @author Matt DesLauriers / @mattdesl
   */

  function WebGLMultisampleRenderTarget( width, height, options ) {

  	WebGLRenderTarget.call( this, width, height, options );

  	this.samples = 4;

  }

  WebGLMultisampleRenderTarget.prototype = Object.assign( Object.create( WebGLRenderTarget.prototype ), {

  	constructor: WebGLMultisampleRenderTarget,

  	isWebGLMultisampleRenderTarget: true,

  	copy: function ( source ) {

  		WebGLRenderTarget.prototype.copy.call( this, source );

  		this.samples = source.samples;

  		return this;

  	}

  } );

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author bhouston / http://clara.io
   */

  function Quaternion( x = 0, y = 0, z = 0, w = 1 ) {

  	this._x = x;
  	this._y = y;
  	this._z = z;
  	this._w = w;

  }

  Object.assign( Quaternion, {

  	slerp: function ( qa, qb, qm, t ) {

  		return qm.copy( qa ).slerp( qb, t );

  	},

  	slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {

  		// fuzz-free, array-based Quaternion SLERP operation

  		let x0 = src0[ srcOffset0 + 0 ],
  			y0 = src0[ srcOffset0 + 1 ],
  			z0 = src0[ srcOffset0 + 2 ],
  			w0 = src0[ srcOffset0 + 3 ];

  		const x1 = src1[ srcOffset1 + 0 ],
  			y1 = src1[ srcOffset1 + 1 ],
  			z1 = src1[ srcOffset1 + 2 ],
  			w1 = src1[ srcOffset1 + 3 ];

  		if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {

  			let s = 1 - t,

  				cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,

  				dir = ( cos >= 0 ? 1 : - 1 ),
  				sqrSin = 1 - cos * cos;

  			// Skip the Slerp for tiny steps to avoid numeric problems:
  			if ( sqrSin > Number.EPSILON ) {

  				const sin = Math.sqrt( sqrSin ),
  					len = Math.atan2( sin, cos * dir );

  				s = Math.sin( s * len ) / sin;
  				t = Math.sin( t * len ) / sin;

  			}

  			const tDir = t * dir;

  			x0 = x0 * s + x1 * tDir;
  			y0 = y0 * s + y1 * tDir;
  			z0 = z0 * s + z1 * tDir;
  			w0 = w0 * s + w1 * tDir;

  			// Normalize in case we just did a lerp:
  			if ( s === 1 - t ) {

  				const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );

  				x0 *= f;
  				y0 *= f;
  				z0 *= f;
  				w0 *= f;

  			}

  		}

  		dst[ dstOffset ] = x0;
  		dst[ dstOffset + 1 ] = y0;
  		dst[ dstOffset + 2 ] = z0;
  		dst[ dstOffset + 3 ] = w0;

  	},

  	multiplyQuaternionsFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) {

  		const x0 = src0[ srcOffset0 ];
  		const y0 = src0[ srcOffset0 + 1 ];
  		const z0 = src0[ srcOffset0 + 2 ];
  		const w0 = src0[ srcOffset0 + 3 ];

  		const x1 = src1[ srcOffset1 ];
  		const y1 = src1[ srcOffset1 + 1 ];
  		const z1 = src1[ srcOffset1 + 2 ];
  		const w1 = src1[ srcOffset1 + 3 ];

  		dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
  		dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
  		dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
  		dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;

  		return dst;

  	}

  } );

  Object.defineProperties( Quaternion.prototype, {

  	x: {

  		get: function () {

  			return this._x;

  		},

  		set: function ( value ) {

  			this._x = value;
  			this._onChangeCallback();

  		}

  	},

  	y: {

  		get: function () {

  			return this._y;

  		},

  		set: function ( value ) {

  			this._y = value;
  			this._onChangeCallback();

  		}

  	},

  	z: {

  		get: function () {

  			return this._z;

  		},

  		set: function ( value ) {

  			this._z = value;
  			this._onChangeCallback();

  		}

  	},

  	w: {

  		get: function () {

  			return this._w;

  		},

  		set: function ( value ) {

  			this._w = value;
  			this._onChangeCallback();

  		}

  	}

  } );

  Object.assign( Quaternion.prototype, {

  	isQuaternion: true,

  	set: function ( x, y, z, w ) {

  		this._x = x;
  		this._y = y;
  		this._z = z;
  		this._w = w;

  		this._onChangeCallback();

  		return this;

  	},

  	clone: function () {

  		return new this.constructor( this._x, this._y, this._z, this._w );

  	},

  	copy: function ( quaternion ) {

  		this._x = quaternion.x;
  		this._y = quaternion.y;
  		this._z = quaternion.z;
  		this._w = quaternion.w;

  		this._onChangeCallback();

  		return this;

  	},

  	setFromEuler: function ( euler, update ) {

  		if ( ! ( euler && euler.isEuler ) ) {

  			throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );

  		}

  		const x = euler._x, y = euler._y, z = euler._z, order = euler.order;

  		// http://www.mathworks.com/matlabcentral/fileexchange/
  		// 	20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
  		//	content/SpinCalc.m

  		const cos = Math.cos;
  		const sin = Math.sin;

  		const c1 = cos( x / 2 );
  		const c2 = cos( y / 2 );
  		const c3 = cos( z / 2 );

  		const s1 = sin( x / 2 );
  		const s2 = sin( y / 2 );
  		const s3 = sin( z / 2 );

  		switch ( order ) {

  			case 'XYZ':
  				this._x = s1 * c2 * c3 + c1 * s2 * s3;
  				this._y = c1 * s2 * c3 - s1 * c2 * s3;
  				this._z = c1 * c2 * s3 + s1 * s2 * c3;
  				this._w = c1 * c2 * c3 - s1 * s2 * s3;
  				break;

  			case 'YXZ':
  				this._x = s1 * c2 * c3 + c1 * s2 * s3;
  				this._y = c1 * s2 * c3 - s1 * c2 * s3;
  				this._z = c1 * c2 * s3 - s1 * s2 * c3;
  				this._w = c1 * c2 * c3 + s1 * s2 * s3;
  				break;

  			case 'ZXY':
  				this._x = s1 * c2 * c3 - c1 * s2 * s3;
  				this._y = c1 * s2 * c3 + s1 * c2 * s3;
  				this._z = c1 * c2 * s3 + s1 * s2 * c3;
  				this._w = c1 * c2 * c3 - s1 * s2 * s3;
  				break;

  			case 'ZYX':
  				this._x = s1 * c2 * c3 - c1 * s2 * s3;
  				this._y = c1 * s2 * c3 + s1 * c2 * s3;
  				this._z = c1 * c2 * s3 - s1 * s2 * c3;
  				this._w = c1 * c2 * c3 + s1 * s2 * s3;
  				break;

  			case 'YZX':
  				this._x = s1 * c2 * c3 + c1 * s2 * s3;
  				this._y = c1 * s2 * c3 + s1 * c2 * s3;
  				this._z = c1 * c2 * s3 - s1 * s2 * c3;
  				this._w = c1 * c2 * c3 - s1 * s2 * s3;
  				break;

  			case 'XZY':
  				this._x = s1 * c2 * c3 - c1 * s2 * s3;
  				this._y = c1 * s2 * c3 - s1 * c2 * s3;
  				this._z = c1 * c2 * s3 + s1 * s2 * c3;
  				this._w = c1 * c2 * c3 + s1 * s2 * s3;
  				break;

  			default:
  				console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order );

  		}

  		if ( update !== false ) this._onChangeCallback();

  		return this;

  	},

  	setFromAxisAngle: function ( axis, angle ) {

  		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm

  		// assumes axis is normalized

  		const halfAngle = angle / 2, s = Math.sin( halfAngle );

  		this._x = axis.x * s;
  		this._y = axis.y * s;
  		this._z = axis.z * s;
  		this._w = Math.cos( halfAngle );

  		this._onChangeCallback();

  		return this;

  	},

  	setFromRotationMatrix: function ( m ) {

  		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

  		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

  		const te = m.elements,

  			m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
  			m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
  			m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],

  			trace = m11 + m22 + m33;

  		if ( trace > 0 ) {

  			const s = 0.5 / Math.sqrt( trace + 1.0 );

  			this._w = 0.25 / s;
  			this._x = ( m32 - m23 ) * s;
  			this._y = ( m13 - m31 ) * s;
  			this._z = ( m21 - m12 ) * s;

  		} else if ( m11 > m22 && m11 > m33 ) {

  			const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );

  			this._w = ( m32 - m23 ) / s;
  			this._x = 0.25 * s;
  			this._y = ( m12 + m21 ) / s;
  			this._z = ( m13 + m31 ) / s;

  		} else if ( m22 > m33 ) {

  			const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );

  			this._w = ( m13 - m31 ) / s;
  			this._x = ( m12 + m21 ) / s;
  			this._y = 0.25 * s;
  			this._z = ( m23 + m32 ) / s;

  		} else {

  			const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );

  			this._w = ( m21 - m12 ) / s;
  			this._x = ( m13 + m31 ) / s;
  			this._y = ( m23 + m32 ) / s;
  			this._z = 0.25 * s;

  		}

  		this._onChangeCallback();

  		return this;

  	},

  	setFromUnitVectors: function ( vFrom, vTo ) {

  		// assumes direction vectors vFrom and vTo are normalized

  		const EPS = 0.000001;

  		let r = vFrom.dot( vTo ) + 1;

  		if ( r < EPS ) {

  			r = 0;

  			if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {

  				this._x = - vFrom.y;
  				this._y = vFrom.x;
  				this._z = 0;
  				this._w = r;

  			} else {

  				this._x = 0;
  				this._y = - vFrom.z;
  				this._z = vFrom.y;
  				this._w = r;

  			}

  		} else {

  			// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3

  			this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
  			this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
  			this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
  			this._w = r;

  		}

  		return this.normalize();

  	},

  	angleTo: function ( q ) {

  		return 2 * Math.acos( Math.abs( MathUtils.clamp( this.dot( q ), - 1, 1 ) ) );

  	},

  	rotateTowards: function ( q, step ) {

  		const angle = this.angleTo( q );

  		if ( angle === 0 ) return this;

  		const t = Math.min( 1, step / angle );

  		this.slerp( q, t );

  		return this;

  	},

  	inverse: function () {

  		// quaternion is assumed to have unit length

  		return this.conjugate();

  	},

  	conjugate: function () {

  		this._x *= - 1;
  		this._y *= - 1;
  		this._z *= - 1;

  		this._onChangeCallback();

  		return this;

  	},

  	dot: function ( v ) {

  		return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;

  	},

  	lengthSq: function () {

  		return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;

  	},

  	length: function () {

  		return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );

  	},

  	normalize: function () {

  		let l = this.length();

  		if ( l === 0 ) {

  			this._x = 0;
  			this._y = 0;
  			this._z = 0;
  			this._w = 1;

  		} else {

  			l = 1 / l;

  			this._x = this._x * l;
  			this._y = this._y * l;
  			this._z = this._z * l;
  			this._w = this._w * l;

  		}

  		this._onChangeCallback();

  		return this;

  	},

  	multiply: function ( q, p ) {

  		if ( p !== undefined ) {

  			console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
  			return this.multiplyQuaternions( q, p );

  		}

  		return this.multiplyQuaternions( this, q );

  	},

  	premultiply: function ( q ) {

  		return this.multiplyQuaternions( q, this );

  	},

  	multiplyQuaternions: function ( a, b ) {

  		// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm

  		const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
  		const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;

  		this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
  		this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
  		this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
  		this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;

  		this._onChangeCallback();

  		return this;

  	},

  	slerp: function ( qb, t ) {

  		if ( t === 0 ) return this;
  		if ( t === 1 ) return this.copy( qb );

  		const x = this._x, y = this._y, z = this._z, w = this._w;

  		// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/

  		let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;

  		if ( cosHalfTheta < 0 ) {

  			this._w = - qb._w;
  			this._x = - qb._x;
  			this._y = - qb._y;
  			this._z = - qb._z;

  			cosHalfTheta = - cosHalfTheta;

  		} else {

  			this.copy( qb );

  		}

  		if ( cosHalfTheta >= 1.0 ) {

  			this._w = w;
  			this._x = x;
  			this._y = y;
  			this._z = z;

  			return this;

  		}

  		const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;

  		if ( sqrSinHalfTheta <= Number.EPSILON ) {

  			const s = 1 - t;
  			this._w = s * w + t * this._w;
  			this._x = s * x + t * this._x;
  			this._y = s * y + t * this._y;
  			this._z = s * z + t * this._z;

  			this.normalize();
  			this._onChangeCallback();

  			return this;

  		}

  		const sinHalfTheta = Math.sqrt( sqrSinHalfTheta );
  		const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
  		const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
  			ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;

  		this._w = ( w * ratioA + this._w * ratioB );
  		this._x = ( x * ratioA + this._x * ratioB );
  		this._y = ( y * ratioA + this._y * ratioB );
  		this._z = ( z * ratioA + this._z * ratioB );

  		this._onChangeCallback();

  		return this;

  	},

  	equals: function ( quaternion ) {

  		return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this._x = array[ offset ];
  		this._y = array[ offset + 1 ];
  		this._z = array[ offset + 2 ];
  		this._w = array[ offset + 3 ];

  		this._onChangeCallback();

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this._x;
  		array[ offset + 1 ] = this._y;
  		array[ offset + 2 ] = this._z;
  		array[ offset + 3 ] = this._w;

  		return array;

  	},

  	fromBufferAttribute: function ( attribute, index ) {

  		this._x = attribute.getX( index );
  		this._y = attribute.getY( index );
  		this._z = attribute.getZ( index );
  		this._w = attribute.getW( index );

  		return this;

  	},

  	_onChange: function ( callback ) {

  		this._onChangeCallback = callback;

  		return this;

  	},

  	_onChangeCallback: function () {}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author kile / http://kile.stravaganza.org/
   * @author philogb / http://blog.thejit.org/
   * @author mikael emtinger / http://gomo.se/
   * @author egraether / http://egraether.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  const _vector = new Vector3();
  const _quaternion = new Quaternion();

  function Vector3( x = 0, y = 0, z = 0 ) {

  	this.x = x;
  	this.y = y;
  	this.z = z;

  }

  Object.assign( Vector3.prototype, {

  	isVector3: true,

  	set: function ( x, y, z ) {

  		this.x = x;
  		this.y = y;
  		this.z = z;

  		return this;

  	},

  	setScalar: function ( scalar ) {

  		this.x = scalar;
  		this.y = scalar;
  		this.z = scalar;

  		return this;

  	},

  	setX: function ( x ) {

  		this.x = x;

  		return this;

  	},

  	setY: function ( y ) {

  		this.y = y;

  		return this;

  	},

  	setZ: function ( z ) {

  		this.z = z;

  		return this;

  	},

  	setComponent: function ( index, value ) {

  		switch ( index ) {

  			case 0: this.x = value; break;
  			case 1: this.y = value; break;
  			case 2: this.z = value; break;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  		return this;

  	},

  	getComponent: function ( index ) {

  		switch ( index ) {

  			case 0: return this.x;
  			case 1: return this.y;
  			case 2: return this.z;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  	},

  	clone: function () {

  		return new this.constructor( this.x, this.y, this.z );

  	},

  	copy: function ( v ) {

  		this.x = v.x;
  		this.y = v.y;
  		this.z = v.z;

  		return this;

  	},

  	add: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
  			return this.addVectors( v, w );

  		}

  		this.x += v.x;
  		this.y += v.y;
  		this.z += v.z;

  		return this;

  	},

  	addScalar: function ( s ) {

  		this.x += s;
  		this.y += s;
  		this.z += s;

  		return this;

  	},

  	addVectors: function ( a, b ) {

  		this.x = a.x + b.x;
  		this.y = a.y + b.y;
  		this.z = a.z + b.z;

  		return this;

  	},

  	addScaledVector: function ( v, s ) {

  		this.x += v.x * s;
  		this.y += v.y * s;
  		this.z += v.z * s;

  		return this;

  	},

  	sub: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
  			return this.subVectors( v, w );

  		}

  		this.x -= v.x;
  		this.y -= v.y;
  		this.z -= v.z;

  		return this;

  	},

  	subScalar: function ( s ) {

  		this.x -= s;
  		this.y -= s;
  		this.z -= s;

  		return this;

  	},

  	subVectors: function ( a, b ) {

  		this.x = a.x - b.x;
  		this.y = a.y - b.y;
  		this.z = a.z - b.z;

  		return this;

  	},

  	multiply: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
  			return this.multiplyVectors( v, w );

  		}

  		this.x *= v.x;
  		this.y *= v.y;
  		this.z *= v.z;

  		return this;

  	},

  	multiplyScalar: function ( scalar ) {

  		this.x *= scalar;
  		this.y *= scalar;
  		this.z *= scalar;

  		return this;

  	},

  	multiplyVectors: function ( a, b ) {

  		this.x = a.x * b.x;
  		this.y = a.y * b.y;
  		this.z = a.z * b.z;

  		return this;

  	},

  	applyEuler: function ( euler ) {

  		if ( ! ( euler && euler.isEuler ) ) {

  			console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );

  		}

  		return this.applyQuaternion( _quaternion.setFromEuler( euler ) );

  	},

  	applyAxisAngle: function ( axis, angle ) {

  		return this.applyQuaternion( _quaternion.setFromAxisAngle( axis, angle ) );

  	},

  	applyMatrix3: function ( m ) {

  		const x = this.x, y = this.y, z = this.z;
  		const e = m.elements;

  		this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
  		this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
  		this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;

  		return this;

  	},

  	applyNormalMatrix: function ( m ) {

  		return this.applyMatrix3( m ).normalize();

  	},

  	applyMatrix4: function ( m ) {

  		const x = this.x, y = this.y, z = this.z;
  		const e = m.elements;

  		const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );

  		this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
  		this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
  		this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;

  		return this;

  	},

  	applyQuaternion: function ( q ) {

  		const x = this.x, y = this.y, z = this.z;
  		const qx = q.x, qy = q.y, qz = q.z, qw = q.w;

  		// calculate quat * vector

  		const ix = qw * x + qy * z - qz * y;
  		const iy = qw * y + qz * x - qx * z;
  		const iz = qw * z + qx * y - qy * x;
  		const iw = - qx * x - qy * y - qz * z;

  		// calculate result * inverse quat

  		this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
  		this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
  		this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;

  		return this;

  	},

  	project: function ( camera ) {

  		return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );

  	},

  	unproject: function ( camera ) {

  		return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld );

  	},

  	transformDirection: function ( m ) {

  		// input: THREE.Matrix4 affine matrix
  		// vector interpreted as a direction

  		const x = this.x, y = this.y, z = this.z;
  		const e = m.elements;

  		this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
  		this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
  		this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;

  		return this.normalize();

  	},

  	divide: function ( v ) {

  		this.x /= v.x;
  		this.y /= v.y;
  		this.z /= v.z;

  		return this;

  	},

  	divideScalar: function ( scalar ) {

  		return this.multiplyScalar( 1 / scalar );

  	},

  	min: function ( v ) {

  		this.x = Math.min( this.x, v.x );
  		this.y = Math.min( this.y, v.y );
  		this.z = Math.min( this.z, v.z );

  		return this;

  	},

  	max: function ( v ) {

  		this.x = Math.max( this.x, v.x );
  		this.y = Math.max( this.y, v.y );
  		this.z = Math.max( this.z, v.z );

  		return this;

  	},

  	clamp: function ( min, max ) {

  		// assumes min < max, componentwise

  		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
  		this.y = Math.max( min.y, Math.min( max.y, this.y ) );
  		this.z = Math.max( min.z, Math.min( max.z, this.z ) );

  		return this;

  	},

  	clampScalar: function ( minVal, maxVal ) {

  		this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
  		this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
  		this.z = Math.max( minVal, Math.min( maxVal, this.z ) );

  		return this;

  	},

  	clampLength: function ( min, max ) {

  		const length = this.length();

  		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

  	},

  	floor: function () {

  		this.x = Math.floor( this.x );
  		this.y = Math.floor( this.y );
  		this.z = Math.floor( this.z );

  		return this;

  	},

  	ceil: function () {

  		this.x = Math.ceil( this.x );
  		this.y = Math.ceil( this.y );
  		this.z = Math.ceil( this.z );

  		return this;

  	},

  	round: function () {

  		this.x = Math.round( this.x );
  		this.y = Math.round( this.y );
  		this.z = Math.round( this.z );

  		return this;

  	},

  	roundToZero: function () {

  		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
  		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
  		this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );

  		return this;

  	},

  	negate: function () {

  		this.x = - this.x;
  		this.y = - this.y;
  		this.z = - this.z;

  		return this;

  	},

  	dot: function ( v ) {

  		return this.x * v.x + this.y * v.y + this.z * v.z;

  	},

  	// TODO lengthSquared?

  	lengthSq: function () {

  		return this.x * this.x + this.y * this.y + this.z * this.z;

  	},

  	length: function () {

  		return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );

  	},

  	manhattanLength: function () {

  		return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );

  	},

  	normalize: function () {

  		return this.divideScalar( this.length() || 1 );

  	},

  	setLength: function ( length ) {

  		return this.normalize().multiplyScalar( length );

  	},

  	lerp: function ( v, alpha ) {

  		this.x += ( v.x - this.x ) * alpha;
  		this.y += ( v.y - this.y ) * alpha;
  		this.z += ( v.z - this.z ) * alpha;

  		return this;

  	},

  	lerpVectors: function ( v1, v2, alpha ) {

  		this.x = v1.x + ( v2.x - v1.x ) * alpha;
  		this.y = v1.y + ( v2.y - v1.y ) * alpha;
  		this.z = v1.z + ( v2.z - v1.z ) * alpha;

  		return this;

  	},

  	cross: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
  			return this.crossVectors( v, w );

  		}

  		return this.crossVectors( this, v );

  	},

  	crossVectors: function ( a, b ) {

  		const ax = a.x, ay = a.y, az = a.z;
  		const bx = b.x, by = b.y, bz = b.z;

  		this.x = ay * bz - az * by;
  		this.y = az * bx - ax * bz;
  		this.z = ax * by - ay * bx;

  		return this;

  	},

  	projectOnVector: function ( v ) {

  		const denominator = v.lengthSq();

  		if ( denominator === 0 ) return this.set( 0, 0, 0 );

  		const scalar = v.dot( this ) / denominator;

  		return this.copy( v ).multiplyScalar( scalar );

  	},

  	projectOnPlane: function ( planeNormal ) {

  		_vector.copy( this ).projectOnVector( planeNormal );

  		return this.sub( _vector );

  	},

  	reflect: function ( normal ) {

  		// reflect incident vector off plane orthogonal to normal
  		// normal is assumed to have unit length

  		return this.sub( _vector.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );

  	},

  	angleTo: function ( v ) {

  		const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );

  		if ( denominator === 0 ) return Math.PI / 2;

  		const theta = this.dot( v ) / denominator;

  		// clamp, to handle numerical problems

  		return Math.acos( MathUtils.clamp( theta, - 1, 1 ) );

  	},

  	distanceTo: function ( v ) {

  		return Math.sqrt( this.distanceToSquared( v ) );

  	},

  	distanceToSquared: function ( v ) {

  		const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;

  		return dx * dx + dy * dy + dz * dz;

  	},

  	manhattanDistanceTo: function ( v ) {

  		return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );

  	},

  	setFromSpherical: function ( s ) {

  		return this.setFromSphericalCoords( s.radius, s.phi, s.theta );

  	},

  	setFromSphericalCoords: function ( radius, phi, theta ) {

  		const sinPhiRadius = Math.sin( phi ) * radius;

  		this.x = sinPhiRadius * Math.sin( theta );
  		this.y = Math.cos( phi ) * radius;
  		this.z = sinPhiRadius * Math.cos( theta );

  		return this;

  	},

  	setFromCylindrical: function ( c ) {

  		return this.setFromCylindricalCoords( c.radius, c.theta, c.y );

  	},

  	setFromCylindricalCoords: function ( radius, theta, y ) {

  		this.x = radius * Math.sin( theta );
  		this.y = y;
  		this.z = radius * Math.cos( theta );

  		return this;

  	},

  	setFromMatrixPosition: function ( m ) {

  		const e = m.elements;

  		this.x = e[ 12 ];
  		this.y = e[ 13 ];
  		this.z = e[ 14 ];

  		return this;

  	},

  	setFromMatrixScale: function ( m ) {

  		const sx = this.setFromMatrixColumn( m, 0 ).length();
  		const sy = this.setFromMatrixColumn( m, 1 ).length();
  		const sz = this.setFromMatrixColumn( m, 2 ).length();

  		this.x = sx;
  		this.y = sy;
  		this.z = sz;

  		return this;

  	},

  	setFromMatrixColumn: function ( m, index ) {

  		return this.fromArray( m.elements, index * 4 );

  	},

  	setFromMatrix3Column: function ( m, index ) {

  		return this.fromArray( m.elements, index * 3 );

  	},

  	equals: function ( v ) {

  		return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.x = array[ offset ];
  		this.y = array[ offset + 1 ];
  		this.z = array[ offset + 2 ];

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this.x;
  		array[ offset + 1 ] = this.y;
  		array[ offset + 2 ] = this.z;

  		return array;

  	},

  	fromBufferAttribute: function ( attribute, index, offset ) {

  		if ( offset !== undefined ) {

  			console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );

  		}

  		this.x = attribute.getX( index );
  		this.y = attribute.getY( index );
  		this.z = attribute.getZ( index );

  		return this;

  	},

  	random: function () {

  		this.x = Math.random();
  		this.y = Math.random();
  		this.z = Math.random();

  		return this;

  	}

  } );

  const _v1 = new Vector3();
  const _m1 = new Matrix4();
  const _zero = new Vector3( 0, 0, 0 );
  const _one = new Vector3( 1, 1, 1 );
  const _x = new Vector3();
  const _y = new Vector3();
  const _z = new Vector3();

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author supereggbert / http://www.paulbrunt.co.uk/
   * @author philogb / http://blog.thejit.org/
   * @author jordi_ros / http://plattsoft.com
   * @author D1plo1d / http://github.com/D1plo1d
   * @author alteredq / http://alteredqualia.com/
   * @author mikael emtinger / http://gomo.se/
   * @author timknip / http://www.floorplanner.com/
   * @author bhouston / http://clara.io
   * @author WestLangley / http://github.com/WestLangley
   */

  function Matrix4() {

  	this.elements = [

  		1, 0, 0, 0,
  		0, 1, 0, 0,
  		0, 0, 1, 0,
  		0, 0, 0, 1

  	];

  	if ( arguments.length > 0 ) {

  		console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );

  	}

  }

  Object.assign( Matrix4.prototype, {

  	isMatrix4: true,

  	set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {

  		const te = this.elements;

  		te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
  		te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
  		te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
  		te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;

  		return this;

  	},

  	identity: function () {

  		this.set(

  			1, 0, 0, 0,
  			0, 1, 0, 0,
  			0, 0, 1, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	clone: function () {

  		return new Matrix4().fromArray( this.elements );

  	},

  	copy: function ( m ) {

  		const te = this.elements;
  		const me = m.elements;

  		te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
  		te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
  		te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
  		te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];

  		return this;

  	},

  	copyPosition: function ( m ) {

  		const te = this.elements, me = m.elements;

  		te[ 12 ] = me[ 12 ];
  		te[ 13 ] = me[ 13 ];
  		te[ 14 ] = me[ 14 ];

  		return this;

  	},

  	extractBasis: function ( xAxis, yAxis, zAxis ) {

  		xAxis.setFromMatrixColumn( this, 0 );
  		yAxis.setFromMatrixColumn( this, 1 );
  		zAxis.setFromMatrixColumn( this, 2 );

  		return this;

  	},

  	makeBasis: function ( xAxis, yAxis, zAxis ) {

  		this.set(
  			xAxis.x, yAxis.x, zAxis.x, 0,
  			xAxis.y, yAxis.y, zAxis.y, 0,
  			xAxis.z, yAxis.z, zAxis.z, 0,
  			0, 0, 0, 1
  		);

  		return this;

  	},

  	extractRotation: function ( m ) {

  		// this method does not support reflection matrices

  		const te = this.elements;
  		const me = m.elements;

  		const scaleX = 1 / _v1.setFromMatrixColumn( m, 0 ).length();
  		const scaleY = 1 / _v1.setFromMatrixColumn( m, 1 ).length();
  		const scaleZ = 1 / _v1.setFromMatrixColumn( m, 2 ).length();

  		te[ 0 ] = me[ 0 ] * scaleX;
  		te[ 1 ] = me[ 1 ] * scaleX;
  		te[ 2 ] = me[ 2 ] * scaleX;
  		te[ 3 ] = 0;

  		te[ 4 ] = me[ 4 ] * scaleY;
  		te[ 5 ] = me[ 5 ] * scaleY;
  		te[ 6 ] = me[ 6 ] * scaleY;
  		te[ 7 ] = 0;

  		te[ 8 ] = me[ 8 ] * scaleZ;
  		te[ 9 ] = me[ 9 ] * scaleZ;
  		te[ 10 ] = me[ 10 ] * scaleZ;
  		te[ 11 ] = 0;

  		te[ 12 ] = 0;
  		te[ 13 ] = 0;
  		te[ 14 ] = 0;
  		te[ 15 ] = 1;

  		return this;

  	},

  	makeRotationFromEuler: function ( euler ) {

  		if ( ! ( euler && euler.isEuler ) ) {

  			console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );

  		}

  		const te = this.elements;

  		const x = euler.x, y = euler.y, z = euler.z;
  		const a = Math.cos( x ), b = Math.sin( x );
  		const c = Math.cos( y ), d = Math.sin( y );
  		const e = Math.cos( z ), f = Math.sin( z );

  		if ( euler.order === 'XYZ' ) {

  			const ae = a * e, af = a * f, be = b * e, bf = b * f;

  			te[ 0 ] = c * e;
  			te[ 4 ] = - c * f;
  			te[ 8 ] = d;

  			te[ 1 ] = af + be * d;
  			te[ 5 ] = ae - bf * d;
  			te[ 9 ] = - b * c;

  			te[ 2 ] = bf - ae * d;
  			te[ 6 ] = be + af * d;
  			te[ 10 ] = a * c;

  		} else if ( euler.order === 'YXZ' ) {

  			const ce = c * e, cf = c * f, de = d * e, df = d * f;

  			te[ 0 ] = ce + df * b;
  			te[ 4 ] = de * b - cf;
  			te[ 8 ] = a * d;

  			te[ 1 ] = a * f;
  			te[ 5 ] = a * e;
  			te[ 9 ] = - b;

  			te[ 2 ] = cf * b - de;
  			te[ 6 ] = df + ce * b;
  			te[ 10 ] = a * c;

  		} else if ( euler.order === 'ZXY' ) {

  			const ce = c * e, cf = c * f, de = d * e, df = d * f;

  			te[ 0 ] = ce - df * b;
  			te[ 4 ] = - a * f;
  			te[ 8 ] = de + cf * b;

  			te[ 1 ] = cf + de * b;
  			te[ 5 ] = a * e;
  			te[ 9 ] = df - ce * b;

  			te[ 2 ] = - a * d;
  			te[ 6 ] = b;
  			te[ 10 ] = a * c;

  		} else if ( euler.order === 'ZYX' ) {

  			const ae = a * e, af = a * f, be = b * e, bf = b * f;

  			te[ 0 ] = c * e;
  			te[ 4 ] = be * d - af;
  			te[ 8 ] = ae * d + bf;

  			te[ 1 ] = c * f;
  			te[ 5 ] = bf * d + ae;
  			te[ 9 ] = af * d - be;

  			te[ 2 ] = - d;
  			te[ 6 ] = b * c;
  			te[ 10 ] = a * c;

  		} else if ( euler.order === 'YZX' ) {

  			const ac = a * c, ad = a * d, bc = b * c, bd = b * d;

  			te[ 0 ] = c * e;
  			te[ 4 ] = bd - ac * f;
  			te[ 8 ] = bc * f + ad;

  			te[ 1 ] = f;
  			te[ 5 ] = a * e;
  			te[ 9 ] = - b * e;

  			te[ 2 ] = - d * e;
  			te[ 6 ] = ad * f + bc;
  			te[ 10 ] = ac - bd * f;

  		} else if ( euler.order === 'XZY' ) {

  			const ac = a * c, ad = a * d, bc = b * c, bd = b * d;

  			te[ 0 ] = c * e;
  			te[ 4 ] = - f;
  			te[ 8 ] = d * e;

  			te[ 1 ] = ac * f + bd;
  			te[ 5 ] = a * e;
  			te[ 9 ] = ad * f - bc;

  			te[ 2 ] = bc * f - ad;
  			te[ 6 ] = b * e;
  			te[ 10 ] = bd * f + ac;

  		}

  		// bottom row
  		te[ 3 ] = 0;
  		te[ 7 ] = 0;
  		te[ 11 ] = 0;

  		// last column
  		te[ 12 ] = 0;
  		te[ 13 ] = 0;
  		te[ 14 ] = 0;
  		te[ 15 ] = 1;

  		return this;

  	},

  	makeRotationFromQuaternion: function ( q ) {

  		return this.compose( _zero, q, _one );

  	},

  	lookAt: function ( eye, target, up ) {

  		const te = this.elements;

  		_z.subVectors( eye, target );

  		if ( _z.lengthSq() === 0 ) {

  			// eye and target are in the same position

  			_z.z = 1;

  		}

  		_z.normalize();
  		_x.crossVectors( up, _z );

  		if ( _x.lengthSq() === 0 ) {

  			// up and z are parallel

  			if ( Math.abs( up.z ) === 1 ) {

  				_z.x += 0.0001;

  			} else {

  				_z.z += 0.0001;

  			}

  			_z.normalize();
  			_x.crossVectors( up, _z );

  		}

  		_x.normalize();
  		_y.crossVectors( _z, _x );

  		te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x;
  		te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y;
  		te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z;

  		return this;

  	},

  	multiply: function ( m, n ) {

  		if ( n !== undefined ) {

  			console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
  			return this.multiplyMatrices( m, n );

  		}

  		return this.multiplyMatrices( this, m );

  	},

  	premultiply: function ( m ) {

  		return this.multiplyMatrices( m, this );

  	},

  	multiplyMatrices: function ( a, b ) {

  		const ae = a.elements;
  		const be = b.elements;
  		const te = this.elements;

  		const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
  		const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
  		const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
  		const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];

  		const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
  		const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
  		const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
  		const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];

  		te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
  		te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
  		te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
  		te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;

  		te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
  		te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
  		te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
  		te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;

  		te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
  		te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
  		te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
  		te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;

  		te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
  		te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
  		te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
  		te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;

  		return this;

  	},

  	multiplyScalar: function ( s ) {

  		const te = this.elements;

  		te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
  		te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
  		te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
  		te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;

  		return this;

  	},

  	determinant: function () {

  		const te = this.elements;

  		const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
  		const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
  		const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
  		const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];

  		//TODO: make this more efficient
  		//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )

  		return (
  			n41 * (
  				+ n14 * n23 * n32
  				 - n13 * n24 * n32
  				 - n14 * n22 * n33
  				 + n12 * n24 * n33
  				 + n13 * n22 * n34
  				 - n12 * n23 * n34
  			) +
  			n42 * (
  				+ n11 * n23 * n34
  				 - n11 * n24 * n33
  				 + n14 * n21 * n33
  				 - n13 * n21 * n34
  				 + n13 * n24 * n31
  				 - n14 * n23 * n31
  			) +
  			n43 * (
  				+ n11 * n24 * n32
  				 - n11 * n22 * n34
  				 - n14 * n21 * n32
  				 + n12 * n21 * n34
  				 + n14 * n22 * n31
  				 - n12 * n24 * n31
  			) +
  			n44 * (
  				- n13 * n22 * n31
  				 - n11 * n23 * n32
  				 + n11 * n22 * n33
  				 + n13 * n21 * n32
  				 - n12 * n21 * n33
  				 + n12 * n23 * n31
  			)

  		);

  	},

  	transpose: function () {

  		const te = this.elements;
  		let tmp;

  		tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
  		tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
  		tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;

  		tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
  		tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
  		tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;

  		return this;

  	},

  	setPosition: function ( x, y, z ) {

  		const te = this.elements;

  		if ( x.isVector3 ) {

  			te[ 12 ] = x.x;
  			te[ 13 ] = x.y;
  			te[ 14 ] = x.z;

  		} else {

  			te[ 12 ] = x;
  			te[ 13 ] = y;
  			te[ 14 ] = z;

  		}

  		return this;

  	},

  	getInverse: function ( m, throwOnDegenerate ) {

  		if ( throwOnDegenerate !== undefined ) {

  			console.warn( "THREE.Matrix4: .getInverse() can no longer be configured to throw on degenerate." );

  		}

  		// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
  		const te = this.elements,
  			me = m.elements,

  			n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
  			n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
  			n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
  			n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],

  			t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
  			t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
  			t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
  			t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;

  		const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;

  		if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 );

  		const detInv = 1 / det;

  		te[ 0 ] = t11 * detInv;
  		te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
  		te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
  		te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;

  		te[ 4 ] = t12 * detInv;
  		te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
  		te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
  		te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;

  		te[ 8 ] = t13 * detInv;
  		te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
  		te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
  		te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;

  		te[ 12 ] = t14 * detInv;
  		te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
  		te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
  		te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;

  		return this;

  	},

  	scale: function ( v ) {

  		const te = this.elements;
  		const x = v.x, y = v.y, z = v.z;

  		te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
  		te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
  		te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
  		te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;

  		return this;

  	},

  	getMaxScaleOnAxis: function () {

  		const te = this.elements;

  		const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
  		const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
  		const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];

  		return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );

  	},

  	makeTranslation: function ( x, y, z ) {

  		this.set(

  			1, 0, 0, x,
  			0, 1, 0, y,
  			0, 0, 1, z,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	makeRotationX: function ( theta ) {

  		const c = Math.cos( theta ), s = Math.sin( theta );

  		this.set(

  			1, 0, 0, 0,
  			0, c, - s, 0,
  			0, s, c, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	makeRotationY: function ( theta ) {

  		const c = Math.cos( theta ), s = Math.sin( theta );

  		this.set(

  			 c, 0, s, 0,
  			 0, 1, 0, 0,
  			- s, 0, c, 0,
  			 0, 0, 0, 1

  		);

  		return this;

  	},

  	makeRotationZ: function ( theta ) {

  		const c = Math.cos( theta ), s = Math.sin( theta );

  		this.set(

  			c, - s, 0, 0,
  			s, c, 0, 0,
  			0, 0, 1, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	makeRotationAxis: function ( axis, angle ) {

  		// Based on http://www.gamedev.net/reference/articles/article1199.asp

  		const c = Math.cos( angle );
  		const s = Math.sin( angle );
  		const t = 1 - c;
  		const x = axis.x, y = axis.y, z = axis.z;
  		const tx = t * x, ty = t * y;

  		this.set(

  			tx * x + c, tx * y - s * z, tx * z + s * y, 0,
  			tx * y + s * z, ty * y + c, ty * z - s * x, 0,
  			tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
  			0, 0, 0, 1

  		);

  		 return this;

  	},

  	makeScale: function ( x, y, z ) {

  		this.set(

  			x, 0, 0, 0,
  			0, y, 0, 0,
  			0, 0, z, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	makeShear: function ( x, y, z ) {

  		this.set(

  			1, y, z, 0,
  			x, 1, z, 0,
  			x, y, 1, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	compose: function ( position, quaternion, scale ) {

  		const te = this.elements;

  		const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;
  		const x2 = x + x,	y2 = y + y, z2 = z + z;
  		const xx = x * x2, xy = x * y2, xz = x * z2;
  		const yy = y * y2, yz = y * z2, zz = z * z2;
  		const wx = w * x2, wy = w * y2, wz = w * z2;

  		const sx = scale.x, sy = scale.y, sz = scale.z;

  		te[ 0 ] = ( 1 - ( yy + zz ) ) * sx;
  		te[ 1 ] = ( xy + wz ) * sx;
  		te[ 2 ] = ( xz - wy ) * sx;
  		te[ 3 ] = 0;

  		te[ 4 ] = ( xy - wz ) * sy;
  		te[ 5 ] = ( 1 - ( xx + zz ) ) * sy;
  		te[ 6 ] = ( yz + wx ) * sy;
  		te[ 7 ] = 0;

  		te[ 8 ] = ( xz + wy ) * sz;
  		te[ 9 ] = ( yz - wx ) * sz;
  		te[ 10 ] = ( 1 - ( xx + yy ) ) * sz;
  		te[ 11 ] = 0;

  		te[ 12 ] = position.x;
  		te[ 13 ] = position.y;
  		te[ 14 ] = position.z;
  		te[ 15 ] = 1;

  		return this;

  	},

  	decompose: function ( position, quaternion, scale ) {

  		const te = this.elements;

  		let sx = _v1.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
  		let sy = _v1.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
  		let sz = _v1.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();

  		// if determine is negative, we need to invert one scale
  		const det = this.determinant();
  		if ( det < 0 ) sx = - sx;

  		position.x = te[ 12 ];
  		position.y = te[ 13 ];
  		position.z = te[ 14 ];

  		// scale the rotation part
  		_m1.copy( this );

  		const invSX = 1 / sx;
  		const invSY = 1 / sy;
  		const invSZ = 1 / sz;

  		_m1.elements[ 0 ] *= invSX;
  		_m1.elements[ 1 ] *= invSX;
  		_m1.elements[ 2 ] *= invSX;

  		_m1.elements[ 4 ] *= invSY;
  		_m1.elements[ 5 ] *= invSY;
  		_m1.elements[ 6 ] *= invSY;

  		_m1.elements[ 8 ] *= invSZ;
  		_m1.elements[ 9 ] *= invSZ;
  		_m1.elements[ 10 ] *= invSZ;

  		quaternion.setFromRotationMatrix( _m1 );

  		scale.x = sx;
  		scale.y = sy;
  		scale.z = sz;

  		return this;

  	},

  	makePerspective: function ( left, right, top, bottom, near, far ) {

  		if ( far === undefined ) {

  			console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );

  		}

  		const te = this.elements;
  		const x = 2 * near / ( right - left );
  		const y = 2 * near / ( top - bottom );

  		const a = ( right + left ) / ( right - left );
  		const b = ( top + bottom ) / ( top - bottom );
  		const c = - ( far + near ) / ( far - near );
  		const d = - 2 * far * near / ( far - near );

  		te[ 0 ] = x;	te[ 4 ] = 0;	te[ 8 ] = a;	te[ 12 ] = 0;
  		te[ 1 ] = 0;	te[ 5 ] = y;	te[ 9 ] = b;	te[ 13 ] = 0;
  		te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = c;	te[ 14 ] = d;
  		te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = - 1;	te[ 15 ] = 0;

  		return this;

  	},

  	makeOrthographic: function ( left, right, top, bottom, near, far ) {

  		const te = this.elements;
  		const w = 1.0 / ( right - left );
  		const h = 1.0 / ( top - bottom );
  		const p = 1.0 / ( far - near );

  		const x = ( right + left ) * w;
  		const y = ( top + bottom ) * h;
  		const z = ( far + near ) * p;

  		te[ 0 ] = 2 * w;	te[ 4 ] = 0;	te[ 8 ] = 0;	te[ 12 ] = - x;
  		te[ 1 ] = 0;	te[ 5 ] = 2 * h;	te[ 9 ] = 0;	te[ 13 ] = - y;
  		te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = - 2 * p;	te[ 14 ] = - z;
  		te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = 0;	te[ 15 ] = 1;

  		return this;

  	},

  	equals: function ( matrix ) {

  		const te = this.elements;
  		const me = matrix.elements;

  		for ( let i = 0; i < 16; i ++ ) {

  			if ( te[ i ] !== me[ i ] ) return false;

  		}

  		return true;

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		for ( let i = 0; i < 16; i ++ ) {

  			this.elements[ i ] = array[ i + offset ];

  		}

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		const te = this.elements;

  		array[ offset ] = te[ 0 ];
  		array[ offset + 1 ] = te[ 1 ];
  		array[ offset + 2 ] = te[ 2 ];
  		array[ offset + 3 ] = te[ 3 ];

  		array[ offset + 4 ] = te[ 4 ];
  		array[ offset + 5 ] = te[ 5 ];
  		array[ offset + 6 ] = te[ 6 ];
  		array[ offset + 7 ] = te[ 7 ];

  		array[ offset + 8 ] = te[ 8 ];
  		array[ offset + 9 ] = te[ 9 ];
  		array[ offset + 10 ] = te[ 10 ];
  		array[ offset + 11 ] = te[ 11 ];

  		array[ offset + 12 ] = te[ 12 ];
  		array[ offset + 13 ] = te[ 13 ];
  		array[ offset + 14 ] = te[ 14 ];
  		array[ offset + 15 ] = te[ 15 ];

  		return array;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author bhouston / http://clara.io
   */

  const _matrix = new Matrix4();
  const _quaternion$1 = new Quaternion();

  function Euler( x = 0, y = 0, z = 0, order = Euler.DefaultOrder ) {

  	this._x = x;
  	this._y = y;
  	this._z = z;
  	this._order = order;

  }

  Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];

  Euler.DefaultOrder = 'XYZ';

  Object.defineProperties( Euler.prototype, {

  	x: {

  		get: function () {

  			return this._x;

  		},

  		set: function ( value ) {

  			this._x = value;
  			this._onChangeCallback();

  		}

  	},

  	y: {

  		get: function () {

  			return this._y;

  		},

  		set: function ( value ) {

  			this._y = value;
  			this._onChangeCallback();

  		}

  	},

  	z: {

  		get: function () {

  			return this._z;

  		},

  		set: function ( value ) {

  			this._z = value;
  			this._onChangeCallback();

  		}

  	},

  	order: {

  		get: function () {

  			return this._order;

  		},

  		set: function ( value ) {

  			this._order = value;
  			this._onChangeCallback();

  		}

  	}

  } );

  Object.assign( Euler.prototype, {

  	isEuler: true,

  	set: function ( x, y, z, order ) {

  		this._x = x;
  		this._y = y;
  		this._z = z;
  		this._order = order || this._order;

  		this._onChangeCallback();

  		return this;

  	},

  	clone: function () {

  		return new this.constructor( this._x, this._y, this._z, this._order );

  	},

  	copy: function ( euler ) {

  		this._x = euler._x;
  		this._y = euler._y;
  		this._z = euler._z;
  		this._order = euler._order;

  		this._onChangeCallback();

  		return this;

  	},

  	setFromRotationMatrix: function ( m, order, update ) {

  		const clamp = MathUtils.clamp;

  		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

  		const te = m.elements;
  		const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
  		const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
  		const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

  		order = order || this._order;

  		switch ( order ) {

  			case 'XYZ':

  				this._y = Math.asin( clamp( m13, - 1, 1 ) );

  				if ( Math.abs( m13 ) < 0.9999999 ) {

  					this._x = Math.atan2( - m23, m33 );
  					this._z = Math.atan2( - m12, m11 );

  				} else {

  					this._x = Math.atan2( m32, m22 );
  					this._z = 0;

  				}

  				break;

  			case 'YXZ':

  				this._x = Math.asin( - clamp( m23, - 1, 1 ) );

  				if ( Math.abs( m23 ) < 0.9999999 ) {

  					this._y = Math.atan2( m13, m33 );
  					this._z = Math.atan2( m21, m22 );

  				} else {

  					this._y = Math.atan2( - m31, m11 );
  					this._z = 0;

  				}

  				break;

  			case 'ZXY':

  				this._x = Math.asin( clamp( m32, - 1, 1 ) );

  				if ( Math.abs( m32 ) < 0.9999999 ) {

  					this._y = Math.atan2( - m31, m33 );
  					this._z = Math.atan2( - m12, m22 );

  				} else {

  					this._y = 0;
  					this._z = Math.atan2( m21, m11 );

  				}

  				break;

  			case 'ZYX':

  				this._y = Math.asin( - clamp( m31, - 1, 1 ) );

  				if ( Math.abs( m31 ) < 0.9999999 ) {

  					this._x = Math.atan2( m32, m33 );
  					this._z = Math.atan2( m21, m11 );

  				} else {

  					this._x = 0;
  					this._z = Math.atan2( - m12, m22 );

  				}

  				break;

  			case 'YZX':

  				this._z = Math.asin( clamp( m21, - 1, 1 ) );

  				if ( Math.abs( m21 ) < 0.9999999 ) {

  					this._x = Math.atan2( - m23, m22 );
  					this._y = Math.atan2( - m31, m11 );

  				} else {

  					this._x = 0;
  					this._y = Math.atan2( m13, m33 );

  				}

  				break;

  			case 'XZY':

  				this._z = Math.asin( - clamp( m12, - 1, 1 ) );

  				if ( Math.abs( m12 ) < 0.9999999 ) {

  					this._x = Math.atan2( m32, m22 );
  					this._y = Math.atan2( m13, m11 );

  				} else {

  					this._x = Math.atan2( - m23, m33 );
  					this._y = 0;

  				}

  				break;

  			default:

  				console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order );

  		}

  		this._order = order;

  		if ( update !== false ) this._onChangeCallback();

  		return this;

  	},

  	setFromQuaternion: function ( q, order, update ) {

  		_matrix.makeRotationFromQuaternion( q );

  		return this.setFromRotationMatrix( _matrix, order, update );

  	},

  	setFromVector3: function ( v, order ) {

  		return this.set( v.x, v.y, v.z, order || this._order );

  	},

  	reorder: function ( newOrder ) {

  		// WARNING: this discards revolution information -bhouston

  		_quaternion$1.setFromEuler( this );

  		return this.setFromQuaternion( _quaternion$1, newOrder );

  	},

  	equals: function ( euler ) {

  		return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );

  	},

  	fromArray: function ( array ) {

  		this._x = array[ 0 ];
  		this._y = array[ 1 ];
  		this._z = array[ 2 ];
  		if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];

  		this._onChangeCallback();

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this._x;
  		array[ offset + 1 ] = this._y;
  		array[ offset + 2 ] = this._z;
  		array[ offset + 3 ] = this._order;

  		return array;

  	},

  	toVector3: function ( optionalResult ) {

  		if ( optionalResult ) {

  			return optionalResult.set( this._x, this._y, this._z );

  		} else {

  			return new Vector3( this._x, this._y, this._z );

  		}

  	},

  	_onChange: function ( callback ) {

  		this._onChangeCallback = callback;

  		return this;

  	},

  	_onChangeCallback: function () {}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function Layers() {

  	this.mask = 1 | 0;

  }

  Object.assign( Layers.prototype, {

  	set: function ( channel ) {

  		this.mask = 1 << channel | 0;

  	},

  	enable: function ( channel ) {

  		this.mask |= 1 << channel | 0;

  	},

  	enableAll: function () {

  		this.mask = 0xffffffff | 0;

  	},

  	toggle: function ( channel ) {

  		this.mask ^= 1 << channel | 0;

  	},

  	disable: function ( channel ) {

  		this.mask &= ~ ( 1 << channel | 0 );

  	},

  	disableAll: function () {

  		this.mask = 0;

  	},

  	test: function ( layers ) {

  		return ( this.mask & layers.mask ) !== 0;

  	}

  } );

  let _object3DId = 0;

  const _v1$1 = new Vector3();
  const _q1 = new Quaternion();
  const _m1$1 = new Matrix4();
  const _target = new Vector3();

  const _position = new Vector3();
  const _scale = new Vector3();
  const _quaternion$2 = new Quaternion();

  const _xAxis = new Vector3( 1, 0, 0 );
  const _yAxis = new Vector3( 0, 1, 0 );
  const _zAxis = new Vector3( 0, 0, 1 );

  const _addedEvent = { type: 'added' };
  const _removedEvent = { type: 'removed' };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author elephantatwork / www.elephantatwork.ch
   */

  function Object3D() {

  	Object.defineProperty( this, 'id', { value: _object3DId ++ } );

  	this.uuid = MathUtils.generateUUID();

  	this.name = '';
  	this.type = 'Object3D';

  	this.parent = null;
  	this.children = [];

  	this.up = Object3D.DefaultUp.clone();

  	const position = new Vector3();
  	const rotation = new Euler();
  	const quaternion = new Quaternion();
  	const scale = new Vector3( 1, 1, 1 );

  	function onRotationChange() {

  		quaternion.setFromEuler( rotation, false );

  	}

  	function onQuaternionChange() {

  		rotation.setFromQuaternion( quaternion, undefined, false );

  	}

  	rotation._onChange( onRotationChange );
  	quaternion._onChange( onQuaternionChange );

  	Object.defineProperties( this, {
  		position: {
  			configurable: true,
  			enumerable: true,
  			value: position
  		},
  		rotation: {
  			configurable: true,
  			enumerable: true,
  			value: rotation
  		},
  		quaternion: {
  			configurable: true,
  			enumerable: true,
  			value: quaternion
  		},
  		scale: {
  			configurable: true,
  			enumerable: true,
  			value: scale
  		},
  		modelViewMatrix: {
  			value: new Matrix4()
  		},
  		normalMatrix: {
  			value: new Matrix3()
  		}
  	} );

  	this.matrix = new Matrix4();
  	this.matrixWorld = new Matrix4();

  	this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
  	this.matrixWorldNeedsUpdate = false;

  	this.layers = new Layers();
  	this.visible = true;

  	this.castShadow = false;
  	this.receiveShadow = false;

  	this.frustumCulled = true;
  	this.renderOrder = 0;

  	this.userData = {};

  }

  Object3D.DefaultUp = new Vector3( 0, 1, 0 );
  Object3D.DefaultMatrixAutoUpdate = true;

  Object3D.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: Object3D,

  	isObject3D: true,

  	onBeforeRender: function () {},
  	onAfterRender: function () {},

  	applyMatrix4: function ( matrix ) {

  		if ( this.matrixAutoUpdate ) this.updateMatrix();

  		this.matrix.premultiply( matrix );

  		this.matrix.decompose( this.position, this.quaternion, this.scale );

  	},

  	applyQuaternion: function ( q ) {

  		this.quaternion.premultiply( q );

  		return this;

  	},

  	setRotationFromAxisAngle: function ( axis, angle ) {

  		// assumes axis is normalized

  		this.quaternion.setFromAxisAngle( axis, angle );

  	},

  	setRotationFromEuler: function ( euler ) {

  		this.quaternion.setFromEuler( euler, true );

  	},

  	setRotationFromMatrix: function ( m ) {

  		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

  		this.quaternion.setFromRotationMatrix( m );

  	},

  	setRotationFromQuaternion: function ( q ) {

  		// assumes q is normalized

  		this.quaternion.copy( q );

  	},

  	rotateOnAxis: function ( axis, angle ) {

  		// rotate object on axis in object space
  		// axis is assumed to be normalized

  		_q1.setFromAxisAngle( axis, angle );

  		this.quaternion.multiply( _q1 );

  		return this;

  	},

  	rotateOnWorldAxis: function ( axis, angle ) {

  		// rotate object on axis in world space
  		// axis is assumed to be normalized
  		// method assumes no rotated parent

  		_q1.setFromAxisAngle( axis, angle );

  		this.quaternion.premultiply( _q1 );

  		return this;

  	},

  	rotateX: function ( angle ) {

  		return this.rotateOnAxis( _xAxis, angle );

  	},

  	rotateY: function ( angle ) {

  		return this.rotateOnAxis( _yAxis, angle );

  	},

  	rotateZ: function ( angle ) {

  		return this.rotateOnAxis( _zAxis, angle );

  	},

  	translateOnAxis: function ( axis, distance ) {

  		// translate object by distance along axis in object space
  		// axis is assumed to be normalized

  		_v1$1.copy( axis ).applyQuaternion( this.quaternion );

  		this.position.add( _v1$1.multiplyScalar( distance ) );

  		return this;

  	},

  	translateX: function ( distance ) {

  		return this.translateOnAxis( _xAxis, distance );

  	},

  	translateY: function ( distance ) {

  		return this.translateOnAxis( _yAxis, distance );

  	},

  	translateZ: function ( distance ) {

  		return this.translateOnAxis( _zAxis, distance );

  	},

  	localToWorld: function ( vector ) {

  		return vector.applyMatrix4( this.matrixWorld );

  	},

  	worldToLocal: function ( vector ) {

  		return vector.applyMatrix4( _m1$1.getInverse( this.matrixWorld ) );

  	},

  	lookAt: function ( x, y, z ) {

  		// This method does not support objects having non-uniformly-scaled parent(s)

  		if ( x.isVector3 ) {

  			_target.copy( x );

  		} else {

  			_target.set( x, y, z );

  		}

  		const parent = this.parent;

  		this.updateWorldMatrix( true, false );

  		_position.setFromMatrixPosition( this.matrixWorld );

  		if ( this.isCamera || this.isLight ) {

  			_m1$1.lookAt( _position, _target, this.up );

  		} else {

  			_m1$1.lookAt( _target, _position, this.up );

  		}

  		this.quaternion.setFromRotationMatrix( _m1$1 );

  		if ( parent ) {

  			_m1$1.extractRotation( parent.matrixWorld );
  			_q1.setFromRotationMatrix( _m1$1 );
  			this.quaternion.premultiply( _q1.inverse() );

  		}

  	},

  	add: function ( object ) {

  		if ( arguments.length > 1 ) {

  			for ( let i = 0; i < arguments.length; i ++ ) {

  				this.add( arguments[ i ] );

  			}

  			return this;

  		}

  		if ( object === this ) {

  			console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
  			return this;

  		}

  		if ( ( object && object.isObject3D ) ) {

  			if ( object.parent !== null ) {

  				object.parent.remove( object );

  			}

  			object.parent = this;
  			this.children.push( object );

  			object.dispatchEvent( _addedEvent );

  		} else {

  			console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );

  		}

  		return this;

  	},

  	remove: function ( object ) {

  		if ( arguments.length > 1 ) {

  			for ( let i = 0; i < arguments.length; i ++ ) {

  				this.remove( arguments[ i ] );

  			}

  			return this;

  		}

  		const index = this.children.indexOf( object );

  		if ( index !== - 1 ) {

  			object.parent = null;
  			this.children.splice( index, 1 );

  			object.dispatchEvent( _removedEvent );

  		}

  		return this;

  	},

  	attach: function ( object ) {

  		// adds object as a child of this, while maintaining the object's world transform

  		this.updateWorldMatrix( true, false );

  		_m1$1.getInverse( this.matrixWorld );

  		if ( object.parent !== null ) {

  			object.parent.updateWorldMatrix( true, false );

  			_m1$1.multiply( object.parent.matrixWorld );

  		}

  		object.applyMatrix4( _m1$1 );

  		object.updateWorldMatrix( false, false );

  		this.add( object );

  		return this;

  	},

  	getObjectById: function ( id ) {

  		return this.getObjectByProperty( 'id', id );

  	},

  	getObjectByName: function ( name ) {

  		return this.getObjectByProperty( 'name', name );

  	},

  	getObjectByProperty: function ( name, value ) {

  		if ( this[ name ] === value ) return this;

  		for ( let i = 0, l = this.children.length; i < l; i ++ ) {

  			const child = this.children[ i ];
  			const object = child.getObjectByProperty( name, value );

  			if ( object !== undefined ) {

  				return object;

  			}

  		}

  		return undefined;

  	},

  	getWorldPosition: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Object3D: .getWorldPosition() target is now required' );
  			target = new Vector3();

  		}

  		this.updateMatrixWorld( true );

  		return target.setFromMatrixPosition( this.matrixWorld );

  	},

  	getWorldQuaternion: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Object3D: .getWorldQuaternion() target is now required' );
  			target = new Quaternion();

  		}

  		this.updateMatrixWorld( true );

  		this.matrixWorld.decompose( _position, target, _scale );

  		return target;

  	},

  	getWorldScale: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Object3D: .getWorldScale() target is now required' );
  			target = new Vector3();

  		}

  		this.updateMatrixWorld( true );

  		this.matrixWorld.decompose( _position, _quaternion$2, target );

  		return target;

  	},

  	getWorldDirection: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Object3D: .getWorldDirection() target is now required' );
  			target = new Vector3();

  		}

  		this.updateMatrixWorld( true );

  		const e = this.matrixWorld.elements;

  		return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize();

  	},

  	raycast: function () {},

  	traverse: function ( callback ) {

  		callback( this );

  		const children = this.children;

  		for ( let i = 0, l = children.length; i < l; i ++ ) {

  			children[ i ].traverse( callback );

  		}

  	},

  	traverseVisible: function ( callback ) {

  		if ( this.visible === false ) return;

  		callback( this );

  		const children = this.children;

  		for ( let i = 0, l = children.length; i < l; i ++ ) {

  			children[ i ].traverseVisible( callback );

  		}

  	},

  	traverseAncestors: function ( callback ) {

  		const parent = this.parent;

  		if ( parent !== null ) {

  			callback( parent );

  			parent.traverseAncestors( callback );

  		}

  	},

  	updateMatrix: function () {

  		this.matrix.compose( this.position, this.quaternion, this.scale );

  		this.matrixWorldNeedsUpdate = true;

  	},

  	updateMatrixWorld: function ( force ) {

  		if ( this.matrixAutoUpdate ) this.updateMatrix();

  		if ( this.matrixWorldNeedsUpdate || force ) {

  			if ( this.parent === null ) {

  				this.matrixWorld.copy( this.matrix );

  			} else {

  				this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );

  			}

  			this.matrixWorldNeedsUpdate = false;

  			force = true;

  		}

  		// update children

  		const children = this.children;

  		for ( let i = 0, l = children.length; i < l; i ++ ) {

  			children[ i ].updateMatrixWorld( force );

  		}

  	},

  	updateWorldMatrix: function ( updateParents, updateChildren ) {

  		const parent = this.parent;

  		if ( updateParents === true && parent !== null ) {

  			parent.updateWorldMatrix( true, false );

  		}

  		if ( this.matrixAutoUpdate ) this.updateMatrix();

  		if ( this.parent === null ) {

  			this.matrixWorld.copy( this.matrix );

  		} else {

  			this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );

  		}

  		// update children

  		if ( updateChildren === true ) {

  			const children = this.children;

  			for ( let i = 0, l = children.length; i < l; i ++ ) {

  				children[ i ].updateWorldMatrix( false, true );

  			}

  		}

  	},

  	toJSON: function ( meta ) {

  		// meta is a string when called from JSON.stringify
  		const isRootObject = ( meta === undefined || typeof meta === 'string' );

  		const output = {};

  		// meta is a hash used to collect geometries, materials.
  		// not providing it implies that this is the root object
  		// being serialized.
  		if ( isRootObject ) {

  			// initialize meta obj
  			meta = {
  				geometries: {},
  				materials: {},
  				textures: {},
  				images: {},
  				shapes: {}
  			};

  			output.metadata = {
  				version: 4.5,
  				type: 'Object',
  				generator: 'Object3D.toJSON'
  			};

  		}

  		// standard Object3D serialization

  		const object = {};

  		object.uuid = this.uuid;
  		object.type = this.type;

  		if ( this.name !== '' ) object.name = this.name;
  		if ( this.castShadow === true ) object.castShadow = true;
  		if ( this.receiveShadow === true ) object.receiveShadow = true;
  		if ( this.visible === false ) object.visible = false;
  		if ( this.frustumCulled === false ) object.frustumCulled = false;
  		if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder;
  		if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;

  		object.layers = this.layers.mask;
  		object.matrix = this.matrix.toArray();

  		if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false;

  		// object specific properties

  		if ( this.isInstancedMesh ) {

  			object.type = 'InstancedMesh';
  			object.count = this.count;
  			object.instanceMatrix = this.instanceMatrix.toJSON();

  		}

  		//

  		function serialize( library, element ) {

  			if ( library[ element.uuid ] === undefined ) {

  				library[ element.uuid ] = element.toJSON( meta );

  			}

  			return element.uuid;

  		}

  		if ( this.isMesh || this.isLine || this.isPoints ) {

  			object.geometry = serialize( meta.geometries, this.geometry );

  			const parameters = this.geometry.parameters;

  			if ( parameters !== undefined && parameters.shapes !== undefined ) {

  				const shapes = parameters.shapes;

  				if ( Array.isArray( shapes ) ) {

  					for ( let i = 0, l = shapes.length; i < l; i ++ ) {

  						const shape = shapes[ i ];

  						serialize( meta.shapes, shape );

  					}

  				} else {

  					serialize( meta.shapes, shapes );

  				}

  			}

  		}

  		if ( this.material !== undefined ) {

  			if ( Array.isArray( this.material ) ) {

  				const uuids = [];

  				for ( let i = 0, l = this.material.length; i < l; i ++ ) {

  					uuids.push( serialize( meta.materials, this.material[ i ] ) );

  				}

  				object.material = uuids;

  			} else {

  				object.material = serialize( meta.materials, this.material );

  			}

  		}

  		//

  		if ( this.children.length > 0 ) {

  			object.children = [];

  			for ( let i = 0; i < this.children.length; i ++ ) {

  				object.children.push( this.children[ i ].toJSON( meta ).object );

  			}

  		}

  		if ( isRootObject ) {

  			const geometries = extractFromCache( meta.geometries );
  			const materials = extractFromCache( meta.materials );
  			const textures = extractFromCache( meta.textures );
  			const images = extractFromCache( meta.images );
  			const shapes = extractFromCache( meta.shapes );

  			if ( geometries.length > 0 ) output.geometries = geometries;
  			if ( materials.length > 0 ) output.materials = materials;
  			if ( textures.length > 0 ) output.textures = textures;
  			if ( images.length > 0 ) output.images = images;
  			if ( shapes.length > 0 ) output.shapes = shapes;

  		}

  		output.object = object;

  		return output;

  		// extract data from the cache hash
  		// remove metadata on each item
  		// and return as array
  		function extractFromCache( cache ) {

  			const values = [];
  			for ( const key in cache ) {

  				const data = cache[ key ];
  				delete data.metadata;
  				values.push( data );

  			}

  			return values;

  		}

  	},

  	clone: function ( recursive ) {

  		return new this.constructor().copy( this, recursive );

  	},

  	copy: function ( source, recursive ) {

  		if ( recursive === undefined ) recursive = true;

  		this.name = source.name;

  		this.up.copy( source.up );

  		this.position.copy( source.position );
  		this.quaternion.copy( source.quaternion );
  		this.scale.copy( source.scale );

  		this.matrix.copy( source.matrix );
  		this.matrixWorld.copy( source.matrixWorld );

  		this.matrixAutoUpdate = source.matrixAutoUpdate;
  		this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;

  		this.layers.mask = source.layers.mask;
  		this.visible = source.visible;

  		this.castShadow = source.castShadow;
  		this.receiveShadow = source.receiveShadow;

  		this.frustumCulled = source.frustumCulled;
  		this.renderOrder = source.renderOrder;

  		this.userData = JSON.parse( JSON.stringify( source.userData ) );

  		if ( recursive === true ) {

  			for ( let i = 0; i < source.children.length; i ++ ) {

  				const child = source.children[ i ];
  				this.add( child.clone() );

  			}

  		}

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function Scene() {

  	Object3D.call( this );

  	this.type = 'Scene';

  	this.background = null;
  	this.environment = null;
  	this.fog = null;

  	this.overrideMaterial = null;

  	this.autoUpdate = true; // checked by the renderer

  	if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {

  		__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef

  	}

  }

  Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Scene,

  	isScene: true,

  	copy: function ( source, recursive ) {

  		Object3D.prototype.copy.call( this, source, recursive );

  		if ( source.background !== null ) this.background = source.background.clone();
  		if ( source.environment !== null ) this.environment = source.environment.clone();
  		if ( source.fog !== null ) this.fog = source.fog.clone();

  		if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();

  		this.autoUpdate = source.autoUpdate;
  		this.matrixAutoUpdate = source.matrixAutoUpdate;

  		return this;

  	},

  	toJSON: function ( meta ) {

  		const data = Object3D.prototype.toJSON.call( this, meta );

  		if ( this.background !== null ) data.object.background = this.background.toJSON( meta );
  		if ( this.environment !== null ) data.object.environment = this.environment.toJSON( meta );
  		if ( this.fog !== null ) data.object.fog = this.fog.toJSON();

  		return data;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	}

  } );

  const _points = [
  	new Vector3(),
  	new Vector3(),
  	new Vector3(),
  	new Vector3(),
  	new Vector3(),
  	new Vector3(),
  	new Vector3(),
  	new Vector3()
  ];

  const _vector$1 = new Vector3();

  const _box = new Box3();

  // triangle centered vertices

  const _v0 = new Vector3();
  const _v1$2 = new Vector3();
  const _v2 = new Vector3();

  // triangle edge vectors

  const _f0 = new Vector3();
  const _f1 = new Vector3();
  const _f2 = new Vector3();

  const _center = new Vector3();
  const _extents = new Vector3();
  const _triangleNormal = new Vector3();
  const _testAxis = new Vector3();

  /**
   * @author bhouston / http://clara.io
   * @author WestLangley / http://github.com/WestLangley
   */

  function Box3( min, max ) {

  	this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
  	this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );

  }


  Object.assign( Box3.prototype, {

  	isBox3: true,

  	set: function ( min, max ) {

  		this.min.copy( min );
  		this.max.copy( max );

  		return this;

  	},

  	setFromArray: function ( array ) {

  		let minX = + Infinity;
  		let minY = + Infinity;
  		let minZ = + Infinity;

  		let maxX = - Infinity;
  		let maxY = - Infinity;
  		let maxZ = - Infinity;

  		for ( let i = 0, l = array.length; i < l; i += 3 ) {

  			const x = array[ i ];
  			const y = array[ i + 1 ];
  			const z = array[ i + 2 ];

  			if ( x < minX ) minX = x;
  			if ( y < minY ) minY = y;
  			if ( z < minZ ) minZ = z;

  			if ( x > maxX ) maxX = x;
  			if ( y > maxY ) maxY = y;
  			if ( z > maxZ ) maxZ = z;

  		}

  		this.min.set( minX, minY, minZ );
  		this.max.set( maxX, maxY, maxZ );

  		return this;

  	},

  	setFromBufferAttribute: function ( attribute ) {

  		let minX = + Infinity;
  		let minY = + Infinity;
  		let minZ = + Infinity;

  		let maxX = - Infinity;
  		let maxY = - Infinity;
  		let maxZ = - Infinity;

  		for ( let i = 0, l = attribute.count; i < l; i ++ ) {

  			const x = attribute.getX( i );
  			const y = attribute.getY( i );
  			const z = attribute.getZ( i );

  			if ( x < minX ) minX = x;
  			if ( y < minY ) minY = y;
  			if ( z < minZ ) minZ = z;

  			if ( x > maxX ) maxX = x;
  			if ( y > maxY ) maxY = y;
  			if ( z > maxZ ) maxZ = z;

  		}

  		this.min.set( minX, minY, minZ );
  		this.max.set( maxX, maxY, maxZ );

  		return this;

  	},

  	setFromPoints: function ( points ) {

  		this.makeEmpty();

  		for ( let i = 0, il = points.length; i < il; i ++ ) {

  			this.expandByPoint( points[ i ] );

  		}

  		return this;

  	},

  	setFromCenterAndSize: function ( center, size ) {

  		const halfSize = _vector$1.copy( size ).multiplyScalar( 0.5 );

  		this.min.copy( center ).sub( halfSize );
  		this.max.copy( center ).add( halfSize );

  		return this;

  	},

  	setFromObject: function ( object ) {

  		this.makeEmpty();

  		return this.expandByObject( object );

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( box ) {

  		this.min.copy( box.min );
  		this.max.copy( box.max );

  		return this;

  	},

  	makeEmpty: function () {

  		this.min.x = this.min.y = this.min.z = + Infinity;
  		this.max.x = this.max.y = this.max.z = - Infinity;

  		return this;

  	},

  	isEmpty: function () {

  		// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

  		return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );

  	},

  	getCenter: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box3: .getCenter() target is now required' );
  			target = new Vector3();

  		}

  		return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

  	},

  	getSize: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box3: .getSize() target is now required' );
  			target = new Vector3();

  		}

  		return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );

  	},

  	expandByPoint: function ( point ) {

  		this.min.min( point );
  		this.max.max( point );

  		return this;

  	},

  	expandByVector: function ( vector ) {

  		this.min.sub( vector );
  		this.max.add( vector );

  		return this;

  	},

  	expandByScalar: function ( scalar ) {

  		this.min.addScalar( - scalar );
  		this.max.addScalar( scalar );

  		return this;

  	},

  	expandByObject: function ( object ) {

  		// Computes the world-axis-aligned bounding box of an object (including its children),
  		// accounting for both the object's, and children's, world transforms

  		object.updateWorldMatrix( false, false );

  		const geometry = object.geometry;

  		if ( geometry !== undefined ) {

  			if ( geometry.boundingBox === null ) {

  				geometry.computeBoundingBox();

  			}

  			_box.copy( geometry.boundingBox );
  			_box.applyMatrix4( object.matrixWorld );

  			this.union( _box );

  		}

  		const children = object.children;

  		for ( let i = 0, l = children.length; i < l; i ++ ) {

  			this.expandByObject( children[ i ] );

  		}

  		return this;

  	},

  	containsPoint: function ( point ) {

  		return point.x < this.min.x || point.x > this.max.x ||
  			point.y < this.min.y || point.y > this.max.y ||
  			point.z < this.min.z || point.z > this.max.z ? false : true;

  	},

  	containsBox: function ( box ) {

  		return this.min.x <= box.min.x && box.max.x <= this.max.x &&
  			this.min.y <= box.min.y && box.max.y <= this.max.y &&
  			this.min.z <= box.min.z && box.max.z <= this.max.z;

  	},

  	getParameter: function ( point, target ) {

  		// This can potentially have a divide by zero if the box
  		// has a size dimension of 0.

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box3: .getParameter() target is now required' );
  			target = new Vector3();

  		}

  		return target.set(
  			( point.x - this.min.x ) / ( this.max.x - this.min.x ),
  			( point.y - this.min.y ) / ( this.max.y - this.min.y ),
  			( point.z - this.min.z ) / ( this.max.z - this.min.z )
  		);

  	},

  	intersectsBox: function ( box ) {

  		// using 6 splitting planes to rule out intersections.
  		return box.max.x < this.min.x || box.min.x > this.max.x ||
  			box.max.y < this.min.y || box.min.y > this.max.y ||
  			box.max.z < this.min.z || box.min.z > this.max.z ? false : true;

  	},

  	intersectsSphere: function ( sphere ) {

  		// Find the point on the AABB closest to the sphere center.
  		this.clampPoint( sphere.center, _vector$1 );

  		// If that point is inside the sphere, the AABB and sphere intersect.
  		return _vector$1.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );

  	},

  	intersectsPlane: function ( plane ) {

  		// We compute the minimum and maximum dot product values. If those values
  		// are on the same side (back or front) of the plane, then there is no intersection.

  		let min, max;

  		if ( plane.normal.x > 0 ) {

  			min = plane.normal.x * this.min.x;
  			max = plane.normal.x * this.max.x;

  		} else {

  			min = plane.normal.x * this.max.x;
  			max = plane.normal.x * this.min.x;

  		}

  		if ( plane.normal.y > 0 ) {

  			min += plane.normal.y * this.min.y;
  			max += plane.normal.y * this.max.y;

  		} else {

  			min += plane.normal.y * this.max.y;
  			max += plane.normal.y * this.min.y;

  		}

  		if ( plane.normal.z > 0 ) {

  			min += plane.normal.z * this.min.z;
  			max += plane.normal.z * this.max.z;

  		} else {

  			min += plane.normal.z * this.max.z;
  			max += plane.normal.z * this.min.z;

  		}

  		return ( min <= - plane.constant && max >= - plane.constant );

  	},

  	intersectsTriangle: function ( triangle ) {

  		if ( this.isEmpty() ) {

  			return false;

  		}

  		// compute box center and extents
  		this.getCenter( _center );
  		_extents.subVectors( this.max, _center );

  		// translate triangle to aabb origin
  		_v0.subVectors( triangle.a, _center );
  		_v1$2.subVectors( triangle.b, _center );
  		_v2.subVectors( triangle.c, _center );

  		// compute edge vectors for triangle
  		_f0.subVectors( _v1$2, _v0 );
  		_f1.subVectors( _v2, _v1$2 );
  		_f2.subVectors( _v0, _v2 );

  		// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
  		// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
  		// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
  		let axes = [
  			0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y,
  			_f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x,
  			- _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0
  		];
  		if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) {

  			return false;

  		}

  		// test 3 face normals from the aabb
  		axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
  		if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) {

  			return false;

  		}

  		// finally testing the face normal of the triangle
  		// use already existing triangle edge vectors here
  		_triangleNormal.crossVectors( _f0, _f1 );
  		axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ];

  		return satForAxes( axes, _v0, _v1$2, _v2, _extents );

  	},

  	clampPoint: function ( point, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box3: .clampPoint() target is now required' );
  			target = new Vector3();

  		}

  		return target.copy( point ).clamp( this.min, this.max );

  	},

  	distanceToPoint: function ( point ) {

  		const clampedPoint = _vector$1.copy( point ).clamp( this.min, this.max );

  		return clampedPoint.sub( point ).length();

  	},

  	getBoundingSphere: function ( target ) {

  		if ( target === undefined ) {

  			console.error( 'THREE.Box3: .getBoundingSphere() target is now required' );
  			//target = new Sphere(); // removed to avoid cyclic dependency

  		}

  		this.getCenter( target.center );

  		target.radius = this.getSize( _vector$1 ).length() * 0.5;

  		return target;

  	},

  	intersect: function ( box ) {

  		this.min.max( box.min );
  		this.max.min( box.max );

  		// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
  		if ( this.isEmpty() ) this.makeEmpty();

  		return this;

  	},

  	union: function ( box ) {

  		this.min.min( box.min );
  		this.max.max( box.max );

  		return this;

  	},

  	applyMatrix4: function ( matrix ) {

  		// transform of empty box is an empty box.
  		if ( this.isEmpty() ) return this;

  		// NOTE: I am using a binary pattern to specify all 2^3 combinations below
  		_points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
  		_points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
  		_points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
  		_points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
  		_points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
  		_points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
  		_points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
  		_points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111

  		this.setFromPoints( _points );

  		return this;

  	},

  	translate: function ( offset ) {

  		this.min.add( offset );
  		this.max.add( offset );

  		return this;

  	},

  	equals: function ( box ) {

  		return box.min.equals( this.min ) && box.max.equals( this.max );

  	}

  } );

  function satForAxes( axes, v0, v1, v2, extents ) {

  	for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) {

  		_testAxis.fromArray( axes, i );
  		// project the aabb onto the seperating axis
  		const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z );
  		// project all 3 vertices of the triangle onto the seperating axis
  		const p0 = v0.dot( _testAxis );
  		const p1 = v1.dot( _testAxis );
  		const p2 = v2.dot( _testAxis );
  		// actual test, basically see if either of the most extreme of the triangle points intersects r
  		if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {

  			// points of the projected triangle are outside the projected half-length of the aabb
  			// the axis is seperating and we can exit
  			return false;

  		}

  	}

  	return true;

  }

  const _box$1 = new Box3();

  /**
   * @author bhouston / http://clara.io
   * @author mrdoob / http://mrdoob.com/
   */

  function Sphere( center, radius ) {

  	this.center = ( center !== undefined ) ? center : new Vector3();
  	this.radius = ( radius !== undefined ) ? radius : - 1;

  }

  Object.assign( Sphere.prototype, {

  	set: function ( center, radius ) {

  		this.center.copy( center );
  		this.radius = radius;

  		return this;

  	},

  	setFromPoints: function ( points, optionalCenter ) {

  		const center = this.center;

  		if ( optionalCenter !== undefined ) {

  			center.copy( optionalCenter );

  		} else {

  			_box$1.setFromPoints( points ).getCenter( center );

  		}

  		let maxRadiusSq = 0;

  		for ( let i = 0, il = points.length; i < il; i ++ ) {

  			maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );

  		}

  		this.radius = Math.sqrt( maxRadiusSq );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( sphere ) {

  		this.center.copy( sphere.center );
  		this.radius = sphere.radius;

  		return this;

  	},

  	isEmpty: function () {

  		return ( this.radius < 0 );

  	},

  	makeEmpty: function () {

  		this.center.set( 0, 0, 0 );
  		this.radius = - 1;

  		return this;

  	},

  	containsPoint: function ( point ) {

  		return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );

  	},

  	distanceToPoint: function ( point ) {

  		return ( point.distanceTo( this.center ) - this.radius );

  	},

  	intersectsSphere: function ( sphere ) {

  		const radiusSum = this.radius + sphere.radius;

  		return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );

  	},

  	intersectsBox: function ( box ) {

  		return box.intersectsSphere( this );

  	},

  	intersectsPlane: function ( plane ) {

  		return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;

  	},

  	clampPoint: function ( point, target ) {

  		const deltaLengthSq = this.center.distanceToSquared( point );

  		if ( target === undefined ) {

  			console.warn( 'THREE.Sphere: .clampPoint() target is now required' );
  			target = new Vector3();

  		}

  		target.copy( point );

  		if ( deltaLengthSq > ( this.radius * this.radius ) ) {

  			target.sub( this.center ).normalize();
  			target.multiplyScalar( this.radius ).add( this.center );

  		}

  		return target;

  	},

  	getBoundingBox: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Sphere: .getBoundingBox() target is now required' );
  			target = new Box3();

  		}

  		if ( this.isEmpty() ) {

  			// Empty sphere produces empty bounding box
  			target.makeEmpty();
  			return target;

  		}

  		target.set( this.center, this.center );
  		target.expandByScalar( this.radius );

  		return target;

  	},

  	applyMatrix4: function ( matrix ) {

  		this.center.applyMatrix4( matrix );
  		this.radius = this.radius * matrix.getMaxScaleOnAxis();

  		return this;

  	},

  	translate: function ( offset ) {

  		this.center.add( offset );

  		return this;

  	},

  	equals: function ( sphere ) {

  		return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );

  	}

  } );

  const _vector$2 = new Vector3();
  const _segCenter = new Vector3();
  const _segDir = new Vector3();
  const _diff = new Vector3();

  const _edge1 = new Vector3();
  const _edge2 = new Vector3();
  const _normal = new Vector3();

  /**
   * @author bhouston / http://clara.io
   */

  function Ray( origin, direction ) {

  	this.origin = ( origin !== undefined ) ? origin : new Vector3();
  	this.direction = ( direction !== undefined ) ? direction : new Vector3( 0, 0, - 1 );

  }

  Object.assign( Ray.prototype, {

  	set: function ( origin, direction ) {

  		this.origin.copy( origin );
  		this.direction.copy( direction );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( ray ) {

  		this.origin.copy( ray.origin );
  		this.direction.copy( ray.direction );

  		return this;

  	},

  	at: function ( t, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Ray: .at() target is now required' );
  			target = new Vector3();

  		}

  		return target.copy( this.direction ).multiplyScalar( t ).add( this.origin );

  	},

  	lookAt: function ( v ) {

  		this.direction.copy( v ).sub( this.origin ).normalize();

  		return this;

  	},

  	recast: function ( t ) {

  		this.origin.copy( this.at( t, _vector$2 ) );

  		return this;

  	},

  	closestPointToPoint: function ( point, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' );
  			target = new Vector3();

  		}

  		target.subVectors( point, this.origin );

  		const directionDistance = target.dot( this.direction );

  		if ( directionDistance < 0 ) {

  			return target.copy( this.origin );

  		}

  		return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

  	},

  	distanceToPoint: function ( point ) {

  		return Math.sqrt( this.distanceSqToPoint( point ) );

  	},

  	distanceSqToPoint: function ( point ) {

  		const directionDistance = _vector$2.subVectors( point, this.origin ).dot( this.direction );

  		// point behind the ray

  		if ( directionDistance < 0 ) {

  			return this.origin.distanceToSquared( point );

  		}

  		_vector$2.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

  		return _vector$2.distanceToSquared( point );

  	},

  	distanceSqToSegment: function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {

  		// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
  		// It returns the min distance between the ray and the segment
  		// defined by v0 and v1
  		// It can also set two optional targets :
  		// - The closest point on the ray
  		// - The closest point on the segment

  		_segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
  		_segDir.copy( v1 ).sub( v0 ).normalize();
  		_diff.copy( this.origin ).sub( _segCenter );

  		const segExtent = v0.distanceTo( v1 ) * 0.5;
  		const a01 = - this.direction.dot( _segDir );
  		const b0 = _diff.dot( this.direction );
  		const b1 = - _diff.dot( _segDir );
  		const c = _diff.lengthSq();
  		const det = Math.abs( 1 - a01 * a01 );
  		let s0, s1, sqrDist, extDet;

  		if ( det > 0 ) {

  			// The ray and segment are not parallel.

  			s0 = a01 * b1 - b0;
  			s1 = a01 * b0 - b1;
  			extDet = segExtent * det;

  			if ( s0 >= 0 ) {

  				if ( s1 >= - extDet ) {

  					if ( s1 <= extDet ) {

  						// region 0
  						// Minimum at interior points of ray and segment.

  						const invDet = 1 / det;
  						s0 *= invDet;
  						s1 *= invDet;
  						sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;

  					} else {

  						// region 1

  						s1 = segExtent;
  						s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
  						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  					}

  				} else {

  					// region 5

  					s1 = - segExtent;
  					s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
  					sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  				}

  			} else {

  				if ( s1 <= - extDet ) {

  					// region 4

  					s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
  					s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
  					sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  				} else if ( s1 <= extDet ) {

  					// region 3

  					s0 = 0;
  					s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
  					sqrDist = s1 * ( s1 + 2 * b1 ) + c;

  				} else {

  					// region 2

  					s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
  					s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
  					sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  				}

  			}

  		} else {

  			// Ray and segment are parallel.

  			s1 = ( a01 > 0 ) ? - segExtent : segExtent;
  			s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
  			sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  		}

  		if ( optionalPointOnRay ) {

  			optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );

  		}

  		if ( optionalPointOnSegment ) {

  			optionalPointOnSegment.copy( _segDir ).multiplyScalar( s1 ).add( _segCenter );

  		}

  		return sqrDist;

  	},

  	intersectSphere: function ( sphere, target ) {

  		_vector$2.subVectors( sphere.center, this.origin );
  		const tca = _vector$2.dot( this.direction );
  		const d2 = _vector$2.dot( _vector$2 ) - tca * tca;
  		const radius2 = sphere.radius * sphere.radius;

  		if ( d2 > radius2 ) return null;

  		const thc = Math.sqrt( radius2 - d2 );

  		// t0 = first intersect point - entrance on front of sphere
  		const t0 = tca - thc;

  		// t1 = second intersect point - exit point on back of sphere
  		const t1 = tca + thc;

  		// test to see if both t0 and t1 are behind the ray - if so, return null
  		if ( t0 < 0 && t1 < 0 ) return null;

  		// test to see if t0 is behind the ray:
  		// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
  		// in order to always return an intersect point that is in front of the ray.
  		if ( t0 < 0 ) return this.at( t1, target );

  		// else t0 is in front of the ray, so return the first collision point scaled by t0
  		return this.at( t0, target );

  	},

  	intersectsSphere: function ( sphere ) {

  		return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius );

  	},

  	distanceToPlane: function ( plane ) {

  		const denominator = plane.normal.dot( this.direction );

  		if ( denominator === 0 ) {

  			// line is coplanar, return origin
  			if ( plane.distanceToPoint( this.origin ) === 0 ) {

  				return 0;

  			}

  			// Null is preferable to undefined since undefined means.... it is undefined

  			return null;

  		}

  		const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;

  		// Return if the ray never intersects the plane

  		return t >= 0 ? t : null;

  	},

  	intersectPlane: function ( plane, target ) {

  		const t = this.distanceToPlane( plane );

  		if ( t === null ) {

  			return null;

  		}

  		return this.at( t, target );

  	},

  	intersectsPlane: function ( plane ) {

  		// check if the ray lies on the plane first

  		const distToPoint = plane.distanceToPoint( this.origin );

  		if ( distToPoint === 0 ) {

  			return true;

  		}

  		const denominator = plane.normal.dot( this.direction );

  		if ( denominator * distToPoint < 0 ) {

  			return true;

  		}

  		// ray origin is behind the plane (and is pointing behind it)

  		return false;

  	},

  	intersectBox: function ( box, target ) {

  		let tmin, tmax, tymin, tymax, tzmin, tzmax;

  		const invdirx = 1 / this.direction.x,
  			invdiry = 1 / this.direction.y,
  			invdirz = 1 / this.direction.z;

  		const origin = this.origin;

  		if ( invdirx >= 0 ) {

  			tmin = ( box.min.x - origin.x ) * invdirx;
  			tmax = ( box.max.x - origin.x ) * invdirx;

  		} else {

  			tmin = ( box.max.x - origin.x ) * invdirx;
  			tmax = ( box.min.x - origin.x ) * invdirx;

  		}

  		if ( invdiry >= 0 ) {

  			tymin = ( box.min.y - origin.y ) * invdiry;
  			tymax = ( box.max.y - origin.y ) * invdiry;

  		} else {

  			tymin = ( box.max.y - origin.y ) * invdiry;
  			tymax = ( box.min.y - origin.y ) * invdiry;

  		}

  		if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;

  		// These lines also handle the case where tmin or tmax is NaN
  		// (result of 0 * Infinity). x !== x returns true if x is NaN

  		if ( tymin > tmin || tmin !== tmin ) tmin = tymin;

  		if ( tymax < tmax || tmax !== tmax ) tmax = tymax;

  		if ( invdirz >= 0 ) {

  			tzmin = ( box.min.z - origin.z ) * invdirz;
  			tzmax = ( box.max.z - origin.z ) * invdirz;

  		} else {

  			tzmin = ( box.max.z - origin.z ) * invdirz;
  			tzmax = ( box.min.z - origin.z ) * invdirz;

  		}

  		if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;

  		if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;

  		if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;

  		//return point closest to the ray (positive side)

  		if ( tmax < 0 ) return null;

  		return this.at( tmin >= 0 ? tmin : tmax, target );

  	},

  	intersectsBox: function ( box ) {

  		return this.intersectBox( box, _vector$2 ) !== null;

  	},

  	intersectTriangle: function ( a, b, c, backfaceCulling, target ) {

  		// Compute the offset origin, edges, and normal.

  		// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h

  		_edge1.subVectors( b, a );
  		_edge2.subVectors( c, a );
  		_normal.crossVectors( _edge1, _edge2 );

  		// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
  		// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
  		//   |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
  		//   |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
  		//   |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
  		let DdN = this.direction.dot( _normal );
  		let sign;

  		if ( DdN > 0 ) {

  			if ( backfaceCulling ) return null;
  			sign = 1;

  		} else if ( DdN < 0 ) {

  			sign = - 1;
  			DdN = - DdN;

  		} else {

  			return null;

  		}

  		_diff.subVectors( this.origin, a );
  		const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) );

  		// b1 < 0, no intersection
  		if ( DdQxE2 < 0 ) {

  			return null;

  		}

  		const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) );

  		// b2 < 0, no intersection
  		if ( DdE1xQ < 0 ) {

  			return null;

  		}

  		// b1+b2 > 1, no intersection
  		if ( DdQxE2 + DdE1xQ > DdN ) {

  			return null;

  		}

  		// Line intersects triangle, check if ray does.
  		const QdN = - sign * _diff.dot( _normal );

  		// t < 0, no intersection
  		if ( QdN < 0 ) {

  			return null;

  		}

  		// Ray intersects triangle.
  		return this.at( QdN / DdN, target );

  	},

  	applyMatrix4: function ( matrix4 ) {

  		this.origin.applyMatrix4( matrix4 );
  		this.direction.transformDirection( matrix4 );

  		return this;

  	},

  	equals: function ( ray ) {

  		return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   */

  const _vector1 = new Vector3();
  const _vector2 = new Vector3();
  const _normalMatrix = new Matrix3();

  function Plane( normal, constant ) {

  	// normal is assumed to be normalized

  	this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );
  	this.constant = ( constant !== undefined ) ? constant : 0;

  }

  Object.assign( Plane.prototype, {

  	isPlane: true,

  	set: function ( normal, constant ) {

  		this.normal.copy( normal );
  		this.constant = constant;

  		return this;

  	},

  	setComponents: function ( x, y, z, w ) {

  		this.normal.set( x, y, z );
  		this.constant = w;

  		return this;

  	},

  	setFromNormalAndCoplanarPoint: function ( normal, point ) {

  		this.normal.copy( normal );
  		this.constant = - point.dot( this.normal );

  		return this;

  	},

  	setFromCoplanarPoints: function ( a, b, c ) {

  		const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize();

  		// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?

  		this.setFromNormalAndCoplanarPoint( normal, a );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( plane ) {

  		this.normal.copy( plane.normal );
  		this.constant = plane.constant;

  		return this;

  	},

  	normalize: function () {

  		// Note: will lead to a divide by zero if the plane is invalid.

  		const inverseNormalLength = 1.0 / this.normal.length();
  		this.normal.multiplyScalar( inverseNormalLength );
  		this.constant *= inverseNormalLength;

  		return this;

  	},

  	negate: function () {

  		this.constant *= - 1;
  		this.normal.negate();

  		return this;

  	},

  	distanceToPoint: function ( point ) {

  		return this.normal.dot( point ) + this.constant;

  	},

  	distanceToSphere: function ( sphere ) {

  		return this.distanceToPoint( sphere.center ) - sphere.radius;

  	},

  	projectPoint: function ( point, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Plane: .projectPoint() target is now required' );
  			target = new Vector3();

  		}

  		return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point );

  	},

  	intersectLine: function ( line, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Plane: .intersectLine() target is now required' );
  			target = new Vector3();

  		}

  		const direction = line.delta( _vector1 );

  		const denominator = this.normal.dot( direction );

  		if ( denominator === 0 ) {

  			// line is coplanar, return origin
  			if ( this.distanceToPoint( line.start ) === 0 ) {

  				return target.copy( line.start );

  			}

  			// Unsure if this is the correct method to handle this case.
  			return undefined;

  		}

  		const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;

  		if ( t < 0 || t > 1 ) {

  			return undefined;

  		}

  		return target.copy( direction ).multiplyScalar( t ).add( line.start );

  	},

  	intersectsLine: function ( line ) {

  		// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.

  		const startSign = this.distanceToPoint( line.start );
  		const endSign = this.distanceToPoint( line.end );

  		return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );

  	},

  	intersectsBox: function ( box ) {

  		return box.intersectsPlane( this );

  	},

  	intersectsSphere: function ( sphere ) {

  		return sphere.intersectsPlane( this );

  	},

  	coplanarPoint: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Plane: .coplanarPoint() target is now required' );
  			target = new Vector3();

  		}

  		return target.copy( this.normal ).multiplyScalar( - this.constant );

  	},

  	applyMatrix4: function ( matrix, optionalNormalMatrix ) {

  		const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix );

  		const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix );

  		const normal = this.normal.applyMatrix3( normalMatrix ).normalize();

  		this.constant = - referencePoint.dot( normal );

  		return this;

  	},

  	translate: function ( offset ) {

  		this.constant -= offset.dot( this.normal );

  		return this;

  	},

  	equals: function ( plane ) {

  		return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   * @author mrdoob / http://mrdoob.com/
   */

  const _v0$1 = new Vector3();
  const _v1$3 = new Vector3();
  const _v2$1 = new Vector3();
  const _v3 = new Vector3();

  const _vab = new Vector3();
  const _vac = new Vector3();
  const _vbc = new Vector3();
  const _vap = new Vector3();
  const _vbp = new Vector3();
  const _vcp = new Vector3();

  function Triangle( a, b, c ) {

  	this.a = ( a !== undefined ) ? a : new Vector3();
  	this.b = ( b !== undefined ) ? b : new Vector3();
  	this.c = ( c !== undefined ) ? c : new Vector3();

  }

  Object.assign( Triangle, {

  	getNormal: function ( a, b, c, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Triangle: .getNormal() target is now required' );
  			target = new Vector3();

  		}

  		target.subVectors( c, b );
  		_v0$1.subVectors( a, b );
  		target.cross( _v0$1 );

  		const targetLengthSq = target.lengthSq();
  		if ( targetLengthSq > 0 ) {

  			return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );

  		}

  		return target.set( 0, 0, 0 );

  	},

  	// static/instance method to calculate barycentric coordinates
  	// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
  	getBarycoord: function ( point, a, b, c, target ) {

  		_v0$1.subVectors( c, a );
  		_v1$3.subVectors( b, a );
  		_v2$1.subVectors( point, a );

  		const dot00 = _v0$1.dot( _v0$1 );
  		const dot01 = _v0$1.dot( _v1$3 );
  		const dot02 = _v0$1.dot( _v2$1 );
  		const dot11 = _v1$3.dot( _v1$3 );
  		const dot12 = _v1$3.dot( _v2$1 );

  		const denom = ( dot00 * dot11 - dot01 * dot01 );

  		if ( target === undefined ) {

  			console.warn( 'THREE.Triangle: .getBarycoord() target is now required' );
  			target = new Vector3();

  		}

  		// collinear or singular triangle
  		if ( denom === 0 ) {

  			// arbitrary location outside of triangle?
  			// not sure if this is the best idea, maybe should be returning undefined
  			return target.set( - 2, - 1, - 1 );

  		}

  		const invDenom = 1 / denom;
  		const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
  		const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;

  		// barycentric coordinates must always sum to 1
  		return target.set( 1 - u - v, v, u );

  	},

  	containsPoint: function ( point, a, b, c ) {

  		Triangle.getBarycoord( point, a, b, c, _v3 );

  		return ( _v3.x >= 0 ) && ( _v3.y >= 0 ) && ( ( _v3.x + _v3.y ) <= 1 );

  	},

  	getUV: function ( point, p1, p2, p3, uv1, uv2, uv3, target ) {

  		this.getBarycoord( point, p1, p2, p3, _v3 );

  		target.set( 0, 0 );
  		target.addScaledVector( uv1, _v3.x );
  		target.addScaledVector( uv2, _v3.y );
  		target.addScaledVector( uv3, _v3.z );

  		return target;

  	},

  	isFrontFacing: function ( a, b, c, direction ) {

  		_v0$1.subVectors( c, b );
  		_v1$3.subVectors( a, b );

  		// strictly front facing
  		return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false;

  	}

  } );

  Object.assign( Triangle.prototype, {

  	set: function ( a, b, c ) {

  		this.a.copy( a );
  		this.b.copy( b );
  		this.c.copy( c );

  		return this;

  	},

  	setFromPointsAndIndices: function ( points, i0, i1, i2 ) {

  		this.a.copy( points[ i0 ] );
  		this.b.copy( points[ i1 ] );
  		this.c.copy( points[ i2 ] );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( triangle ) {

  		this.a.copy( triangle.a );
  		this.b.copy( triangle.b );
  		this.c.copy( triangle.c );

  		return this;

  	},

  	getArea: function () {

  		_v0$1.subVectors( this.c, this.b );
  		_v1$3.subVectors( this.a, this.b );

  		return _v0$1.cross( _v1$3 ).length() * 0.5;

  	},

  	getMidpoint: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Triangle: .getMidpoint() target is now required' );
  			target = new Vector3();

  		}

  		return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );

  	},

  	getNormal: function ( target ) {

  		return Triangle.getNormal( this.a, this.b, this.c, target );

  	},

  	getPlane: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Triangle: .getPlane() target is now required' );
  			target = new Plane();

  		}

  		return target.setFromCoplanarPoints( this.a, this.b, this.c );

  	},

  	getBarycoord: function ( point, target ) {

  		return Triangle.getBarycoord( point, this.a, this.b, this.c, target );

  	},

  	getUV: function ( point, uv1, uv2, uv3, target ) {

  		return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target );

  	},

  	containsPoint: function ( point ) {

  		return Triangle.containsPoint( point, this.a, this.b, this.c );

  	},

  	isFrontFacing: function ( direction ) {

  		return Triangle.isFrontFacing( this.a, this.b, this.c, direction );

  	},

  	intersectsBox: function ( box ) {

  		return box.intersectsTriangle( this );

  	},

  	closestPointToPoint: function ( p, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Triangle: .closestPointToPoint() target is now required' );
  			target = new Vector3();

  		}

  		const a = this.a, b = this.b, c = this.c;
  		let v, w;

  		// algorithm thanks to Real-Time Collision Detection by Christer Ericson,
  		// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
  		// under the accompanying license; see chapter 5.1.5 for detailed explanation.
  		// basically, we're distinguishing which of the voronoi regions of the triangle
  		// the point lies in with the minimum amount of redundant computation.

  		_vab.subVectors( b, a );
  		_vac.subVectors( c, a );
  		_vap.subVectors( p, a );
  		const d1 = _vab.dot( _vap );
  		const d2 = _vac.dot( _vap );
  		if ( d1 <= 0 && d2 <= 0 ) {

  			// vertex region of A; barycentric coords (1, 0, 0)
  			return target.copy( a );

  		}

  		_vbp.subVectors( p, b );
  		const d3 = _vab.dot( _vbp );
  		const d4 = _vac.dot( _vbp );
  		if ( d3 >= 0 && d4 <= d3 ) {

  			// vertex region of B; barycentric coords (0, 1, 0)
  			return target.copy( b );

  		}

  		const vc = d1 * d4 - d3 * d2;
  		if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {

  			v = d1 / ( d1 - d3 );
  			// edge region of AB; barycentric coords (1-v, v, 0)
  			return target.copy( a ).addScaledVector( _vab, v );

  		}

  		_vcp.subVectors( p, c );
  		const d5 = _vab.dot( _vcp );
  		const d6 = _vac.dot( _vcp );
  		if ( d6 >= 0 && d5 <= d6 ) {

  			// vertex region of C; barycentric coords (0, 0, 1)
  			return target.copy( c );

  		}

  		const vb = d5 * d2 - d1 * d6;
  		if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {

  			w = d2 / ( d2 - d6 );
  			// edge region of AC; barycentric coords (1-w, 0, w)
  			return target.copy( a ).addScaledVector( _vac, w );

  		}

  		const va = d3 * d6 - d5 * d4;
  		if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {

  			_vbc.subVectors( c, b );
  			w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) );
  			// edge region of BC; barycentric coords (0, 1-w, w)
  			return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC

  		}

  		// face region
  		const denom = 1 / ( va + vb + vc );
  		// u = va * denom
  		v = vb * denom;
  		w = vc * denom;

  		return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w );

  	},

  	equals: function ( triangle ) {

  		return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
  	'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
  	'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
  	'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
  	'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
  	'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
  	'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
  	'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
  	'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
  	'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
  	'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
  	'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
  	'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
  	'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
  	'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
  	'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
  	'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
  	'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
  	'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
  	'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
  	'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
  	'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
  	'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
  	'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };

  const _hslA = { h: 0, s: 0, l: 0 };
  const _hslB = { h: 0, s: 0, l: 0 };

  function Color( r, g, b ) {

  	if ( g === undefined && b === undefined ) {

  		// r is THREE.Color, hex or string
  		return this.set( r );

  	}

  	return this.setRGB( r, g, b );

  }

  function hue2rgb( p, q, t ) {

  	if ( t < 0 ) t += 1;
  	if ( t > 1 ) t -= 1;
  	if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
  	if ( t < 1 / 2 ) return q;
  	if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
  	return p;

  }

  function SRGBToLinear( c ) {

  	return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );

  }

  function LinearToSRGB( c ) {

  	return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055;

  }

  Object.assign( Color.prototype, {

  	isColor: true,

  	r: 1, g: 1, b: 1,

  	set: function ( value ) {

  		if ( value && value.isColor ) {

  			this.copy( value );

  		} else if ( typeof value === 'number' ) {

  			this.setHex( value );

  		} else if ( typeof value === 'string' ) {

  			this.setStyle( value );

  		}

  		return this;

  	},

  	setScalar: function ( scalar ) {

  		this.r = scalar;
  		this.g = scalar;
  		this.b = scalar;

  		return this;

  	},

  	setHex: function ( hex ) {

  		hex = Math.floor( hex );

  		this.r = ( hex >> 16 & 255 ) / 255;
  		this.g = ( hex >> 8 & 255 ) / 255;
  		this.b = ( hex & 255 ) / 255;

  		return this;

  	},

  	setRGB: function ( r, g, b ) {

  		this.r = r;
  		this.g = g;
  		this.b = b;

  		return this;

  	},

  	setHSL: function ( h, s, l ) {

  		// h,s,l ranges are in 0.0 - 1.0
  		h = MathUtils.euclideanModulo( h, 1 );
  		s = MathUtils.clamp( s, 0, 1 );
  		l = MathUtils.clamp( l, 0, 1 );

  		if ( s === 0 ) {

  			this.r = this.g = this.b = l;

  		} else {

  			const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
  			const q = ( 2 * l ) - p;

  			this.r = hue2rgb( q, p, h + 1 / 3 );
  			this.g = hue2rgb( q, p, h );
  			this.b = hue2rgb( q, p, h - 1 / 3 );

  		}

  		return this;

  	},

  	setStyle: function ( style ) {

  		function handleAlpha( string ) {

  			if ( string === undefined ) return;

  			if ( parseFloat( string ) < 1 ) {

  				console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );

  			}

  		}


  		let m;

  		if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {

  			// rgb / hsl

  			let color;
  			const name = m[ 1 ];
  			const components = m[ 2 ];

  			switch ( name ) {

  				case 'rgb':
  				case 'rgba':

  					if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

  						// rgb(255,0,0) rgba(255,0,0,0.5)
  						this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
  						this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
  						this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;

  						handleAlpha( color[ 5 ] );

  						return this;

  					}

  					if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

  						// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
  						this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
  						this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
  						this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;

  						handleAlpha( color[ 5 ] );

  						return this;

  					}

  					break;

  				case 'hsl':
  				case 'hsla':

  					if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

  						// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
  						const h = parseFloat( color[ 1 ] ) / 360;
  						const s = parseInt( color[ 2 ], 10 ) / 100;
  						const l = parseInt( color[ 3 ], 10 ) / 100;

  						handleAlpha( color[ 5 ] );

  						return this.setHSL( h, s, l );

  					}

  					break;

  			}

  		} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {

  			// hex color

  			const hex = m[ 1 ];
  			const size = hex.length;

  			if ( size === 3 ) {

  				// #ff0
  				this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
  				this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
  				this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;

  				return this;

  			} else if ( size === 6 ) {

  				// #ff0000
  				this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
  				this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
  				this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;

  				return this;

  			}

  		}

  		if ( style && style.length > 0 ) {

  			return this.setColorName( style );

  		}

  		return this;

  	},

  	setColorName: function ( style ) {

  		// color keywords
  		const hex = _colorKeywords[ style ];

  		if ( hex !== undefined ) {

  			// red
  			this.setHex( hex );

  		} else {

  			// unknown color
  			console.warn( 'THREE.Color: Unknown color ' + style );

  		}

  		return this;

  	},

  	clone: function () {

  		return new this.constructor( this.r, this.g, this.b );

  	},

  	copy: function ( color ) {

  		this.r = color.r;
  		this.g = color.g;
  		this.b = color.b;

  		return this;

  	},

  	copyGammaToLinear: function ( color, gammaFactor ) {

  		if ( gammaFactor === undefined ) gammaFactor = 2.0;

  		this.r = Math.pow( color.r, gammaFactor );
  		this.g = Math.pow( color.g, gammaFactor );
  		this.b = Math.pow( color.b, gammaFactor );

  		return this;

  	},

  	copyLinearToGamma: function ( color, gammaFactor ) {

  		if ( gammaFactor === undefined ) gammaFactor = 2.0;

  		const safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;

  		this.r = Math.pow( color.r, safeInverse );
  		this.g = Math.pow( color.g, safeInverse );
  		this.b = Math.pow( color.b, safeInverse );

  		return this;

  	},

  	convertGammaToLinear: function ( gammaFactor ) {

  		this.copyGammaToLinear( this, gammaFactor );

  		return this;

  	},

  	convertLinearToGamma: function ( gammaFactor ) {

  		this.copyLinearToGamma( this, gammaFactor );

  		return this;

  	},

  	copySRGBToLinear: function ( color ) {

  		this.r = SRGBToLinear( color.r );
  		this.g = SRGBToLinear( color.g );
  		this.b = SRGBToLinear( color.b );

  		return this;

  	},

  	copyLinearToSRGB: function ( color ) {

  		this.r = LinearToSRGB( color.r );
  		this.g = LinearToSRGB( color.g );
  		this.b = LinearToSRGB( color.b );

  		return this;

  	},

  	convertSRGBToLinear: function () {

  		this.copySRGBToLinear( this );

  		return this;

  	},

  	convertLinearToSRGB: function () {

  		this.copyLinearToSRGB( this );

  		return this;

  	},

  	getHex: function () {

  		return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;

  	},

  	getHexString: function () {

  		return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );

  	},

  	getHSL: function ( target ) {

  		// h,s,l ranges are in 0.0 - 1.0

  		if ( target === undefined ) {

  			console.warn( 'THREE.Color: .getHSL() target is now required' );
  			target = { h: 0, s: 0, l: 0 };

  		}

  		const r = this.r, g = this.g, b = this.b;

  		const max = Math.max( r, g, b );
  		const min = Math.min( r, g, b );

  		let hue, saturation;
  		const lightness = ( min + max ) / 2.0;

  		if ( min === max ) {

  			hue = 0;
  			saturation = 0;

  		} else {

  			const delta = max - min;

  			saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );

  			switch ( max ) {

  				case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
  				case g: hue = ( b - r ) / delta + 2; break;
  				case b: hue = ( r - g ) / delta + 4; break;

  			}

  			hue /= 6;

  		}

  		target.h = hue;
  		target.s = saturation;
  		target.l = lightness;

  		return target;

  	},

  	getStyle: function () {

  		return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';

  	},

  	offsetHSL: function ( h, s, l ) {

  		this.getHSL( _hslA );

  		_hslA.h += h; _hslA.s += s; _hslA.l += l;

  		this.setHSL( _hslA.h, _hslA.s, _hslA.l );

  		return this;

  	},

  	add: function ( color ) {

  		this.r += color.r;
  		this.g += color.g;
  		this.b += color.b;

  		return this;

  	},

  	addColors: function ( color1, color2 ) {

  		this.r = color1.r + color2.r;
  		this.g = color1.g + color2.g;
  		this.b = color1.b + color2.b;

  		return this;

  	},

  	addScalar: function ( s ) {

  		this.r += s;
  		this.g += s;
  		this.b += s;

  		return this;

  	},

  	sub: function ( color ) {

  		this.r = Math.max( 0, this.r - color.r );
  		this.g = Math.max( 0, this.g - color.g );
  		this.b = Math.max( 0, this.b - color.b );

  		return this;

  	},

  	multiply: function ( color ) {

  		this.r *= color.r;
  		this.g *= color.g;
  		this.b *= color.b;

  		return this;

  	},

  	multiplyScalar: function ( s ) {

  		this.r *= s;
  		this.g *= s;
  		this.b *= s;

  		return this;

  	},

  	lerp: function ( color, alpha ) {

  		this.r += ( color.r - this.r ) * alpha;
  		this.g += ( color.g - this.g ) * alpha;
  		this.b += ( color.b - this.b ) * alpha;

  		return this;

  	},

  	lerpHSL: function ( color, alpha ) {

  		this.getHSL( _hslA );
  		color.getHSL( _hslB );

  		const h = MathUtils.lerp( _hslA.h, _hslB.h, alpha );
  		const s = MathUtils.lerp( _hslA.s, _hslB.s, alpha );
  		const l = MathUtils.lerp( _hslA.l, _hslB.l, alpha );

  		this.setHSL( h, s, l );

  		return this;

  	},

  	equals: function ( c ) {

  		return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.r = array[ offset ];
  		this.g = array[ offset + 1 ];
  		this.b = array[ offset + 2 ];

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this.r;
  		array[ offset + 1 ] = this.g;
  		array[ offset + 2 ] = this.b;

  		return array;

  	},

  	fromBufferAttribute: function ( attribute, index ) {

  		this.r = attribute.getX( index );
  		this.g = attribute.getY( index );
  		this.b = attribute.getZ( index );

  		if ( attribute.normalized === true ) {

  			// assuming Uint8Array

  			this.r /= 255;
  			this.g /= 255;
  			this.b /= 255;

  		}

  		return this;

  	},

  	toJSON: function () {

  		return this.getHex();

  	}

  } );

  Color.NAMES = _colorKeywords;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function Face3( a, b, c, normal, color, materialIndex ) {

  	this.a = a;
  	this.b = b;
  	this.c = c;

  	this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3();
  	this.vertexNormals = Array.isArray( normal ) ? normal : [];

  	this.color = ( color && color.isColor ) ? color : new Color();
  	this.vertexColors = Array.isArray( color ) ? color : [];

  	this.materialIndex = materialIndex !== undefined ? materialIndex : 0;

  }

  Object.assign( Face3.prototype, {

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.a = source.a;
  		this.b = source.b;
  		this.c = source.c;

  		this.normal.copy( source.normal );
  		this.color.copy( source.color );

  		this.materialIndex = source.materialIndex;

  		for ( let i = 0, il = source.vertexNormals.length; i < il; i ++ ) {

  			this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();

  		}

  		for ( let i = 0, il = source.vertexColors.length; i < il; i ++ ) {

  			this.vertexColors[ i ] = source.vertexColors[ i ].clone();

  		}

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  let materialId = 0;

  function Material() {

  	Object.defineProperty( this, 'id', { value: materialId ++ } );

  	this.uuid = MathUtils.generateUUID();

  	this.name = '';
  	this.type = 'Material';

  	this.fog = true;

  	this.blending = NormalBlending;
  	this.side = FrontSide;
  	this.flatShading = false;
  	this.vertexColors = false;

  	this.opacity = 1;
  	this.transparent = false;

  	this.blendSrc = SrcAlphaFactor;
  	this.blendDst = OneMinusSrcAlphaFactor;
  	this.blendEquation = AddEquation;
  	this.blendSrcAlpha = null;
  	this.blendDstAlpha = null;
  	this.blendEquationAlpha = null;

  	this.depthFunc = LessEqualDepth;
  	this.depthTest = true;
  	this.depthWrite = true;

  	this.stencilWriteMask = 0xff;
  	this.stencilFunc = AlwaysStencilFunc;
  	this.stencilRef = 0;
  	this.stencilFuncMask = 0xff;
  	this.stencilFail = KeepStencilOp;
  	this.stencilZFail = KeepStencilOp;
  	this.stencilZPass = KeepStencilOp;
  	this.stencilWrite = false;

  	this.clippingPlanes = null;
  	this.clipIntersection = false;
  	this.clipShadows = false;

  	this.shadowSide = null;

  	this.colorWrite = true;

  	this.precision = null; // override the renderer's default precision for this material

  	this.polygonOffset = false;
  	this.polygonOffsetFactor = 0;
  	this.polygonOffsetUnits = 0;

  	this.dithering = false;

  	this.alphaTest = 0;
  	this.premultipliedAlpha = false;

  	this.visible = true;

  	this.toneMapped = true;

  	this.userData = {};

  	this.version = 0;

  }

  Material.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: Material,

  	isMaterial: true,

  	onBeforeCompile: function ( /* shaderobject, renderer */ ) {},

  	customProgramCacheKey: function () {

  		return this.onBeforeCompile.toString();

  	},

  	setValues: function ( values ) {

  		if ( values === undefined ) return;

  		for ( const key in values ) {

  			const newValue = values[ key ];

  			if ( newValue === undefined ) {

  				console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
  				continue;

  			}

  			// for backward compatability if shading is set in the constructor
  			if ( key === 'shading' ) {

  				console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
  				this.flatShading = ( newValue === FlatShading ) ? true : false;
  				continue;

  			}

  			const currentValue = this[ key ];

  			if ( currentValue === undefined ) {

  				console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
  				continue;

  			}

  			if ( currentValue && currentValue.isColor ) {

  				currentValue.set( newValue );

  			} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {

  				currentValue.copy( newValue );

  			} else {

  				this[ key ] = newValue;

  			}

  		}

  	},

  	toJSON: function ( meta ) {

  		const isRoot = ( meta === undefined || typeof meta === 'string' );

  		if ( isRoot ) {

  			meta = {
  				textures: {},
  				images: {}
  			};

  		}

  		const data = {
  			metadata: {
  				version: 4.5,
  				type: 'Material',
  				generator: 'Material.toJSON'
  			}
  		};

  		// standard Material serialization
  		data.uuid = this.uuid;
  		data.type = this.type;

  		if ( this.name !== '' ) data.name = this.name;

  		if ( this.color && this.color.isColor ) data.color = this.color.getHex();

  		if ( this.roughness !== undefined ) data.roughness = this.roughness;
  		if ( this.metalness !== undefined ) data.metalness = this.metalness;

  		if ( this.sheen && this.sheen.isColor ) data.sheen = this.sheen.getHex();
  		if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
  		if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity;

  		if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
  		if ( this.shininess !== undefined ) data.shininess = this.shininess;
  		if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat;
  		if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness;

  		if ( this.clearcoatMap && this.clearcoatMap.isTexture ) {

  			data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid;

  		}

  		if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) {

  			data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid;

  		}

  		if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) {

  			data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid;
  			data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();

  		}

  		if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
  		if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid;
  		if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
  		if ( this.lightMap && this.lightMap.isTexture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;

  		if ( this.aoMap && this.aoMap.isTexture ) {

  			data.aoMap = this.aoMap.toJSON( meta ).uuid;
  			data.aoMapIntensity = this.aoMapIntensity;

  		}

  		if ( this.bumpMap && this.bumpMap.isTexture ) {

  			data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
  			data.bumpScale = this.bumpScale;

  		}

  		if ( this.normalMap && this.normalMap.isTexture ) {

  			data.normalMap = this.normalMap.toJSON( meta ).uuid;
  			data.normalMapType = this.normalMapType;
  			data.normalScale = this.normalScale.toArray();

  		}

  		if ( this.displacementMap && this.displacementMap.isTexture ) {

  			data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
  			data.displacementScale = this.displacementScale;
  			data.displacementBias = this.displacementBias;

  		}

  		if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
  		if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;

  		if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
  		if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;

  		if ( this.envMap && this.envMap.isTexture ) {

  			data.envMap = this.envMap.toJSON( meta ).uuid;
  			data.reflectivity = this.reflectivity; // Scale behind envMap
  			data.refractionRatio = this.refractionRatio;

  			if ( this.combine !== undefined ) data.combine = this.combine;
  			if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity;

  		}

  		if ( this.gradientMap && this.gradientMap.isTexture ) {

  			data.gradientMap = this.gradientMap.toJSON( meta ).uuid;

  		}

  		if ( this.size !== undefined ) data.size = this.size;
  		if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;

  		if ( this.blending !== NormalBlending ) data.blending = this.blending;
  		if ( this.flatShading === true ) data.flatShading = this.flatShading;
  		if ( this.side !== FrontSide ) data.side = this.side;
  		if ( this.vertexColors ) data.vertexColors = true;

  		if ( this.opacity < 1 ) data.opacity = this.opacity;
  		if ( this.transparent === true ) data.transparent = this.transparent;

  		data.depthFunc = this.depthFunc;
  		data.depthTest = this.depthTest;
  		data.depthWrite = this.depthWrite;

  		data.stencilWrite = this.stencilWrite;
  		data.stencilWriteMask = this.stencilWriteMask;
  		data.stencilFunc = this.stencilFunc;
  		data.stencilRef = this.stencilRef;
  		data.stencilFuncMask = this.stencilFuncMask;
  		data.stencilFail = this.stencilFail;
  		data.stencilZFail = this.stencilZFail;
  		data.stencilZPass = this.stencilZPass;

  		// rotation (SpriteMaterial)
  		if ( this.rotation && this.rotation !== 0 ) data.rotation = this.rotation;

  		if ( this.polygonOffset === true ) data.polygonOffset = true;
  		if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor;
  		if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits;

  		if ( this.linewidth && this.linewidth !== 1 ) data.linewidth = this.linewidth;
  		if ( this.dashSize !== undefined ) data.dashSize = this.dashSize;
  		if ( this.gapSize !== undefined ) data.gapSize = this.gapSize;
  		if ( this.scale !== undefined ) data.scale = this.scale;

  		if ( this.dithering === true ) data.dithering = true;

  		if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
  		if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;

  		if ( this.wireframe === true ) data.wireframe = this.wireframe;
  		if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
  		if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap;
  		if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;

  		if ( this.morphTargets === true ) data.morphTargets = true;
  		if ( this.morphNormals === true ) data.morphNormals = true;
  		if ( this.skinning === true ) data.skinning = true;

  		if ( this.visible === false ) data.visible = false;

  		if ( this.toneMapped === false ) data.toneMapped = false;

  		if ( JSON.stringify( this.userData ) !== '{}' ) data.userData = this.userData;

  		// TODO: Copied from Object3D.toJSON

  		function extractFromCache( cache ) {

  			const values = [];

  			for ( const key in cache ) {

  				const data = cache[ key ];
  				delete data.metadata;
  				values.push( data );

  			}

  			return values;

  		}

  		if ( isRoot ) {

  			const textures = extractFromCache( meta.textures );
  			const images = extractFromCache( meta.images );

  			if ( textures.length > 0 ) data.textures = textures;
  			if ( images.length > 0 ) data.images = images;

  		}

  		return data;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.name = source.name;

  		this.fog = source.fog;

  		this.blending = source.blending;
  		this.side = source.side;
  		this.flatShading = source.flatShading;
  		this.vertexColors = source.vertexColors;

  		this.opacity = source.opacity;
  		this.transparent = source.transparent;

  		this.blendSrc = source.blendSrc;
  		this.blendDst = source.blendDst;
  		this.blendEquation = source.blendEquation;
  		this.blendSrcAlpha = source.blendSrcAlpha;
  		this.blendDstAlpha = source.blendDstAlpha;
  		this.blendEquationAlpha = source.blendEquationAlpha;

  		this.depthFunc = source.depthFunc;
  		this.depthTest = source.depthTest;
  		this.depthWrite = source.depthWrite;

  		this.stencilWriteMask = source.stencilWriteMask;
  		this.stencilFunc = source.stencilFunc;
  		this.stencilRef = source.stencilRef;
  		this.stencilFuncMask = source.stencilFuncMask;
  		this.stencilFail = source.stencilFail;
  		this.stencilZFail = source.stencilZFail;
  		this.stencilZPass = source.stencilZPass;
  		this.stencilWrite = source.stencilWrite;

  		const srcPlanes = source.clippingPlanes;
  		let dstPlanes = null;

  		if ( srcPlanes !== null ) {

  			const n = srcPlanes.length;
  			dstPlanes = new Array( n );

  			for ( let i = 0; i !== n; ++ i ) {

  				dstPlanes[ i ] = srcPlanes[ i ].clone();

  			}

  		}

  		this.clippingPlanes = dstPlanes;
  		this.clipIntersection = source.clipIntersection;
  		this.clipShadows = source.clipShadows;

  		this.shadowSide = source.shadowSide;

  		this.colorWrite = source.colorWrite;

  		this.precision = source.precision;

  		this.polygonOffset = source.polygonOffset;
  		this.polygonOffsetFactor = source.polygonOffsetFactor;
  		this.polygonOffsetUnits = source.polygonOffsetUnits;

  		this.dithering = source.dithering;

  		this.alphaTest = source.alphaTest;
  		this.premultipliedAlpha = source.premultipliedAlpha;

  		this.visible = source.visible;

  		this.toneMapped = source.toneMapped;

  		this.userData = JSON.parse( JSON.stringify( source.userData ) );

  		return this;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	}

  } );

  Object.defineProperty( Material.prototype, 'needsUpdate', {

  	set: function ( value ) {

  		if ( value === true ) this.version ++;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *  map: new THREE.Texture( <Image> ),
   *
   *  lightMap: new THREE.Texture( <Image> ),
   *  lightMapIntensity: <float>
   *
   *  aoMap: new THREE.Texture( <Image> ),
   *  aoMapIntensity: <float>
   *
   *  specularMap: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
   *  combine: THREE.Multiply,
   *  reflectivity: <float>,
   *  refractionRatio: <float>,
   *
   *  depthTest: <bool>,
   *  depthWrite: <bool>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>
   * }
   */

  function MeshBasicMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshBasicMaterial';

  	this.color = new Color( 0xffffff ); // emissive

  	this.map = null;

  	this.lightMap = null;
  	this.lightMapIntensity = 1.0;

  	this.aoMap = null;
  	this.aoMapIntensity = 1.0;

  	this.specularMap = null;

  	this.alphaMap = null;

  	this.envMap = null;
  	this.combine = MultiplyOperation;
  	this.reflectivity = 1;
  	this.refractionRatio = 0.98;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;
  	this.wireframeLinecap = 'round';
  	this.wireframeLinejoin = 'round';

  	this.skinning = false;
  	this.morphTargets = false;

  	this.setValues( parameters );

  }

  MeshBasicMaterial.prototype = Object.create( Material.prototype );
  MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;

  MeshBasicMaterial.prototype.isMeshBasicMaterial = true;

  MeshBasicMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.map = source.map;

  	this.lightMap = source.lightMap;
  	this.lightMapIntensity = source.lightMapIntensity;

  	this.aoMap = source.aoMap;
  	this.aoMapIntensity = source.aoMapIntensity;

  	this.specularMap = source.specularMap;

  	this.alphaMap = source.alphaMap;

  	this.envMap = source.envMap;
  	this.combine = source.combine;
  	this.reflectivity = source.reflectivity;
  	this.refractionRatio = source.refractionRatio;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;
  	this.wireframeLinecap = source.wireframeLinecap;
  	this.wireframeLinejoin = source.wireframeLinejoin;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  const _vector$3 = new Vector3();
  const _vector2$1 = new Vector2();

  function BufferAttribute( array, itemSize, normalized ) {

  	if ( Array.isArray( array ) ) {

  		throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

  	}

  	this.name = '';

  	this.array = array;
  	this.itemSize = itemSize;
  	this.count = array !== undefined ? array.length / itemSize : 0;
  	this.normalized = normalized === true;

  	this.usage = StaticDrawUsage;
  	this.updateRange = { offset: 0, count: - 1 };

  	this.version = 0;

  }

  Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {

  	set: function ( value ) {

  		if ( value === true ) this.version ++;

  	}

  } );

  Object.assign( BufferAttribute.prototype, {

  	isBufferAttribute: true,

  	onUploadCallback: function () {},

  	setUsage: function ( value ) {

  		this.usage = value;

  		return this;

  	},

  	copy: function ( source ) {

  		this.name = source.name;
  		this.array = new source.array.constructor( source.array );
  		this.itemSize = source.itemSize;
  		this.count = source.count;
  		this.normalized = source.normalized;

  		this.usage = source.usage;

  		return this;

  	},

  	copyAt: function ( index1, attribute, index2 ) {

  		index1 *= this.itemSize;
  		index2 *= attribute.itemSize;

  		for ( let i = 0, l = this.itemSize; i < l; i ++ ) {

  			this.array[ index1 + i ] = attribute.array[ index2 + i ];

  		}

  		return this;

  	},

  	copyArray: function ( array ) {

  		this.array.set( array );

  		return this;

  	},

  	copyColorsArray: function ( colors ) {

  		const array = this.array;
  		let offset = 0;

  		for ( let i = 0, l = colors.length; i < l; i ++ ) {

  			let color = colors[ i ];

  			if ( color === undefined ) {

  				console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
  				color = new Color();

  			}

  			array[ offset ++ ] = color.r;
  			array[ offset ++ ] = color.g;
  			array[ offset ++ ] = color.b;

  		}

  		return this;

  	},

  	copyVector2sArray: function ( vectors ) {

  		const array = this.array;
  		let offset = 0;

  		for ( let i = 0, l = vectors.length; i < l; i ++ ) {

  			let vector = vectors[ i ];

  			if ( vector === undefined ) {

  				console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
  				vector = new Vector2();

  			}

  			array[ offset ++ ] = vector.x;
  			array[ offset ++ ] = vector.y;

  		}

  		return this;

  	},

  	copyVector3sArray: function ( vectors ) {

  		const array = this.array;
  		let offset = 0;

  		for ( let i = 0, l = vectors.length; i < l; i ++ ) {

  			let vector = vectors[ i ];

  			if ( vector === undefined ) {

  				console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
  				vector = new Vector3();

  			}

  			array[ offset ++ ] = vector.x;
  			array[ offset ++ ] = vector.y;
  			array[ offset ++ ] = vector.z;

  		}

  		return this;

  	},

  	copyVector4sArray: function ( vectors ) {

  		const array = this.array;
  		let offset = 0;

  		for ( let i = 0, l = vectors.length; i < l; i ++ ) {

  			let vector = vectors[ i ];

  			if ( vector === undefined ) {

  				console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
  				vector = new Vector4();

  			}

  			array[ offset ++ ] = vector.x;
  			array[ offset ++ ] = vector.y;
  			array[ offset ++ ] = vector.z;
  			array[ offset ++ ] = vector.w;

  		}

  		return this;

  	},

  	applyMatrix3: function ( m ) {

  		if ( this.itemSize === 2 ) {

  			for ( let i = 0, l = this.count; i < l; i ++ ) {

  				_vector2$1.fromBufferAttribute( this, i );
  				_vector2$1.applyMatrix3( m );

  				this.setXY( i, _vector2$1.x, _vector2$1.y, );

  			}

  		} else if ( this.itemSize === 3 ) {

  			for ( let i = 0, l = this.count; i < l; i ++ ) {

  				_vector$3.fromBufferAttribute( this, i );
  				_vector$3.applyMatrix3( m );

  				this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );

  			}

  		}

  		return this;

  	},

  	applyMatrix4: function ( m ) {

  		for ( let i = 0, l = this.count; i < l; i ++ ) {

  			_vector$3.x = this.getX( i );
  			_vector$3.y = this.getY( i );
  			_vector$3.z = this.getZ( i );

  			_vector$3.applyMatrix4( m );

  			this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );

  		}

  		return this;

  	},

  	applyNormalMatrix: function ( m ) {

  		for ( let i = 0, l = this.count; i < l; i ++ ) {

  			_vector$3.x = this.getX( i );
  			_vector$3.y = this.getY( i );
  			_vector$3.z = this.getZ( i );

  			_vector$3.applyNormalMatrix( m );

  			this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );

  		}

  		return this;

  	},

  	transformDirection: function ( m ) {

  		for ( let i = 0, l = this.count; i < l; i ++ ) {

  			_vector$3.x = this.getX( i );
  			_vector$3.y = this.getY( i );
  			_vector$3.z = this.getZ( i );

  			_vector$3.transformDirection( m );

  			this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z );

  		}

  		return this;

  	},

  	set: function ( value, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.array.set( value, offset );

  		return this;

  	},

  	getX: function ( index ) {

  		return this.array[ index * this.itemSize ];

  	},

  	setX: function ( index, x ) {

  		this.array[ index * this.itemSize ] = x;

  		return this;

  	},

  	getY: function ( index ) {

  		return this.array[ index * this.itemSize + 1 ];

  	},

  	setY: function ( index, y ) {

  		this.array[ index * this.itemSize + 1 ] = y;

  		return this;

  	},

  	getZ: function ( index ) {

  		return this.array[ index * this.itemSize + 2 ];

  	},

  	setZ: function ( index, z ) {

  		this.array[ index * this.itemSize + 2 ] = z;

  		return this;

  	},

  	getW: function ( index ) {

  		return this.array[ index * this.itemSize + 3 ];

  	},

  	setW: function ( index, w ) {

  		this.array[ index * this.itemSize + 3 ] = w;

  		return this;

  	},

  	setXY: function ( index, x, y ) {

  		index *= this.itemSize;

  		this.array[ index + 0 ] = x;
  		this.array[ index + 1 ] = y;

  		return this;

  	},

  	setXYZ: function ( index, x, y, z ) {

  		index *= this.itemSize;

  		this.array[ index + 0 ] = x;
  		this.array[ index + 1 ] = y;
  		this.array[ index + 2 ] = z;

  		return this;

  	},

  	setXYZW: function ( index, x, y, z, w ) {

  		index *= this.itemSize;

  		this.array[ index + 0 ] = x;
  		this.array[ index + 1 ] = y;
  		this.array[ index + 2 ] = z;
  		this.array[ index + 3 ] = w;

  		return this;

  	},

  	onUpload: function ( callback ) {

  		this.onUploadCallback = callback;

  		return this;

  	},

  	clone: function () {

  		return new this.constructor( this.array, this.itemSize ).copy( this );

  	},

  	toJSON: function () {

  		return {
  			itemSize: this.itemSize,
  			type: this.array.constructor.name,
  			array: Array.prototype.slice.call( this.array ),
  			normalized: this.normalized
  		};

  	}

  } );

  //

  function Int8BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Int8Array( array ), itemSize, normalized );

  }

  Int8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Int8BufferAttribute.prototype.constructor = Int8BufferAttribute;


  function Uint8BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Uint8Array( array ), itemSize, normalized );

  }

  Uint8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute;


  function Uint8ClampedBufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Uint8ClampedArray( array ), itemSize, normalized );

  }

  Uint8ClampedBufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute;


  function Int16BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Int16Array( array ), itemSize, normalized );

  }

  Int16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Int16BufferAttribute.prototype.constructor = Int16BufferAttribute;


  function Uint16BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Uint16Array( array ), itemSize, normalized );

  }

  Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;


  function Int32BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Int32Array( array ), itemSize, normalized );

  }

  Int32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Int32BufferAttribute.prototype.constructor = Int32BufferAttribute;


  function Uint32BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Uint32Array( array ), itemSize, normalized );

  }

  Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;


  function Float32BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Float32Array( array ), itemSize, normalized );

  }

  Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;


  function Float64BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Float64Array( array ), itemSize, normalized );

  }

  Float64BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Float64BufferAttribute.prototype.constructor = Float64BufferAttribute;

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function DirectGeometry() {

  	this.vertices = [];
  	this.normals = [];
  	this.colors = [];
  	this.uvs = [];
  	this.uvs2 = [];

  	this.groups = [];

  	this.morphTargets = {};

  	this.skinWeights = [];
  	this.skinIndices = [];

  	// this.lineDistances = [];

  	this.boundingBox = null;
  	this.boundingSphere = null;

  	// update flags

  	this.verticesNeedUpdate = false;
  	this.normalsNeedUpdate = false;
  	this.colorsNeedUpdate = false;
  	this.uvsNeedUpdate = false;
  	this.groupsNeedUpdate = false;

  }

  Object.assign( DirectGeometry.prototype, {

  	computeGroups: function ( geometry ) {

  		const groups = [];

  		let group, i;
  		let materialIndex = undefined;

  		const faces = geometry.faces;

  		for ( i = 0; i < faces.length; i ++ ) {

  			const face = faces[ i ];

  			// materials

  			if ( face.materialIndex !== materialIndex ) {

  				materialIndex = face.materialIndex;

  				if ( group !== undefined ) {

  					group.count = ( i * 3 ) - group.start;
  					groups.push( group );

  				}

  				group = {
  					start: i * 3,
  					materialIndex: materialIndex
  				};

  			}

  		}

  		if ( group !== undefined ) {

  			group.count = ( i * 3 ) - group.start;
  			groups.push( group );

  		}

  		this.groups = groups;

  	},

  	fromGeometry: function ( geometry ) {

  		const faces = geometry.faces;
  		const vertices = geometry.vertices;
  		const faceVertexUvs = geometry.faceVertexUvs;

  		const hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
  		const hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;

  		// morphs

  		const morphTargets = geometry.morphTargets;
  		const morphTargetsLength = morphTargets.length;

  		let morphTargetsPosition;

  		if ( morphTargetsLength > 0 ) {

  			morphTargetsPosition = [];

  			for ( let i = 0; i < morphTargetsLength; i ++ ) {

  				morphTargetsPosition[ i ] = {
  					name: morphTargets[ i ].name,
  				 	data: []
  				};

  			}

  			this.morphTargets.position = morphTargetsPosition;

  		}

  		const morphNormals = geometry.morphNormals;
  		const morphNormalsLength = morphNormals.length;

  		let morphTargetsNormal;

  		if ( morphNormalsLength > 0 ) {

  			morphTargetsNormal = [];

  			for ( let i = 0; i < morphNormalsLength; i ++ ) {

  				morphTargetsNormal[ i ] = {
  					name: morphNormals[ i ].name,
  				 	data: []
  				};

  			}

  			this.morphTargets.normal = morphTargetsNormal;

  		}

  		// skins

  		const skinIndices = geometry.skinIndices;
  		const skinWeights = geometry.skinWeights;

  		const hasSkinIndices = skinIndices.length === vertices.length;
  		const hasSkinWeights = skinWeights.length === vertices.length;

  		//

  		if ( vertices.length > 0 && faces.length === 0 ) {

  			console.error( 'THREE.DirectGeometry: Faceless geometries are not supported.' );

  		}

  		for ( let i = 0; i < faces.length; i ++ ) {

  			const face = faces[ i ];

  			this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );

  			const vertexNormals = face.vertexNormals;

  			if ( vertexNormals.length === 3 ) {

  				this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );

  			} else {

  				const normal = face.normal;

  				this.normals.push( normal, normal, normal );

  			}

  			const vertexColors = face.vertexColors;

  			if ( vertexColors.length === 3 ) {

  				this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );

  			} else {

  				const color = face.color;

  				this.colors.push( color, color, color );

  			}

  			if ( hasFaceVertexUv === true ) {

  				const vertexUvs = faceVertexUvs[ 0 ][ i ];

  				if ( vertexUvs !== undefined ) {

  					this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

  				} else {

  					console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );

  					this.uvs.push( new Vector2(), new Vector2(), new Vector2() );

  				}

  			}

  			if ( hasFaceVertexUv2 === true ) {

  				const vertexUvs = faceVertexUvs[ 1 ][ i ];

  				if ( vertexUvs !== undefined ) {

  					this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

  				} else {

  					console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );

  					this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );

  				}

  			}

  			// morphs

  			for ( let j = 0; j < morphTargetsLength; j ++ ) {

  				const morphTarget = morphTargets[ j ].vertices;

  				morphTargetsPosition[ j ].data.push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );

  			}

  			for ( let j = 0; j < morphNormalsLength; j ++ ) {

  				const morphNormal = morphNormals[ j ].vertexNormals[ i ];

  				morphTargetsNormal[ j ].data.push( morphNormal.a, morphNormal.b, morphNormal.c );

  			}

  			// skins

  			if ( hasSkinIndices ) {

  				this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );

  			}

  			if ( hasSkinWeights ) {

  				this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );

  			}

  		}

  		this.computeGroups( geometry );

  		this.verticesNeedUpdate = geometry.verticesNeedUpdate;
  		this.normalsNeedUpdate = geometry.normalsNeedUpdate;
  		this.colorsNeedUpdate = geometry.colorsNeedUpdate;
  		this.uvsNeedUpdate = geometry.uvsNeedUpdate;
  		this.groupsNeedUpdate = geometry.groupsNeedUpdate;

  		if ( geometry.boundingSphere !== null ) {

  			this.boundingSphere = geometry.boundingSphere.clone();

  		}

  		if ( geometry.boundingBox !== null ) {

  			this.boundingBox = geometry.boundingBox.clone();

  		}

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function arrayMax( array ) {

  	if ( array.length === 0 ) return - Infinity;

  	let max = array[ 0 ];

  	for ( let i = 1, l = array.length; i < l; ++ i ) {

  		if ( array[ i ] > max ) max = array[ i ];

  	}

  	return max;

  }

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   */

  let _bufferGeometryId = 1; // BufferGeometry uses odd numbers as Id

  const _m1$2 = new Matrix4();
  const _obj = new Object3D();
  const _offset = new Vector3();
  const _box$2 = new Box3();
  const _boxMorphTargets = new Box3();
  const _vector$4 = new Vector3();

  function BufferGeometry() {

  	Object.defineProperty( this, 'id', { value: _bufferGeometryId += 2 } );

  	this.uuid = MathUtils.generateUUID();

  	this.name = '';
  	this.type = 'BufferGeometry';

  	this.index = null;
  	this.attributes = {};

  	this.morphAttributes = {};
  	this.morphTargetsRelative = false;

  	this.groups = [];

  	this.boundingBox = null;
  	this.boundingSphere = null;

  	this.drawRange = { start: 0, count: Infinity };

  	this.userData = {};

  }

  BufferGeometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: BufferGeometry,

  	isBufferGeometry: true,

  	getIndex: function () {

  		return this.index;

  	},

  	setIndex: function ( index ) {

  		if ( Array.isArray( index ) ) {

  			this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );

  		} else {

  			this.index = index;

  		}

  	},

  	getAttribute: function ( name ) {

  		return this.attributes[ name ];

  	},

  	setAttribute: function ( name, attribute ) {

  		this.attributes[ name ] = attribute;

  		return this;

  	},

  	deleteAttribute: function ( name ) {

  		delete this.attributes[ name ];

  		return this;

  	},

  	addGroup: function ( start, count, materialIndex ) {

  		this.groups.push( {

  			start: start,
  			count: count,
  			materialIndex: materialIndex !== undefined ? materialIndex : 0

  		} );

  	},

  	clearGroups: function () {

  		this.groups = [];

  	},

  	setDrawRange: function ( start, count ) {

  		this.drawRange.start = start;
  		this.drawRange.count = count;

  	},

  	applyMatrix4: function ( matrix ) {

  		const position = this.attributes.position;

  		if ( position !== undefined ) {

  			position.applyMatrix4( matrix );

  			position.needsUpdate = true;

  		}

  		const normal = this.attributes.normal;

  		if ( normal !== undefined ) {

  			const normalMatrix = new Matrix3().getNormalMatrix( matrix );

  			normal.applyNormalMatrix( normalMatrix );

  			normal.needsUpdate = true;

  		}

  		const tangent = this.attributes.tangent;

  		if ( tangent !== undefined ) {

  			tangent.transformDirection( matrix );

  			tangent.needsUpdate = true;

  		}

  		if ( this.boundingBox !== null ) {

  			this.computeBoundingBox();

  		}

  		if ( this.boundingSphere !== null ) {

  			this.computeBoundingSphere();

  		}

  		return this;

  	},

  	rotateX: function ( angle ) {

  		// rotate geometry around world x-axis

  		_m1$2.makeRotationX( angle );

  		this.applyMatrix4( _m1$2 );

  		return this;

  	},

  	rotateY: function ( angle ) {

  		// rotate geometry around world y-axis

  		_m1$2.makeRotationY( angle );

  		this.applyMatrix4( _m1$2 );

  		return this;

  	},

  	rotateZ: function ( angle ) {

  		// rotate geometry around world z-axis

  		_m1$2.makeRotationZ( angle );

  		this.applyMatrix4( _m1$2 );

  		return this;

  	},

  	translate: function ( x, y, z ) {

  		// translate geometry

  		_m1$2.makeTranslation( x, y, z );

  		this.applyMatrix4( _m1$2 );

  		return this;

  	},

  	scale: function ( x, y, z ) {

  		// scale geometry

  		_m1$2.makeScale( x, y, z );

  		this.applyMatrix4( _m1$2 );

  		return this;

  	},

  	lookAt: function ( vector ) {

  		_obj.lookAt( vector );

  		_obj.updateMatrix();

  		this.applyMatrix4( _obj.matrix );

  		return this;

  	},

  	center: function () {

  		this.computeBoundingBox();

  		this.boundingBox.getCenter( _offset ).negate();

  		this.translate( _offset.x, _offset.y, _offset.z );

  		return this;

  	},

  	setFromObject: function ( object ) {

  		// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );

  		const geometry = object.geometry;

  		if ( object.isPoints || object.isLine ) {

  			const positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 );
  			const colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );

  			this.setAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
  			this.setAttribute( 'color', colors.copyColorsArray( geometry.colors ) );

  			if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {

  				const lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );

  				this.setAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );

  			}

  			if ( geometry.boundingSphere !== null ) {

  				this.boundingSphere = geometry.boundingSphere.clone();

  			}

  			if ( geometry.boundingBox !== null ) {

  				this.boundingBox = geometry.boundingBox.clone();

  			}

  		} else if ( object.isMesh ) {

  			if ( geometry && geometry.isGeometry ) {

  				this.fromGeometry( geometry );

  			}

  		}

  		return this;

  	},

  	setFromPoints: function ( points ) {

  		const position = [];

  		for ( let i = 0, l = points.length; i < l; i ++ ) {

  			const point = points[ i ];
  			position.push( point.x, point.y, point.z || 0 );

  		}

  		this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) );

  		return this;

  	},

  	updateFromObject: function ( object ) {

  		let geometry = object.geometry;

  		if ( object.isMesh ) {

  			let direct = geometry.__directGeometry;

  			if ( geometry.elementsNeedUpdate === true ) {

  				direct = undefined;
  				geometry.elementsNeedUpdate = false;

  			}

  			if ( direct === undefined ) {

  				return this.fromGeometry( geometry );

  			}

  			direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
  			direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
  			direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
  			direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
  			direct.groupsNeedUpdate = geometry.groupsNeedUpdate;

  			geometry.verticesNeedUpdate = false;
  			geometry.normalsNeedUpdate = false;
  			geometry.colorsNeedUpdate = false;
  			geometry.uvsNeedUpdate = false;
  			geometry.groupsNeedUpdate = false;

  			geometry = direct;

  		}

  		if ( geometry.verticesNeedUpdate === true ) {

  			const attribute = this.attributes.position;

  			if ( attribute !== undefined ) {

  				attribute.copyVector3sArray( geometry.vertices );
  				attribute.needsUpdate = true;

  			}

  			geometry.verticesNeedUpdate = false;

  		}

  		if ( geometry.normalsNeedUpdate === true ) {

  			const attribute = this.attributes.normal;

  			if ( attribute !== undefined ) {

  				attribute.copyVector3sArray( geometry.normals );
  				attribute.needsUpdate = true;

  			}

  			geometry.normalsNeedUpdate = false;

  		}

  		if ( geometry.colorsNeedUpdate === true ) {

  			const attribute = this.attributes.color;

  			if ( attribute !== undefined ) {

  				attribute.copyColorsArray( geometry.colors );
  				attribute.needsUpdate = true;

  			}

  			geometry.colorsNeedUpdate = false;

  		}

  		if ( geometry.uvsNeedUpdate ) {

  			const attribute = this.attributes.uv;

  			if ( attribute !== undefined ) {

  				attribute.copyVector2sArray( geometry.uvs );
  				attribute.needsUpdate = true;

  			}

  			geometry.uvsNeedUpdate = false;

  		}

  		if ( geometry.lineDistancesNeedUpdate ) {

  			const attribute = this.attributes.lineDistance;

  			if ( attribute !== undefined ) {

  				attribute.copyArray( geometry.lineDistances );
  				attribute.needsUpdate = true;

  			}

  			geometry.lineDistancesNeedUpdate = false;

  		}

  		if ( geometry.groupsNeedUpdate ) {

  			geometry.computeGroups( object.geometry );
  			this.groups = geometry.groups;

  			geometry.groupsNeedUpdate = false;

  		}

  		return this;

  	},

  	fromGeometry: function ( geometry ) {

  		geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );

  		return this.fromDirectGeometry( geometry.__directGeometry );

  	},

  	fromDirectGeometry: function ( geometry ) {

  		const positions = new Float32Array( geometry.vertices.length * 3 );
  		this.setAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );

  		if ( geometry.normals.length > 0 ) {

  			const normals = new Float32Array( geometry.normals.length * 3 );
  			this.setAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );

  		}

  		if ( geometry.colors.length > 0 ) {

  			const colors = new Float32Array( geometry.colors.length * 3 );
  			this.setAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );

  		}

  		if ( geometry.uvs.length > 0 ) {

  			const uvs = new Float32Array( geometry.uvs.length * 2 );
  			this.setAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );

  		}

  		if ( geometry.uvs2.length > 0 ) {

  			const uvs2 = new Float32Array( geometry.uvs2.length * 2 );
  			this.setAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );

  		}

  		// groups

  		this.groups = geometry.groups;

  		// morphs

  		for ( const name in geometry.morphTargets ) {

  			const array = [];
  			const morphTargets = geometry.morphTargets[ name ];

  			for ( let i = 0, l = morphTargets.length; i < l; i ++ ) {

  				const morphTarget = morphTargets[ i ];

  				const attribute = new Float32BufferAttribute( morphTarget.data.length * 3, 3 );
  				attribute.name = morphTarget.name;

  				array.push( attribute.copyVector3sArray( morphTarget.data ) );

  			}

  			this.morphAttributes[ name ] = array;

  		}

  		// skinning

  		if ( geometry.skinIndices.length > 0 ) {

  			const skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
  			this.setAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );

  		}

  		if ( geometry.skinWeights.length > 0 ) {

  			const skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
  			this.setAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );

  		}

  		//

  		if ( geometry.boundingSphere !== null ) {

  			this.boundingSphere = geometry.boundingSphere.clone();

  		}

  		if ( geometry.boundingBox !== null ) {

  			this.boundingBox = geometry.boundingBox.clone();

  		}

  		return this;

  	},

  	computeBoundingBox: function () {

  		if ( this.boundingBox === null ) {

  			this.boundingBox = new Box3();

  		}

  		const position = this.attributes.position;
  		const morphAttributesPosition = this.morphAttributes.position;

  		if ( position !== undefined ) {

  			this.boundingBox.setFromBufferAttribute( position );

  			// process morph attributes if present

  			if ( morphAttributesPosition ) {

  				for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {

  					const morphAttribute = morphAttributesPosition[ i ];
  					_box$2.setFromBufferAttribute( morphAttribute );

  					if ( this.morphTargetsRelative ) {

  						_vector$4.addVectors( this.boundingBox.min, _box$2.min );
  						this.boundingBox.expandByPoint( _vector$4 );

  						_vector$4.addVectors( this.boundingBox.max, _box$2.max );
  						this.boundingBox.expandByPoint( _vector$4 );

  					} else {

  						this.boundingBox.expandByPoint( _box$2.min );
  						this.boundingBox.expandByPoint( _box$2.max );

  					}

  				}

  			}

  		} else {

  			this.boundingBox.makeEmpty();

  		}

  		if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {

  			console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );

  		}

  	},

  	computeBoundingSphere: function () {

  		if ( this.boundingSphere === null ) {

  			this.boundingSphere = new Sphere();

  		}

  		const position = this.attributes.position;
  		const morphAttributesPosition = this.morphAttributes.position;

  		if ( position ) {

  			// first, find the center of the bounding sphere

  			const center = this.boundingSphere.center;

  			_box$2.setFromBufferAttribute( position );

  			// process morph attributes if present

  			if ( morphAttributesPosition ) {

  				for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {

  					const morphAttribute = morphAttributesPosition[ i ];
  					_boxMorphTargets.setFromBufferAttribute( morphAttribute );

  					if ( this.morphTargetsRelative ) {

  						_vector$4.addVectors( _box$2.min, _boxMorphTargets.min );
  						_box$2.expandByPoint( _vector$4 );

  						_vector$4.addVectors( _box$2.max, _boxMorphTargets.max );
  						_box$2.expandByPoint( _vector$4 );

  					} else {

  						_box$2.expandByPoint( _boxMorphTargets.min );
  						_box$2.expandByPoint( _boxMorphTargets.max );

  					}

  				}

  			}

  			_box$2.getCenter( center );

  			// second, try to find a boundingSphere with a radius smaller than the
  			// boundingSphere of the boundingBox: sqrt(3) smaller in the best case

  			let maxRadiusSq = 0;

  			for ( let i = 0, il = position.count; i < il; i ++ ) {

  				_vector$4.fromBufferAttribute( position, i );

  				maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) );

  			}

  			// process morph attributes if present

  			if ( morphAttributesPosition ) {

  				for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {

  					const morphAttribute = morphAttributesPosition[ i ];
  					const morphTargetsRelative = this.morphTargetsRelative;

  					for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) {

  						_vector$4.fromBufferAttribute( morphAttribute, j );

  						if ( morphTargetsRelative ) {

  							_offset.fromBufferAttribute( position, j );
  							_vector$4.add( _offset );

  						}

  						maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) );

  					}

  				}

  			}

  			this.boundingSphere.radius = Math.sqrt( maxRadiusSq );

  			if ( isNaN( this.boundingSphere.radius ) ) {

  				console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );

  			}

  		}

  	},

  	computeFaceNormals: function () {

  		// backwards compatibility

  	},

  	computeVertexNormals: function () {

  		const index = this.index;
  		const positionAttribute = this.getAttribute( 'position' );

  		if ( positionAttribute !== undefined ) {

  			let normalAttribute = this.getAttribute( 'normal' );

  			if ( normalAttribute === undefined ) {

  				normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 );
  				this.setAttribute( 'normal', normalAttribute );

  			} else {

  				// reset existing normals to zero

  				for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) {

  					normalAttribute.setXYZ( i, 0, 0, 0 );

  				}

  			}

  			const pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
  			const nA = new Vector3(), nB = new Vector3(), nC = new Vector3();
  			const cb = new Vector3(), ab = new Vector3();

  			// indexed elements

  			if ( index ) {

  				for ( let i = 0, il = index.count; i < il; i += 3 ) {

  					const vA = index.getX( i + 0 );
  					const vB = index.getX( i + 1 );
  					const vC = index.getX( i + 2 );

  					pA.fromBufferAttribute( positionAttribute, vA );
  					pB.fromBufferAttribute( positionAttribute, vB );
  					pC.fromBufferAttribute( positionAttribute, vC );

  					cb.subVectors( pC, pB );
  					ab.subVectors( pA, pB );
  					cb.cross( ab );

  					nA.fromBufferAttribute( normalAttribute, vA );
  					nB.fromBufferAttribute( normalAttribute, vB );
  					nC.fromBufferAttribute( normalAttribute, vC );

  					nA.add( cb );
  					nB.add( cb );
  					nC.add( cb );

  					normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z );
  					normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z );
  					normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z );

  				}

  			} else {

  				// non-indexed elements (unconnected triangle soup)

  				for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) {

  					pA.fromBufferAttribute( positionAttribute, i + 0 );
  					pB.fromBufferAttribute( positionAttribute, i + 1 );
  					pC.fromBufferAttribute( positionAttribute, i + 2 );

  					cb.subVectors( pC, pB );
  					ab.subVectors( pA, pB );
  					cb.cross( ab );

  					normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z );
  					normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z );
  					normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z );

  				}

  			}

  			this.normalizeNormals();

  			normalAttribute.needsUpdate = true;

  		}

  	},

  	merge: function ( geometry, offset ) {

  		if ( ! ( geometry && geometry.isBufferGeometry ) ) {

  			console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
  			return;

  		}

  		if ( offset === undefined ) {

  			offset = 0;

  			console.warn(
  				'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. '
  				+ 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.'
  			);

  		}

  		const attributes = this.attributes;

  		for ( const key in attributes ) {

  			if ( geometry.attributes[ key ] === undefined ) continue;

  			const attribute1 = attributes[ key ];
  			const attributeArray1 = attribute1.array;

  			const attribute2 = geometry.attributes[ key ];
  			const attributeArray2 = attribute2.array;

  			const attributeOffset = attribute2.itemSize * offset;
  			const length = Math.min( attributeArray2.length, attributeArray1.length - attributeOffset );

  			for ( let i = 0, j = attributeOffset; i < length; i ++, j ++ ) {

  				attributeArray1[ j ] = attributeArray2[ i ];

  			}

  		}

  		return this;

  	},

  	normalizeNormals: function () {

  		const normals = this.attributes.normal;

  		for ( let i = 0, il = normals.count; i < il; i ++ ) {

  			_vector$4.fromBufferAttribute( normals, i );

  			_vector$4.normalize();

  			normals.setXYZ( i, _vector$4.x, _vector$4.y, _vector$4.z );

  		}

  	},

  	toNonIndexed: function () {

  		function convertBufferAttribute( attribute, indices ) {

  			const array = attribute.array;
  			const itemSize = attribute.itemSize;
  			const normalized = attribute.normalized;

  			const array2 = new array.constructor( indices.length * itemSize );

  			let index = 0, index2 = 0;

  			for ( let i = 0, l = indices.length; i < l; i ++ ) {

  				index = indices[ i ] * itemSize;

  				for ( let j = 0; j < itemSize; j ++ ) {

  					array2[ index2 ++ ] = array[ index ++ ];

  				}

  			}

  			return new BufferAttribute( array2, itemSize, normalized );

  		}

  		//

  		if ( this.index === null ) {

  			console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
  			return this;

  		}

  		const geometry2 = new BufferGeometry();

  		const indices = this.index.array;
  		const attributes = this.attributes;

  		// attributes

  		for ( const name in attributes ) {

  			const attribute = attributes[ name ];

  			const newAttribute = convertBufferAttribute( attribute, indices );

  			geometry2.setAttribute( name, newAttribute );

  		}

  		// morph attributes

  		const morphAttributes = this.morphAttributes;

  		for ( const name in morphAttributes ) {

  			const morphArray = [];
  			const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes

  			for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) {

  				const attribute = morphAttribute[ i ];

  				const newAttribute = convertBufferAttribute( attribute, indices );

  				morphArray.push( newAttribute );

  			}

  			geometry2.morphAttributes[ name ] = morphArray;

  		}

  		geometry2.morphTargetsRelative = this.morphTargetsRelative;

  		// groups

  		const groups = this.groups;

  		for ( let i = 0, l = groups.length; i < l; i ++ ) {

  			const group = groups[ i ];
  			geometry2.addGroup( group.start, group.count, group.materialIndex );

  		}

  		return geometry2;

  	},

  	toJSON: function () {

  		const data = {
  			metadata: {
  				version: 4.5,
  				type: 'BufferGeometry',
  				generator: 'BufferGeometry.toJSON'
  			}
  		};

  		// standard BufferGeometry serialization

  		data.uuid = this.uuid;
  		data.type = this.type;
  		if ( this.name !== '' ) data.name = this.name;
  		if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData;

  		if ( this.parameters !== undefined ) {

  			const parameters = this.parameters;

  			for ( const key in parameters ) {

  				if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];

  			}

  			return data;

  		}

  		data.data = { attributes: {} };

  		const index = this.index;

  		if ( index !== null ) {

  			data.data.index = {
  				type: index.array.constructor.name,
  				array: Array.prototype.slice.call( index.array )
  			};

  		}

  		const attributes = this.attributes;

  		for ( const key in attributes ) {

  			const attribute = attributes[ key ];

  			const attributeData = attribute.toJSON( data.data );

  			if ( attribute.name !== '' ) attributeData.name = attribute.name;

  			data.data.attributes[ key ] = attributeData;

  		}

  		const morphAttributes = {};
  		let hasMorphAttributes = false;

  		for ( const key in this.morphAttributes ) {

  			const attributeArray = this.morphAttributes[ key ];

  			const array = [];

  			for ( let i = 0, il = attributeArray.length; i < il; i ++ ) {

  				const attribute = attributeArray[ i ];

  				const attributeData = attribute.toJSON( data.data );

  				if ( attribute.name !== '' ) attributeData.name = attribute.name;

  				array.push( attributeData );

  			}

  			if ( array.length > 0 ) {

  				morphAttributes[ key ] = array;

  				hasMorphAttributes = true;

  			}

  		}

  		if ( hasMorphAttributes ) {

  			data.data.morphAttributes = morphAttributes;
  			data.data.morphTargetsRelative = this.morphTargetsRelative;

  		}

  		const groups = this.groups;

  		if ( groups.length > 0 ) {

  			data.data.groups = JSON.parse( JSON.stringify( groups ) );

  		}

  		const boundingSphere = this.boundingSphere;

  		if ( boundingSphere !== null ) {

  			data.data.boundingSphere = {
  				center: boundingSphere.center.toArray(),
  				radius: boundingSphere.radius
  			};

  		}

  		return data;

  	},

  	clone: function () {

  		/*
  		 // Handle primitives

  		 const parameters = this.parameters;

  		 if ( parameters !== undefined ) {

  		 const values = [];

  		 for ( const key in parameters ) {

  		 values.push( parameters[ key ] );

  		 }

  		 const geometry = Object.create( this.constructor.prototype );
  		 this.constructor.apply( geometry, values );
  		 return geometry;

  		 }

  		 return new this.constructor().copy( this );
  		 */

  		return new BufferGeometry().copy( this );

  	},

  	copy: function ( source ) {

  		// reset

  		this.index = null;
  		this.attributes = {};
  		this.morphAttributes = {};
  		this.groups = [];
  		this.boundingBox = null;
  		this.boundingSphere = null;

  		// used for storing cloned, shared data

  		const data = {};

  		// name

  		this.name = source.name;

  		// index

  		const index = source.index;

  		if ( index !== null ) {

  			this.setIndex( index.clone( data ) );

  		}

  		// attributes

  		const attributes = source.attributes;

  		for ( const name in attributes ) {

  			const attribute = attributes[ name ];
  			this.setAttribute( name, attribute.clone( data ) );

  		}

  		// morph attributes

  		const morphAttributes = source.morphAttributes;

  		for ( const name in morphAttributes ) {

  			const array = [];
  			const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes

  			for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) {

  				array.push( morphAttribute[ i ].clone( data ) );

  			}

  			this.morphAttributes[ name ] = array;

  		}

  		this.morphTargetsRelative = source.morphTargetsRelative;

  		// groups

  		const groups = source.groups;

  		for ( let i = 0, l = groups.length; i < l; i ++ ) {

  			const group = groups[ i ];
  			this.addGroup( group.start, group.count, group.materialIndex );

  		}

  		// bounding box

  		const boundingBox = source.boundingBox;

  		if ( boundingBox !== null ) {

  			this.boundingBox = boundingBox.clone();

  		}

  		// bounding sphere

  		const boundingSphere = source.boundingSphere;

  		if ( boundingSphere !== null ) {

  			this.boundingSphere = boundingSphere.clone();

  		}

  		// draw range

  		this.drawRange.start = source.drawRange.start;
  		this.drawRange.count = source.drawRange.count;

  		// user data

  		this.userData = source.userData;

  		return this;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author mikael emtinger / http://gomo.se/
   * @author jonobr1 / http://jonobr1.com/
   */

  const _inverseMatrix = new Matrix4();
  const _ray = new Ray();
  const _sphere = new Sphere();

  const _vA = new Vector3();
  const _vB = new Vector3();
  const _vC = new Vector3();

  const _tempA = new Vector3();
  const _tempB = new Vector3();
  const _tempC = new Vector3();

  const _morphA = new Vector3();
  const _morphB = new Vector3();
  const _morphC = new Vector3();

  const _uvA = new Vector2();
  const _uvB = new Vector2();
  const _uvC = new Vector2();

  const _intersectionPoint = new Vector3();
  const _intersectionPointWorld = new Vector3();

  function Mesh( geometry, material ) {

  	Object3D.call( this );

  	this.type = 'Mesh';

  	this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
  	this.material = material !== undefined ? material : new MeshBasicMaterial();

  	this.updateMorphTargets();

  }

  Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Mesh,

  	isMesh: true,

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source );

  		if ( source.morphTargetInfluences !== undefined ) {

  			this.morphTargetInfluences = source.morphTargetInfluences.slice();

  		}

  		if ( source.morphTargetDictionary !== undefined ) {

  			this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary );

  		}

  		this.material = source.material;
  		this.geometry = source.geometry;

  		return this;

  	},

  	updateMorphTargets: function () {

  		const geometry = this.geometry;

  		if ( geometry.isBufferGeometry ) {

  			const morphAttributes = geometry.morphAttributes;
  			const keys = Object.keys( morphAttributes );

  			if ( keys.length > 0 ) {

  				const morphAttribute = morphAttributes[ keys[ 0 ] ];

  				if ( morphAttribute !== undefined ) {

  					this.morphTargetInfluences = [];
  					this.morphTargetDictionary = {};

  					for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {

  						const name = morphAttribute[ m ].name || String( m );

  						this.morphTargetInfluences.push( 0 );
  						this.morphTargetDictionary[ name ] = m;

  					}

  				}

  			}

  		} else {

  			const morphTargets = geometry.morphTargets;

  			if ( morphTargets !== undefined && morphTargets.length > 0 ) {

  				console.error( 'THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );

  			}

  		}

  	},

  	raycast: function ( raycaster, intersects ) {

  		const geometry = this.geometry;
  		const material = this.material;
  		const matrixWorld = this.matrixWorld;

  		if ( material === undefined ) return;

  		// Checking boundingSphere distance to ray

  		if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

  		_sphere.copy( geometry.boundingSphere );
  		_sphere.applyMatrix4( matrixWorld );

  		if ( raycaster.ray.intersectsSphere( _sphere ) === false ) return;

  		//

  		_inverseMatrix.getInverse( matrixWorld );
  		_ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix );

  		// Check boundingBox before continuing

  		if ( geometry.boundingBox !== null ) {

  			if ( _ray.intersectsBox( geometry.boundingBox ) === false ) return;

  		}

  		let intersection;

  		if ( geometry.isBufferGeometry ) {

  			const index = geometry.index;
  			const position = geometry.attributes.position;
  			const morphPosition = geometry.morphAttributes.position;
  			const morphTargetsRelative = geometry.morphTargetsRelative;
  			const uv = geometry.attributes.uv;
  			const uv2 = geometry.attributes.uv2;
  			const groups = geometry.groups;
  			const drawRange = geometry.drawRange;

  			if ( index !== null ) {

  				// indexed buffer geometry

  				if ( Array.isArray( material ) ) {

  					for ( let i = 0, il = groups.length; i < il; i ++ ) {

  						const group = groups[ i ];
  						const groupMaterial = material[ group.materialIndex ];

  						const start = Math.max( group.start, drawRange.start );
  						const end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );

  						for ( let j = start, jl = end; j < jl; j += 3 ) {

  							const a = index.getX( j );
  							const b = index.getX( j + 1 );
  							const c = index.getX( j + 2 );

  							intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );

  							if ( intersection ) {

  								intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics
  								intersection.face.materialIndex = group.materialIndex;
  								intersects.push( intersection );

  							}

  						}

  					}

  				} else {

  					const start = Math.max( 0, drawRange.start );
  					const end = Math.min( index.count, ( drawRange.start + drawRange.count ) );

  					for ( let i = start, il = end; i < il; i += 3 ) {

  						const a = index.getX( i );
  						const b = index.getX( i + 1 );
  						const c = index.getX( i + 2 );

  						intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );

  						if ( intersection ) {

  							intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics
  							intersects.push( intersection );

  						}

  					}

  				}

  			} else if ( position !== undefined ) {

  				// non-indexed buffer geometry

  				if ( Array.isArray( material ) ) {

  					for ( let i = 0, il = groups.length; i < il; i ++ ) {

  						const group = groups[ i ];
  						const groupMaterial = material[ group.materialIndex ];

  						const start = Math.max( group.start, drawRange.start );
  						const end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );

  						for ( let j = start, jl = end; j < jl; j += 3 ) {

  							const a = j;
  							const b = j + 1;
  							const c = j + 2;

  							intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );

  							if ( intersection ) {

  								intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics
  								intersection.face.materialIndex = group.materialIndex;
  								intersects.push( intersection );

  							}

  						}

  					}

  				} else {

  					const start = Math.max( 0, drawRange.start );
  					const end = Math.min( position.count, ( drawRange.start + drawRange.count ) );

  					for ( let i = start, il = end; i < il; i += 3 ) {

  						const a = i;
  						const b = i + 1;
  						const c = i + 2;

  						intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c );

  						if ( intersection ) {

  							intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics
  							intersects.push( intersection );

  						}

  					}

  				}

  			}

  		} else if ( geometry.isGeometry ) {

  			const isMultiMaterial = Array.isArray( material );

  			const vertices = geometry.vertices;
  			const faces = geometry.faces;
  			let uvs;

  			const faceVertexUvs = geometry.faceVertexUvs[ 0 ];
  			if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;

  			for ( let f = 0, fl = faces.length; f < fl; f ++ ) {

  				const face = faces[ f ];
  				const faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;

  				if ( faceMaterial === undefined ) continue;

  				const fvA = vertices[ face.a ];
  				const fvB = vertices[ face.b ];
  				const fvC = vertices[ face.c ];

  				intersection = checkIntersection( this, faceMaterial, raycaster, _ray, fvA, fvB, fvC, _intersectionPoint );

  				if ( intersection ) {

  					if ( uvs && uvs[ f ] ) {

  						const uvs_f = uvs[ f ];
  						_uvA.copy( uvs_f[ 0 ] );
  						_uvB.copy( uvs_f[ 1 ] );
  						_uvC.copy( uvs_f[ 2 ] );

  						intersection.uv = Triangle.getUV( _intersectionPoint, fvA, fvB, fvC, _uvA, _uvB, _uvC, new Vector2() );

  					}

  					intersection.face = face;
  					intersection.faceIndex = f;
  					intersects.push( intersection );

  				}

  			}

  		}

  	}

  } );

  function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) {

  	let intersect;

  	if ( material.side === BackSide ) {

  		intersect = ray.intersectTriangle( pC, pB, pA, true, point );

  	} else {

  		intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );

  	}

  	if ( intersect === null ) return null;

  	_intersectionPointWorld.copy( point );
  	_intersectionPointWorld.applyMatrix4( object.matrixWorld );

  	const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld );

  	if ( distance < raycaster.near || distance > raycaster.far ) return null;

  	return {
  		distance: distance,
  		point: _intersectionPointWorld.clone(),
  		object: object
  	};

  }

  function checkBufferGeometryIntersection( object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ) {

  	_vA.fromBufferAttribute( position, a );
  	_vB.fromBufferAttribute( position, b );
  	_vC.fromBufferAttribute( position, c );

  	const morphInfluences = object.morphTargetInfluences;

  	if ( material.morphTargets && morphPosition && morphInfluences ) {

  		_morphA.set( 0, 0, 0 );
  		_morphB.set( 0, 0, 0 );
  		_morphC.set( 0, 0, 0 );

  		for ( let i = 0, il = morphPosition.length; i < il; i ++ ) {

  			const influence = morphInfluences[ i ];
  			const morphAttribute = morphPosition[ i ];

  			if ( influence === 0 ) continue;

  			_tempA.fromBufferAttribute( morphAttribute, a );
  			_tempB.fromBufferAttribute( morphAttribute, b );
  			_tempC.fromBufferAttribute( morphAttribute, c );

  			if ( morphTargetsRelative ) {

  				_morphA.addScaledVector( _tempA, influence );
  				_morphB.addScaledVector( _tempB, influence );
  				_morphC.addScaledVector( _tempC, influence );

  			} else {

  				_morphA.addScaledVector( _tempA.sub( _vA ), influence );
  				_morphB.addScaledVector( _tempB.sub( _vB ), influence );
  				_morphC.addScaledVector( _tempC.sub( _vC ), influence );

  			}

  		}

  		_vA.add( _morphA );
  		_vB.add( _morphB );
  		_vC.add( _morphC );

  	}

  	if ( object.isSkinnedMesh ) {

  		object.boneTransform( a, _vA );
  		object.boneTransform( b, _vB );
  		object.boneTransform( c, _vC );

  	}

  	const intersection = checkIntersection( object, material, raycaster, ray, _vA, _vB, _vC, _intersectionPoint );

  	if ( intersection ) {

  		if ( uv ) {

  			_uvA.fromBufferAttribute( uv, a );
  			_uvB.fromBufferAttribute( uv, b );
  			_uvC.fromBufferAttribute( uv, c );

  			intersection.uv = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() );

  		}

  		if ( uv2 ) {

  			_uvA.fromBufferAttribute( uv2, a );
  			_uvB.fromBufferAttribute( uv2, b );
  			_uvC.fromBufferAttribute( uv2, c );

  			intersection.uv2 = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() );

  		}

  		const face = new Face3( a, b, c );
  		Triangle.getNormal( _vA, _vB, _vC, face.normal );

  		intersection.face = face;

  	}

  	return intersection;

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author kile / http://kile.stravaganza.org/
   * @author alteredq / http://alteredqualia.com/
   * @author mikael emtinger / http://gomo.se/
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * @author bhouston / http://clara.io
   */

  let _geometryId = 0; // Geometry uses even numbers as Id
  const _m1$3 = new Matrix4();
  const _obj$1 = new Object3D();
  const _offset$1 = new Vector3();

  function Geometry() {

  	Object.defineProperty( this, 'id', { value: _geometryId += 2 } );

  	this.uuid = MathUtils.generateUUID();

  	this.name = '';
  	this.type = 'Geometry';

  	this.vertices = [];
  	this.colors = [];
  	this.faces = [];
  	this.faceVertexUvs = [[]];

  	this.morphTargets = [];
  	this.morphNormals = [];

  	this.skinWeights = [];
  	this.skinIndices = [];

  	this.lineDistances = [];

  	this.boundingBox = null;
  	this.boundingSphere = null;

  	// update flags

  	this.elementsNeedUpdate = false;
  	this.verticesNeedUpdate = false;
  	this.uvsNeedUpdate = false;
  	this.normalsNeedUpdate = false;
  	this.colorsNeedUpdate = false;
  	this.lineDistancesNeedUpdate = false;
  	this.groupsNeedUpdate = false;

  }

  Geometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: Geometry,

  	isGeometry: true,

  	applyMatrix4: function ( matrix ) {

  		const normalMatrix = new Matrix3().getNormalMatrix( matrix );

  		for ( let i = 0, il = this.vertices.length; i < il; i ++ ) {

  			const vertex = this.vertices[ i ];
  			vertex.applyMatrix4( matrix );

  		}

  		for ( let i = 0, il = this.faces.length; i < il; i ++ ) {

  			const face = this.faces[ i ];
  			face.normal.applyMatrix3( normalMatrix ).normalize();

  			for ( let j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {

  				face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();

  			}

  		}

  		if ( this.boundingBox !== null ) {

  			this.computeBoundingBox();

  		}

  		if ( this.boundingSphere !== null ) {

  			this.computeBoundingSphere();

  		}

  		this.verticesNeedUpdate = true;
  		this.normalsNeedUpdate = true;

  		return this;

  	},

  	rotateX: function ( angle ) {

  		// rotate geometry around world x-axis

  		_m1$3.makeRotationX( angle );

  		this.applyMatrix4( _m1$3 );

  		return this;

  	},

  	rotateY: function ( angle ) {

  		// rotate geometry around world y-axis

  		_m1$3.makeRotationY( angle );

  		this.applyMatrix4( _m1$3 );

  		return this;

  	},

  	rotateZ: function ( angle ) {

  		// rotate geometry around world z-axis

  		_m1$3.makeRotationZ( angle );

  		this.applyMatrix4( _m1$3 );

  		return this;

  	},

  	translate: function ( x, y, z ) {

  		// translate geometry

  		_m1$3.makeTranslation( x, y, z );

  		this.applyMatrix4( _m1$3 );

  		return this;

  	},

  	scale: function ( x, y, z ) {

  		// scale geometry

  		_m1$3.makeScale( x, y, z );

  		this.applyMatrix4( _m1$3 );

  		return this;

  	},

  	lookAt: function ( vector ) {

  		_obj$1.lookAt( vector );

  		_obj$1.updateMatrix();

  		this.applyMatrix4( _obj$1.matrix );

  		return this;

  	},

  	fromBufferGeometry: function ( geometry ) {

  		const scope = this;

  		const index = geometry.index !== null ? geometry.index : undefined;
  		const attributes = geometry.attributes;

  		if ( attributes.position === undefined ) {

  			console.error( 'THREE.Geometry.fromBufferGeometry(): Position attribute required for conversion.' );
  			return this;

  		}

  		const position = attributes.position;
  		const normal = attributes.normal;
  		const color = attributes.color;
  		const uv = attributes.uv;
  		const uv2 = attributes.uv2;

  		if ( uv2 !== undefined ) this.faceVertexUvs[ 1 ] = [];

  		for ( let i = 0; i < position.count; i ++ ) {

  			scope.vertices.push( new Vector3().fromBufferAttribute( position, i ) );

  			if ( color !== undefined ) {

  				scope.colors.push( new Color().fromBufferAttribute( color, i ) );

  			}

  		}

  		function addFace( a, b, c, materialIndex ) {

  			const vertexColors = ( color === undefined ) ? [] : [
  				scope.colors[ a ].clone(),
  				scope.colors[ b ].clone(),
  				scope.colors[ c ].clone()
  			];

  			const vertexNormals = ( normal === undefined ) ? [] : [
  				new Vector3().fromBufferAttribute( normal, a ),
  				new Vector3().fromBufferAttribute( normal, b ),
  				new Vector3().fromBufferAttribute( normal, c )
  			];

  			const face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );

  			scope.faces.push( face );

  			if ( uv !== undefined ) {

  				scope.faceVertexUvs[ 0 ].push( [
  					new Vector2().fromBufferAttribute( uv, a ),
  					new Vector2().fromBufferAttribute( uv, b ),
  					new Vector2().fromBufferAttribute( uv, c )
  				] );

  			}

  			if ( uv2 !== undefined ) {

  				scope.faceVertexUvs[ 1 ].push( [
  					new Vector2().fromBufferAttribute( uv2, a ),
  					new Vector2().fromBufferAttribute( uv2, b ),
  					new Vector2().fromBufferAttribute( uv2, c )
  				] );

  			}

  		}

  		const groups = geometry.groups;

  		if ( groups.length > 0 ) {

  			for ( let i = 0; i < groups.length; i ++ ) {

  				const group = groups[ i ];

  				const start = group.start;
  				const count = group.count;

  				for ( let j = start, jl = start + count; j < jl; j += 3 ) {

  					if ( index !== undefined ) {

  						addFace( index.getX( j ), index.getX( j + 1 ), index.getX( j + 2 ), group.materialIndex );

  					} else {

  						addFace( j, j + 1, j + 2, group.materialIndex );

  					}

  				}

  			}

  		} else {

  			if ( index !== undefined ) {

  				for ( let i = 0; i < index.count; i += 3 ) {

  					addFace( index.getX( i ), index.getX( i + 1 ), index.getX( i + 2 ) );

  				}

  			} else {

  				for ( let i = 0; i < position.count; i += 3 ) {

  					addFace( i, i + 1, i + 2 );

  				}

  			}

  		}

  		this.computeFaceNormals();

  		if ( geometry.boundingBox !== null ) {

  			this.boundingBox = geometry.boundingBox.clone();

  		}

  		if ( geometry.boundingSphere !== null ) {

  			this.boundingSphere = geometry.boundingSphere.clone();

  		}

  		return this;

  	},

  	center: function () {

  		this.computeBoundingBox();

  		this.boundingBox.getCenter( _offset$1 ).negate();

  		this.translate( _offset$1.x, _offset$1.y, _offset$1.z );

  		return this;

  	},

  	normalize: function () {

  		this.computeBoundingSphere();

  		const center = this.boundingSphere.center;
  		const radius = this.boundingSphere.radius;

  		const s = radius === 0 ? 1 : 1.0 / radius;

  		const matrix = new Matrix4();
  		matrix.set(
  			s, 0, 0, - s * center.x,
  			0, s, 0, - s * center.y,
  			0, 0, s, - s * center.z,
  			0, 0, 0, 1
  		);

  		this.applyMatrix4( matrix );

  		return this;

  	},

  	computeFaceNormals: function () {

  		const cb = new Vector3(), ab = new Vector3();

  		for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			const face = this.faces[ f ];

  			const vA = this.vertices[ face.a ];
  			const vB = this.vertices[ face.b ];
  			const vC = this.vertices[ face.c ];

  			cb.subVectors( vC, vB );
  			ab.subVectors( vA, vB );
  			cb.cross( ab );

  			cb.normalize();

  			face.normal.copy( cb );

  		}

  	},

  	computeVertexNormals: function ( areaWeighted ) {

  		if ( areaWeighted === undefined ) areaWeighted = true;

  		const vertices = new Array( this.vertices.length );

  		for ( let v = 0, vl = this.vertices.length; v < vl; v ++ ) {

  			vertices[ v ] = new Vector3();

  		}

  		if ( areaWeighted ) {

  			// vertex normals weighted by triangle areas
  			// http://www.iquilezles.org/www/articles/normals/normals.htm

  			const cb = new Vector3(), ab = new Vector3();

  			for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {

  				const face = this.faces[ f ];

  				const vA = this.vertices[ face.a ];
  				const vB = this.vertices[ face.b ];
  				const vC = this.vertices[ face.c ];

  				cb.subVectors( vC, vB );
  				ab.subVectors( vA, vB );
  				cb.cross( ab );

  				vertices[ face.a ].add( cb );
  				vertices[ face.b ].add( cb );
  				vertices[ face.c ].add( cb );

  			}

  		} else {

  			this.computeFaceNormals();

  			for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {

  				const face = this.faces[ f ];

  				vertices[ face.a ].add( face.normal );
  				vertices[ face.b ].add( face.normal );
  				vertices[ face.c ].add( face.normal );

  			}

  		}

  		for ( let v = 0, vl = this.vertices.length; v < vl; v ++ ) {

  			vertices[ v ].normalize();

  		}

  		for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			const face = this.faces[ f ];

  			const vertexNormals = face.vertexNormals;

  			if ( vertexNormals.length === 3 ) {

  				vertexNormals[ 0 ].copy( vertices[ face.a ] );
  				vertexNormals[ 1 ].copy( vertices[ face.b ] );
  				vertexNormals[ 2 ].copy( vertices[ face.c ] );

  			} else {

  				vertexNormals[ 0 ] = vertices[ face.a ].clone();
  				vertexNormals[ 1 ] = vertices[ face.b ].clone();
  				vertexNormals[ 2 ] = vertices[ face.c ].clone();

  			}

  		}

  		if ( this.faces.length > 0 ) {

  			this.normalsNeedUpdate = true;

  		}

  	},

  	computeFlatVertexNormals: function () {

  		this.computeFaceNormals();

  		for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			const face = this.faces[ f ];

  			const vertexNormals = face.vertexNormals;

  			if ( vertexNormals.length === 3 ) {

  				vertexNormals[ 0 ].copy( face.normal );
  				vertexNormals[ 1 ].copy( face.normal );
  				vertexNormals[ 2 ].copy( face.normal );

  			} else {

  				vertexNormals[ 0 ] = face.normal.clone();
  				vertexNormals[ 1 ] = face.normal.clone();
  				vertexNormals[ 2 ] = face.normal.clone();

  			}

  		}

  		if ( this.faces.length > 0 ) {

  			this.normalsNeedUpdate = true;

  		}

  	},

  	computeMorphNormals: function () {

  		// save original normals
  		// - create temp variables on first access
  		//   otherwise just copy (for faster repeated calls)

  		for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			const face = this.faces[ f ];

  			if ( ! face.__originalFaceNormal ) {

  				face.__originalFaceNormal = face.normal.clone();

  			} else {

  				face.__originalFaceNormal.copy( face.normal );

  			}

  			if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];

  			for ( let i = 0, il = face.vertexNormals.length; i < il; i ++ ) {

  				if ( ! face.__originalVertexNormals[ i ] ) {

  					face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();

  				} else {

  					face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );

  				}

  			}

  		}

  		// use temp geometry to compute face and vertex normals for each morph

  		const tmpGeo = new Geometry();
  		tmpGeo.faces = this.faces;

  		for ( let i = 0, il = this.morphTargets.length; i < il; i ++ ) {

  			// create on first access

  			if ( ! this.morphNormals[ i ] ) {

  				this.morphNormals[ i ] = {};
  				this.morphNormals[ i ].faceNormals = [];
  				this.morphNormals[ i ].vertexNormals = [];

  				const dstNormalsFace = this.morphNormals[ i ].faceNormals;
  				const dstNormalsVertex = this.morphNormals[ i ].vertexNormals;

  				for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {

  					const faceNormal = new Vector3();
  					const vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };

  					dstNormalsFace.push( faceNormal );
  					dstNormalsVertex.push( vertexNormals );

  				}

  			}

  			const morphNormals = this.morphNormals[ i ];

  			// set vertices to morph target

  			tmpGeo.vertices = this.morphTargets[ i ].vertices;

  			// compute morph normals

  			tmpGeo.computeFaceNormals();
  			tmpGeo.computeVertexNormals();

  			// store morph normals

  			for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {

  				const face = this.faces[ f ];

  				const faceNormal = morphNormals.faceNormals[ f ];
  				const vertexNormals = morphNormals.vertexNormals[ f ];

  				faceNormal.copy( face.normal );

  				vertexNormals.a.copy( face.vertexNormals[ 0 ] );
  				vertexNormals.b.copy( face.vertexNormals[ 1 ] );
  				vertexNormals.c.copy( face.vertexNormals[ 2 ] );

  			}

  		}

  		// restore original normals

  		for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			const face = this.faces[ f ];

  			face.normal = face.__originalFaceNormal;
  			face.vertexNormals = face.__originalVertexNormals;

  		}

  	},

  	computeBoundingBox: function () {

  		if ( this.boundingBox === null ) {

  			this.boundingBox = new Box3();

  		}

  		this.boundingBox.setFromPoints( this.vertices );

  	},

  	computeBoundingSphere: function () {

  		if ( this.boundingSphere === null ) {

  			this.boundingSphere = new Sphere();

  		}

  		this.boundingSphere.setFromPoints( this.vertices );

  	},

  	merge: function ( geometry, matrix, materialIndexOffset ) {

  		if ( ! ( geometry && geometry.isGeometry ) ) {

  			console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
  			return;

  		}

  		let normalMatrix,
  			vertexOffset = this.vertices.length,
  			vertices1 = this.vertices,
  			vertices2 = geometry.vertices,
  			faces1 = this.faces,
  			faces2 = geometry.faces,
  			colors1 = this.colors,
  			colors2 = geometry.colors;

  		if ( materialIndexOffset === undefined ) materialIndexOffset = 0;

  		if ( matrix !== undefined ) {

  			normalMatrix = new Matrix3().getNormalMatrix( matrix );

  		}

  		// vertices

  		for ( let i = 0, il = vertices2.length; i < il; i ++ ) {

  			const vertex = vertices2[ i ];

  			const vertexCopy = vertex.clone();

  			if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );

  			vertices1.push( vertexCopy );

  		}

  		// colors

  		for ( let i = 0, il = colors2.length; i < il; i ++ ) {

  			colors1.push( colors2[ i ].clone() );

  		}

  		// faces

  		for ( let i = 0, il = faces2.length; i < il; i ++ ) {

  			let face = faces2[ i ], faceCopy, normal, color,
  				faceVertexNormals = face.vertexNormals,
  				faceVertexColors = face.vertexColors;

  			faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
  			faceCopy.normal.copy( face.normal );

  			if ( normalMatrix !== undefined ) {

  				faceCopy.normal.applyMatrix3( normalMatrix ).normalize();

  			}

  			for ( let j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {

  				normal = faceVertexNormals[ j ].clone();

  				if ( normalMatrix !== undefined ) {

  					normal.applyMatrix3( normalMatrix ).normalize();

  				}

  				faceCopy.vertexNormals.push( normal );

  			}

  			faceCopy.color.copy( face.color );

  			for ( let j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {

  				color = faceVertexColors[ j ];
  				faceCopy.vertexColors.push( color.clone() );

  			}

  			faceCopy.materialIndex = face.materialIndex + materialIndexOffset;

  			faces1.push( faceCopy );

  		}

  		// uvs

  		for ( let i = 0, il = geometry.faceVertexUvs.length; i < il; i ++ ) {

  			const faceVertexUvs2 = geometry.faceVertexUvs[ i ];

  			if ( this.faceVertexUvs[ i ] === undefined ) this.faceVertexUvs[ i ] = [];

  			for ( let j = 0, jl = faceVertexUvs2.length; j < jl; j ++ ) {

  				const uvs2 = faceVertexUvs2[ j ], uvsCopy = [];

  				for ( let k = 0, kl = uvs2.length; k < kl; k ++ ) {

  					uvsCopy.push( uvs2[ k ].clone() );

  				}

  				this.faceVertexUvs[ i ].push( uvsCopy );

  			}

  		}

  	},

  	mergeMesh: function ( mesh ) {

  		if ( ! ( mesh && mesh.isMesh ) ) {

  			console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
  			return;

  		}

  		if ( mesh.matrixAutoUpdate ) mesh.updateMatrix();

  		this.merge( mesh.geometry, mesh.matrix );

  	},

  	/*
  	 * Checks for duplicate vertices with hashmap.
  	 * Duplicated vertices are removed
  	 * and faces' vertices are updated.
  	 */

  	mergeVertices: function () {

  		const verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
  		const unique = [], changes = [];

  		const precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
  		const precision = Math.pow( 10, precisionPoints );

  		for ( let i = 0, il = this.vertices.length; i < il; i ++ ) {

  			const v = this.vertices[ i ];
  			const key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );

  			if ( verticesMap[ key ] === undefined ) {

  				verticesMap[ key ] = i;
  				unique.push( this.vertices[ i ] );
  				changes[ i ] = unique.length - 1;

  			} else {

  				//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
  				changes[ i ] = changes[ verticesMap[ key ] ];

  			}

  		}


  		// if faces are completely degenerate after merging vertices, we
  		// have to remove them from the geometry.
  		const faceIndicesToRemove = [];

  		for ( let i = 0, il = this.faces.length; i < il; i ++ ) {

  			const face = this.faces[ i ];

  			face.a = changes[ face.a ];
  			face.b = changes[ face.b ];
  			face.c = changes[ face.c ];

  			const indices = [ face.a, face.b, face.c ];

  			// if any duplicate vertices are found in a Face3
  			// we have to remove the face as nothing can be saved
  			for ( let n = 0; n < 3; n ++ ) {

  				if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {

  					faceIndicesToRemove.push( i );
  					break;

  				}

  			}

  		}

  		for ( let i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {

  			const idx = faceIndicesToRemove[ i ];

  			this.faces.splice( idx, 1 );

  			for ( let j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {

  				this.faceVertexUvs[ j ].splice( idx, 1 );

  			}

  		}

  		// Use unique set of vertices

  		const diff = this.vertices.length - unique.length;
  		this.vertices = unique;
  		return diff;

  	},

  	setFromPoints: function ( points ) {

  		this.vertices = [];

  		for ( let i = 0, l = points.length; i < l; i ++ ) {

  			const point = points[ i ];
  			this.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );

  		}

  		return this;

  	},

  	sortFacesByMaterialIndex: function () {

  		const faces = this.faces;
  		const length = faces.length;

  		// tag faces

  		for ( let i = 0; i < length; i ++ ) {

  			faces[ i ]._id = i;

  		}

  		// sort faces

  		function materialIndexSort( a, b ) {

  			return a.materialIndex - b.materialIndex;

  		}

  		faces.sort( materialIndexSort );

  		// sort uvs

  		const uvs1 = this.faceVertexUvs[ 0 ];
  		const uvs2 = this.faceVertexUvs[ 1 ];

  		let newUvs1, newUvs2;

  		if ( uvs1 && uvs1.length === length ) newUvs1 = [];
  		if ( uvs2 && uvs2.length === length ) newUvs2 = [];

  		for ( let i = 0; i < length; i ++ ) {

  			const id = faces[ i ]._id;

  			if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
  			if ( newUvs2 ) newUvs2.push( uvs2[ id ] );

  		}

  		if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
  		if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;

  	},

  	toJSON: function () {

  		const data = {
  			metadata: {
  				version: 4.5,
  				type: 'Geometry',
  				generator: 'Geometry.toJSON'
  			}
  		};

  		// standard Geometry serialization

  		data.uuid = this.uuid;
  		data.type = this.type;
  		if ( this.name !== '' ) data.name = this.name;

  		if ( this.parameters !== undefined ) {

  			const parameters = this.parameters;

  			for ( const key in parameters ) {

  				if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];

  			}

  			return data;

  		}

  		const vertices = [];

  		for ( let i = 0; i < this.vertices.length; i ++ ) {

  			const vertex = this.vertices[ i ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  		}

  		const faces = [];
  		const normals = [];
  		const normalsHash = {};
  		const colors = [];
  		const colorsHash = {};
  		const uvs = [];
  		const uvsHash = {};

  		for ( let i = 0; i < this.faces.length; i ++ ) {

  			const face = this.faces[ i ];

  			const hasMaterial = true;
  			const hasFaceUv = false; // deprecated
  			const hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
  			const hasFaceNormal = face.normal.length() > 0;
  			const hasFaceVertexNormal = face.vertexNormals.length > 0;
  			const hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
  			const hasFaceVertexColor = face.vertexColors.length > 0;

  			let faceType = 0;

  			faceType = setBit( faceType, 0, 0 ); // isQuad
  			faceType = setBit( faceType, 1, hasMaterial );
  			faceType = setBit( faceType, 2, hasFaceUv );
  			faceType = setBit( faceType, 3, hasFaceVertexUv );
  			faceType = setBit( faceType, 4, hasFaceNormal );
  			faceType = setBit( faceType, 5, hasFaceVertexNormal );
  			faceType = setBit( faceType, 6, hasFaceColor );
  			faceType = setBit( faceType, 7, hasFaceVertexColor );

  			faces.push( faceType );
  			faces.push( face.a, face.b, face.c );
  			faces.push( face.materialIndex );

  			if ( hasFaceVertexUv ) {

  				const faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];

  				faces.push(
  					getUvIndex( faceVertexUvs[ 0 ] ),
  					getUvIndex( faceVertexUvs[ 1 ] ),
  					getUvIndex( faceVertexUvs[ 2 ] )
  				);

  			}

  			if ( hasFaceNormal ) {

  				faces.push( getNormalIndex( face.normal ) );

  			}

  			if ( hasFaceVertexNormal ) {

  				const vertexNormals = face.vertexNormals;

  				faces.push(
  					getNormalIndex( vertexNormals[ 0 ] ),
  					getNormalIndex( vertexNormals[ 1 ] ),
  					getNormalIndex( vertexNormals[ 2 ] )
  				);

  			}

  			if ( hasFaceColor ) {

  				faces.push( getColorIndex( face.color ) );

  			}

  			if ( hasFaceVertexColor ) {

  				const vertexColors = face.vertexColors;

  				faces.push(
  					getColorIndex( vertexColors[ 0 ] ),
  					getColorIndex( vertexColors[ 1 ] ),
  					getColorIndex( vertexColors[ 2 ] )
  				);

  			}

  		}

  		function setBit( value, position, enabled ) {

  			return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );

  		}

  		function getNormalIndex( normal ) {

  			const hash = normal.x.toString() + normal.y.toString() + normal.z.toString();

  			if ( normalsHash[ hash ] !== undefined ) {

  				return normalsHash[ hash ];

  			}

  			normalsHash[ hash ] = normals.length / 3;
  			normals.push( normal.x, normal.y, normal.z );

  			return normalsHash[ hash ];

  		}

  		function getColorIndex( color ) {

  			const hash = color.r.toString() + color.g.toString() + color.b.toString();

  			if ( colorsHash[ hash ] !== undefined ) {

  				return colorsHash[ hash ];

  			}

  			colorsHash[ hash ] = colors.length;
  			colors.push( color.getHex() );

  			return colorsHash[ hash ];

  		}

  		function getUvIndex( uv ) {

  			const hash = uv.x.toString() + uv.y.toString();

  			if ( uvsHash[ hash ] !== undefined ) {

  				return uvsHash[ hash ];

  			}

  			uvsHash[ hash ] = uvs.length / 2;
  			uvs.push( uv.x, uv.y );

  			return uvsHash[ hash ];

  		}

  		data.data = {};

  		data.data.vertices = vertices;
  		data.data.normals = normals;
  		if ( colors.length > 0 ) data.data.colors = colors;
  		if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
  		data.data.faces = faces;

  		return data;

  	},

  	clone: function () {

  		/*
  		 // Handle primitives

  		 const parameters = this.parameters;

  		 if ( parameters !== undefined ) {

  		 const values = [];

  		 for ( const key in parameters ) {

  		 values.push( parameters[ key ] );

  		 }

  		 const geometry = Object.create( this.constructor.prototype );
  		 this.constructor.apply( geometry, values );
  		 return geometry;

  		 }

  		 return new this.constructor().copy( this );
  		 */

  		return new Geometry().copy( this );

  	},

  	copy: function ( source ) {

  		// reset

  		this.vertices = [];
  		this.colors = [];
  		this.faces = [];
  		this.faceVertexUvs = [[]];
  		this.morphTargets = [];
  		this.morphNormals = [];
  		this.skinWeights = [];
  		this.skinIndices = [];
  		this.lineDistances = [];
  		this.boundingBox = null;
  		this.boundingSphere = null;

  		// name

  		this.name = source.name;

  		// vertices

  		const vertices = source.vertices;

  		for ( let i = 0, il = vertices.length; i < il; i ++ ) {

  			this.vertices.push( vertices[ i ].clone() );

  		}

  		// colors

  		const colors = source.colors;

  		for ( let i = 0, il = colors.length; i < il; i ++ ) {

  			this.colors.push( colors[ i ].clone() );

  		}

  		// faces

  		const faces = source.faces;

  		for ( let i = 0, il = faces.length; i < il; i ++ ) {

  			this.faces.push( faces[ i ].clone() );

  		}

  		// face vertex uvs

  		for ( let i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {

  			const faceVertexUvs = source.faceVertexUvs[ i ];

  			if ( this.faceVertexUvs[ i ] === undefined ) {

  				this.faceVertexUvs[ i ] = [];

  			}

  			for ( let j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {

  				const uvs = faceVertexUvs[ j ], uvsCopy = [];

  				for ( let k = 0, kl = uvs.length; k < kl; k ++ ) {

  					const uv = uvs[ k ];

  					uvsCopy.push( uv.clone() );

  				}

  				this.faceVertexUvs[ i ].push( uvsCopy );

  			}

  		}

  		// morph targets

  		const morphTargets = source.morphTargets;

  		for ( let i = 0, il = morphTargets.length; i < il; i ++ ) {

  			const morphTarget = {};
  			morphTarget.name = morphTargets[ i ].name;

  			// vertices

  			if ( morphTargets[ i ].vertices !== undefined ) {

  				morphTarget.vertices = [];

  				for ( let j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {

  					morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );

  				}

  			}

  			// normals

  			if ( morphTargets[ i ].normals !== undefined ) {

  				morphTarget.normals = [];

  				for ( let j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {

  					morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );

  				}

  			}

  			this.morphTargets.push( morphTarget );

  		}

  		// morph normals

  		const morphNormals = source.morphNormals;

  		for ( let i = 0, il = morphNormals.length; i < il; i ++ ) {

  			const morphNormal = {};

  			// vertex normals

  			if ( morphNormals[ i ].vertexNormals !== undefined ) {

  				morphNormal.vertexNormals = [];

  				for ( let j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {

  					const srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
  					const destVertexNormal = {};

  					destVertexNormal.a = srcVertexNormal.a.clone();
  					destVertexNormal.b = srcVertexNormal.b.clone();
  					destVertexNormal.c = srcVertexNormal.c.clone();

  					morphNormal.vertexNormals.push( destVertexNormal );

  				}

  			}

  			// face normals

  			if ( morphNormals[ i ].faceNormals !== undefined ) {

  				morphNormal.faceNormals = [];

  				for ( let j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {

  					morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );

  				}

  			}

  			this.morphNormals.push( morphNormal );

  		}

  		// skin weights

  		const skinWeights = source.skinWeights;

  		for ( let i = 0, il = skinWeights.length; i < il; i ++ ) {

  			this.skinWeights.push( skinWeights[ i ].clone() );

  		}

  		// skin indices

  		const skinIndices = source.skinIndices;

  		for ( let i = 0, il = skinIndices.length; i < il; i ++ ) {

  			this.skinIndices.push( skinIndices[ i ].clone() );

  		}

  		// line distances

  		const lineDistances = source.lineDistances;

  		for ( let i = 0, il = lineDistances.length; i < il; i ++ ) {

  			this.lineDistances.push( lineDistances[ i ] );

  		}

  		// bounding box

  		const boundingBox = source.boundingBox;

  		if ( boundingBox !== null ) {

  			this.boundingBox = boundingBox.clone();

  		}

  		// bounding sphere

  		const boundingSphere = source.boundingSphere;

  		if ( boundingSphere !== null ) {

  			this.boundingSphere = boundingSphere.clone();

  		}

  		// update flags

  		this.elementsNeedUpdate = source.elementsNeedUpdate;
  		this.verticesNeedUpdate = source.verticesNeedUpdate;
  		this.uvsNeedUpdate = source.uvsNeedUpdate;
  		this.normalsNeedUpdate = source.normalsNeedUpdate;
  		this.colorsNeedUpdate = source.colorsNeedUpdate;
  		this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
  		this.groupsNeedUpdate = source.groupsNeedUpdate;

  		return this;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  // BoxGeometry

  class BoxGeometry extends Geometry {

  	constructor( width, height, depth, widthSegments, heightSegments, depthSegments ) {

  		super();

  		this.type = 'BoxGeometry';

  		this.parameters = {
  			width: width,
  			height: height,
  			depth: depth,
  			widthSegments: widthSegments,
  			heightSegments: heightSegments,
  			depthSegments: depthSegments
  		};

  		this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) );
  		this.mergeVertices();

  	}

  }

  // BoxBufferGeometry

  class BoxBufferGeometry extends BufferGeometry {

  	constructor( width, height, depth, widthSegments, heightSegments, depthSegments ) {

  		super();

  		this.type = 'BoxBufferGeometry';

  		this.parameters = {
  			width: width,
  			height: height,
  			depth: depth,
  			widthSegments: widthSegments,
  			heightSegments: heightSegments,
  			depthSegments: depthSegments
  		};

  		const scope = this;

  		width = width || 1;
  		height = height || 1;
  		depth = depth || 1;

  		// segments

  		widthSegments = Math.floor( widthSegments ) || 1;
  		heightSegments = Math.floor( heightSegments ) || 1;
  		depthSegments = Math.floor( depthSegments ) || 1;

  		// buffers

  		const indices = [];
  		const vertices = [];
  		const normals = [];
  		const uvs = [];

  		// helper variables

  		let numberOfVertices = 0;
  		let groupStart = 0;

  		// build each side of the box geometry

  		buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
  		buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
  		buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
  		buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
  		buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
  		buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz

  		// build geometry

  		this.setIndex( indices );
  		this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  		this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  		this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  		function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {

  			const segmentWidth = width / gridX;
  			const segmentHeight = height / gridY;

  			const widthHalf = width / 2;
  			const heightHalf = height / 2;
  			const depthHalf = depth / 2;

  			const gridX1 = gridX + 1;
  			const gridY1 = gridY + 1;

  			let vertexCounter = 0;
  			let groupCount = 0;

  			const vector = new Vector3();

  			// generate vertices, normals and uvs

  			for ( let iy = 0; iy < gridY1; iy ++ ) {

  				const y = iy * segmentHeight - heightHalf;

  				for ( let ix = 0; ix < gridX1; ix ++ ) {

  					const x = ix * segmentWidth - widthHalf;

  					// set values to correct vector component

  					vector[ u ] = x * udir;
  					vector[ v ] = y * vdir;
  					vector[ w ] = depthHalf;

  					// now apply vector to vertex buffer

  					vertices.push( vector.x, vector.y, vector.z );

  					// set values to correct vector component

  					vector[ u ] = 0;
  					vector[ v ] = 0;
  					vector[ w ] = depth > 0 ? 1 : - 1;

  					// now apply vector to normal buffer

  					normals.push( vector.x, vector.y, vector.z );

  					// uvs

  					uvs.push( ix / gridX );
  					uvs.push( 1 - ( iy / gridY ) );

  					// counters

  					vertexCounter += 1;

  				}

  			}

  			// indices

  			// 1. you need three indices to draw a single face
  			// 2. a single segment consists of two faces
  			// 3. so we need to generate six (2*3) indices per segment

  			for ( let iy = 0; iy < gridY; iy ++ ) {

  				for ( let ix = 0; ix < gridX; ix ++ ) {

  					const a = numberOfVertices + ix + gridX1 * iy;
  					const b = numberOfVertices + ix + gridX1 * ( iy + 1 );
  					const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
  					const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;

  					// faces

  					indices.push( a, b, d );
  					indices.push( b, c, d );

  					// increase counter

  					groupCount += 6;

  				}

  			}

  			// add a group to the geometry. this will ensure multi material support

  			scope.addGroup( groupStart, groupCount, materialIndex );

  			// calculate new start value for groups

  			groupStart += groupCount;

  			// update total number of vertices

  			numberOfVertices += vertexCounter;

  		}

  	}

  }

  /**
   * Uniform Utilities
   */

  function cloneUniforms( src ) {

  	const dst = {};

  	for ( const u in src ) {

  		dst[ u ] = {};

  		for ( const p in src[ u ] ) {

  			const property = src[ u ][ p ];

  			if ( property && ( property.isColor ||
  				property.isMatrix3 || property.isMatrix4 ||
  				property.isVector2 || property.isVector3 || property.isVector4 ||
  				property.isTexture ) ) {

  				dst[ u ][ p ] = property.clone();

  			} else if ( Array.isArray( property ) ) {

  				dst[ u ][ p ] = property.slice();

  			} else {

  				dst[ u ][ p ] = property;

  			}

  		}

  	}

  	return dst;

  }

  function mergeUniforms( uniforms ) {

  	const merged = {};

  	for ( let u = 0; u < uniforms.length; u ++ ) {

  		const tmp = cloneUniforms( uniforms[ u ] );

  		for ( const p in tmp ) {

  			merged[ p ] = tmp[ p ];

  		}

  	}

  	return merged;

  }

  // Legacy

  const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms };

  var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";

  var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";

  /**
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  defines: { "label" : "value" },
   *  uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
   *
   *  fragmentShader: <string>,
   *  vertexShader: <string>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  lights: <bool>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function ShaderMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'ShaderMaterial';

  	this.defines = {};
  	this.uniforms = {};

  	this.vertexShader = default_vertex;
  	this.fragmentShader = default_fragment;

  	this.linewidth = 1;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;

  	this.fog = false; // set to use scene fog
  	this.lights = false; // set to use scene lights
  	this.clipping = false; // set to use user-defined clipping planes

  	this.skinning = false; // set to use skinning attribute streams
  	this.morphTargets = false; // set to use morph targets
  	this.morphNormals = false; // set to use morph normals

  	this.extensions = {
  		derivatives: false, // set to use derivatives
  		fragDepth: false, // set to use fragment depth values
  		drawBuffers: false, // set to use draw buffers
  		shaderTextureLOD: false // set to use shader texture LOD
  	};

  	// When rendered geometry doesn't include these attributes but the material does,
  	// use these default values in WebGL. This avoids errors when buffer data is missing.
  	this.defaultAttributeValues = {
  		'color': [ 1, 1, 1 ],
  		'uv': [ 0, 0 ],
  		'uv2': [ 0, 0 ]
  	};

  	this.index0AttributeName = undefined;
  	this.uniformsNeedUpdate = false;

  	if ( parameters !== undefined ) {

  		if ( parameters.attributes !== undefined ) {

  			console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );

  		}

  		this.setValues( parameters );

  	}

  }

  ShaderMaterial.prototype = Object.create( Material.prototype );
  ShaderMaterial.prototype.constructor = ShaderMaterial;

  ShaderMaterial.prototype.isShaderMaterial = true;

  ShaderMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.fragmentShader = source.fragmentShader;
  	this.vertexShader = source.vertexShader;

  	this.uniforms = cloneUniforms( source.uniforms );

  	this.defines = Object.assign( {}, source.defines );

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;

  	this.lights = source.lights;
  	this.clipping = source.clipping;

  	this.skinning = source.skinning;

  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	this.extensions = Object.assign( {}, source.extensions );

  	return this;

  };

  ShaderMaterial.prototype.toJSON = function ( meta ) {

  	const data = Material.prototype.toJSON.call( this, meta );

  	data.uniforms = {};

  	for ( const name in this.uniforms ) {

  		const uniform = this.uniforms[ name ];
  		const value = uniform.value;

  		if ( value && value.isTexture ) {

  			data.uniforms[ name ] = {
  				type: 't',
  				value: value.toJSON( meta ).uuid
  			};

  		} else if ( value && value.isColor ) {

  			data.uniforms[ name ] = {
  				type: 'c',
  				value: value.getHex()
  			};

  		} else if ( value && value.isVector2 ) {

  			data.uniforms[ name ] = {
  				type: 'v2',
  				value: value.toArray()
  			};

  		} else if ( value && value.isVector3 ) {

  			data.uniforms[ name ] = {
  				type: 'v3',
  				value: value.toArray()
  			};

  		} else if ( value && value.isVector4 ) {

  			data.uniforms[ name ] = {
  				type: 'v4',
  				value: value.toArray()
  			};

  		} else if ( value && value.isMatrix3 ) {

  			data.uniforms[ name ] = {
  				type: 'm3',
  				value: value.toArray()
  			};

  		} else if ( value && value.isMatrix4 ) {

  			data.uniforms[ name ] = {
  				type: 'm4',
  				value: value.toArray()
  			};

  		} else {

  			data.uniforms[ name ] = {
  				value: value
  			};

  			// note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far

  		}

  	}

  	if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines;

  	data.vertexShader = this.vertexShader;
  	data.fragmentShader = this.fragmentShader;

  	const extensions = {};

  	for ( const key in this.extensions ) {

  		if ( this.extensions[ key ] === true ) extensions[ key ] = true;

  	}

  	if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions;

  	return data;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author mikael emtinger / http://gomo.se/
   * @author WestLangley / http://github.com/WestLangley
  */

  function Camera() {

  	Object3D.call( this );

  	this.type = 'Camera';

  	this.matrixWorldInverse = new Matrix4();

  	this.projectionMatrix = new Matrix4();
  	this.projectionMatrixInverse = new Matrix4();

  }

  Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Camera,

  	isCamera: true,

  	copy: function ( source, recursive ) {

  		Object3D.prototype.copy.call( this, source, recursive );

  		this.matrixWorldInverse.copy( source.matrixWorldInverse );

  		this.projectionMatrix.copy( source.projectionMatrix );
  		this.projectionMatrixInverse.copy( source.projectionMatrixInverse );

  		return this;

  	},

  	getWorldDirection: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Camera: .getWorldDirection() target is now required' );
  			target = new Vector3();

  		}

  		this.updateMatrixWorld( true );

  		const e = this.matrixWorld.elements;

  		return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize();

  	},

  	updateMatrixWorld: function ( force ) {

  		Object3D.prototype.updateMatrixWorld.call( this, force );

  		this.matrixWorldInverse.getInverse( this.matrixWorld );

  	},

  	updateWorldMatrix: function ( updateParents, updateChildren ) {

  		Object3D.prototype.updateWorldMatrix.call( this, updateParents, updateChildren );

  		this.matrixWorldInverse.getInverse( this.matrixWorld );

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author greggman / http://games.greggman.com/
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * @author tschw
   */

  function PerspectiveCamera( fov, aspect, near, far ) {

  	Camera.call( this );

  	this.type = 'PerspectiveCamera';

  	this.fov = fov !== undefined ? fov : 50;
  	this.zoom = 1;

  	this.near = near !== undefined ? near : 0.1;
  	this.far = far !== undefined ? far : 2000;
  	this.focus = 10;

  	this.aspect = aspect !== undefined ? aspect : 1;
  	this.view = null;

  	this.filmGauge = 35;	// width of the film (default in millimeters)
  	this.filmOffset = 0;	// horizontal film offset (same unit as gauge)

  	this.updateProjectionMatrix();

  }

  PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

  	constructor: PerspectiveCamera,

  	isPerspectiveCamera: true,

  	copy: function ( source, recursive ) {

  		Camera.prototype.copy.call( this, source, recursive );

  		this.fov = source.fov;
  		this.zoom = source.zoom;

  		this.near = source.near;
  		this.far = source.far;
  		this.focus = source.focus;

  		this.aspect = source.aspect;
  		this.view = source.view === null ? null : Object.assign( {}, source.view );

  		this.filmGauge = source.filmGauge;
  		this.filmOffset = source.filmOffset;

  		return this;

  	},

  	/**
  	 * Sets the FOV by focal length in respect to the current .filmGauge.
  	 *
  	 * The default film gauge is 35, so that the focal length can be specified for
  	 * a 35mm (full frame) camera.
  	 *
  	 * Values for focal length and film gauge must have the same unit.
  	 */
  	setFocalLength: function ( focalLength ) {

  		// see http://www.bobatkins.com/photography/technical/field_of_view.html
  		const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;

  		this.fov = MathUtils.RAD2DEG * 2 * Math.atan( vExtentSlope );
  		this.updateProjectionMatrix();

  	},

  	/**
  	 * Calculates the focal length from the current .fov and .filmGauge.
  	 */
  	getFocalLength: function () {

  		const vExtentSlope = Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov );

  		return 0.5 * this.getFilmHeight() / vExtentSlope;

  	},

  	getEffectiveFOV: function () {

  		return MathUtils.RAD2DEG * 2 * Math.atan(
  			Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom );

  	},

  	getFilmWidth: function () {

  		// film not completely covered in portrait format (aspect < 1)
  		return this.filmGauge * Math.min( this.aspect, 1 );

  	},

  	getFilmHeight: function () {

  		// film not completely covered in landscape format (aspect > 1)
  		return this.filmGauge / Math.max( this.aspect, 1 );

  	},

  	/**
  	 * Sets an offset in a larger frustum. This is useful for multi-window or
  	 * multi-monitor/multi-machine setups.
  	 *
  	 * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
  	 * the monitors are in grid like this
  	 *
  	 *   +---+---+---+
  	 *   | A | B | C |
  	 *   +---+---+---+
  	 *   | D | E | F |
  	 *   +---+---+---+
  	 *
  	 * then for each monitor you would call it like this
  	 *
  	 *   const w = 1920;
  	 *   const h = 1080;
  	 *   const fullWidth = w * 3;
  	 *   const fullHeight = h * 2;
  	 *
  	 *   --A--
  	 *   camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
  	 *   --B--
  	 *   camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
  	 *   --C--
  	 *   camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
  	 *   --D--
  	 *   camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
  	 *   --E--
  	 *   camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
  	 *   --F--
  	 *   camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
  	 *
  	 *   Note there is no reason monitors have to be the same size or in a grid.
  	 */
  	setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {

  		this.aspect = fullWidth / fullHeight;

  		if ( this.view === null ) {

  			this.view = {
  				enabled: true,
  				fullWidth: 1,
  				fullHeight: 1,
  				offsetX: 0,
  				offsetY: 0,
  				width: 1,
  				height: 1
  			};

  		}

  		this.view.enabled = true;
  		this.view.fullWidth = fullWidth;
  		this.view.fullHeight = fullHeight;
  		this.view.offsetX = x;
  		this.view.offsetY = y;
  		this.view.width = width;
  		this.view.height = height;

  		this.updateProjectionMatrix();

  	},

  	clearViewOffset: function () {

  		if ( this.view !== null ) {

  			this.view.enabled = false;

  		}

  		this.updateProjectionMatrix();

  	},

  	updateProjectionMatrix: function () {

  		let near = this.near,
  			top = near * Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom,
  			height = 2 * top,
  			width = this.aspect * height,
  			left = - 0.5 * width,
  			view = this.view;

  		if ( this.view !== null && this.view.enabled ) {

  			const fullWidth = view.fullWidth,
  				fullHeight = view.fullHeight;

  			left += view.offsetX * width / fullWidth;
  			top -= view.offsetY * height / fullHeight;
  			width *= view.width / fullWidth;
  			height *= view.height / fullHeight;

  		}

  		const skew = this.filmOffset;
  		if ( skew !== 0 ) left += near * skew / this.getFilmWidth();

  		this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );

  		this.projectionMatrixInverse.getInverse( this.projectionMatrix );

  	},

  	toJSON: function ( meta ) {

  		const data = Object3D.prototype.toJSON.call( this, meta );

  		data.object.fov = this.fov;
  		data.object.zoom = this.zoom;

  		data.object.near = this.near;
  		data.object.far = this.far;
  		data.object.focus = this.focus;

  		data.object.aspect = this.aspect;

  		if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );

  		data.object.filmGauge = this.filmGauge;
  		data.object.filmOffset = this.filmOffset;

  		return data;

  	}

  } );

  /**
   * Camera for rendering cube maps
   *	- renders scene into axis-aligned cube
   *
   * @author alteredq / http://alteredqualia.com/
   */

  const fov = 90, aspect = 1;

  function CubeCamera( near, far, renderTarget ) {

  	Object3D.call( this );

  	this.type = 'CubeCamera';

  	if ( renderTarget.isWebGLCubeRenderTarget !== true ) {

  		console.error( 'THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.' );
  		return;

  	}

  	this.renderTarget = renderTarget;

  	const cameraPX = new PerspectiveCamera( fov, aspect, near, far );
  	cameraPX.layers = this.layers;
  	cameraPX.up.set( 0, - 1, 0 );
  	cameraPX.lookAt( new Vector3( 1, 0, 0 ) );
  	this.add( cameraPX );

  	const cameraNX = new PerspectiveCamera( fov, aspect, near, far );
  	cameraNX.layers = this.layers;
  	cameraNX.up.set( 0, - 1, 0 );
  	cameraNX.lookAt( new Vector3( - 1, 0, 0 ) );
  	this.add( cameraNX );

  	const cameraPY = new PerspectiveCamera( fov, aspect, near, far );
  	cameraPY.layers = this.layers;
  	cameraPY.up.set( 0, 0, 1 );
  	cameraPY.lookAt( new Vector3( 0, 1, 0 ) );
  	this.add( cameraPY );

  	const cameraNY = new PerspectiveCamera( fov, aspect, near, far );
  	cameraNY.layers = this.layers;
  	cameraNY.up.set( 0, 0, - 1 );
  	cameraNY.lookAt( new Vector3( 0, - 1, 0 ) );
  	this.add( cameraNY );

  	const cameraPZ = new PerspectiveCamera( fov, aspect, near, far );
  	cameraPZ.layers = this.layers;
  	cameraPZ.up.set( 0, - 1, 0 );
  	cameraPZ.lookAt( new Vector3( 0, 0, 1 ) );
  	this.add( cameraPZ );

  	const cameraNZ = new PerspectiveCamera( fov, aspect, near, far );
  	cameraNZ.layers = this.layers;
  	cameraNZ.up.set( 0, - 1, 0 );
  	cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) );
  	this.add( cameraNZ );

  	this.update = function ( renderer, scene ) {

  		if ( this.parent === null ) this.updateMatrixWorld();

  		const currentXrEnabled = renderer.xr.enabled;
  		const currentRenderTarget = renderer.getRenderTarget();

  		renderer.xr.enabled = false;

  		const generateMipmaps = renderTarget.texture.generateMipmaps;

  		renderTarget.texture.generateMipmaps = false;

  		renderer.setRenderTarget( renderTarget, 0 );
  		renderer.render( scene, cameraPX );

  		renderer.setRenderTarget( renderTarget, 1 );
  		renderer.render( scene, cameraNX );

  		renderer.setRenderTarget( renderTarget, 2 );
  		renderer.render( scene, cameraPY );

  		renderer.setRenderTarget( renderTarget, 3 );
  		renderer.render( scene, cameraNY );

  		renderer.setRenderTarget( renderTarget, 4 );
  		renderer.render( scene, cameraPZ );

  		renderTarget.texture.generateMipmaps = generateMipmaps;

  		renderer.setRenderTarget( renderTarget, 5 );
  		renderer.render( scene, cameraNZ );

  		renderer.setRenderTarget( currentRenderTarget );

  		renderer.xr.enabled = currentXrEnabled;

  	};

  	this.clear = function ( renderer, color, depth, stencil ) {

  		const currentRenderTarget = renderer.getRenderTarget();

  		for ( let i = 0; i < 6; i ++ ) {

  			renderer.setRenderTarget( renderTarget, i );

  			renderer.clear( color, depth, stencil );

  		}

  		renderer.setRenderTarget( currentRenderTarget );

  	};

  }

  CubeCamera.prototype = Object.create( Object3D.prototype );
  CubeCamera.prototype.constructor = CubeCamera;

  /**
   * @author alteredq / http://alteredqualia.com
   * @author WestLangley / http://github.com/WestLangley
   */

  function WebGLCubeRenderTarget( size, options, dummy ) {

  	if ( Number.isInteger( options ) ) {

  		console.warn( 'THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )' );

  		options = dummy;

  	}

  	WebGLRenderTarget.call( this, size, size, options );

  }

  WebGLCubeRenderTarget.prototype = Object.create( WebGLRenderTarget.prototype );
  WebGLCubeRenderTarget.prototype.constructor = WebGLCubeRenderTarget;

  WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;

  WebGLCubeRenderTarget.prototype.fromEquirectangularTexture = function ( renderer, texture ) {

  	this.texture.type = texture.type;
  	this.texture.format = texture.format;
  	this.texture.encoding = texture.encoding;

  	const scene = new Scene();

  	const shader = {

  		uniforms: {
  			tEquirect: { value: null },
  		},

  		vertexShader: [

  			"varying vec3 vWorldDirection;",

  			"vec3 transformDirection( in vec3 dir, in mat4 matrix ) {",

  			"	return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );",

  			"}",

  			"void main() {",

  			"	vWorldDirection = transformDirection( position, modelMatrix );",

  			"	#include <begin_vertex>",
  			"	#include <project_vertex>",

  			"}"

  		].join( '\n' ),

  		fragmentShader: [

  			"uniform sampler2D tEquirect;",

  			"varying vec3 vWorldDirection;",

  			"#include <common>",

  			"void main() {",

  			"	vec3 direction = normalize( vWorldDirection );",

  			"	vec2 sampleUV = equirectUv( direction );",

  			"	gl_FragColor = texture2D( tEquirect, sampleUV );",

  			"}"

  		].join( '\n' ),
  	};

  	const material = new ShaderMaterial( {

  		name: 'CubemapFromEquirect',

  		uniforms: cloneUniforms( shader.uniforms ),
  		vertexShader: shader.vertexShader,
  		fragmentShader: shader.fragmentShader,
  		side: BackSide,
  		blending: NoBlending

  	} );

  	material.uniforms.tEquirect.value = texture;

  	const mesh = new Mesh( new BoxBufferGeometry( 5, 5, 5 ), material );

  	scene.add( mesh );

  	const camera = new CubeCamera( 1, 10, this );
  	camera.update( renderer, scene );

  	mesh.geometry.dispose();
  	mesh.material.dispose();

  	return this;

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

  	Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

  	this.image = { data: data || null, width: width || 1, height: height || 1 };

  	this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
  	this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;

  	this.generateMipmaps = false;
  	this.flipY = false;
  	this.unpackAlignment = 1;

  	this.needsUpdate = true;

  }

  DataTexture.prototype = Object.create( Texture.prototype );
  DataTexture.prototype.constructor = DataTexture;

  DataTexture.prototype.isDataTexture = true;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author bhouston / http://clara.io
   */

  const _sphere$1 = new Sphere();
  const _vector$5 = new Vector3();

  function Frustum( p0, p1, p2, p3, p4, p5 ) {

  	this.planes = [

  		( p0 !== undefined ) ? p0 : new Plane(),
  		( p1 !== undefined ) ? p1 : new Plane(),
  		( p2 !== undefined ) ? p2 : new Plane(),
  		( p3 !== undefined ) ? p3 : new Plane(),
  		( p4 !== undefined ) ? p4 : new Plane(),
  		( p5 !== undefined ) ? p5 : new Plane()

  	];

  }

  Object.assign( Frustum.prototype, {

  	set: function ( p0, p1, p2, p3, p4, p5 ) {

  		const planes = this.planes;

  		planes[ 0 ].copy( p0 );
  		planes[ 1 ].copy( p1 );
  		planes[ 2 ].copy( p2 );
  		planes[ 3 ].copy( p3 );
  		planes[ 4 ].copy( p4 );
  		planes[ 5 ].copy( p5 );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( frustum ) {

  		const planes = this.planes;

  		for ( let i = 0; i < 6; i ++ ) {

  			planes[ i ].copy( frustum.planes[ i ] );

  		}

  		return this;

  	},

  	setFromProjectionMatrix: function ( m ) {

  		const planes = this.planes;
  		const me = m.elements;
  		const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
  		const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
  		const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
  		const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];

  		planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
  		planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
  		planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
  		planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
  		planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
  		planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();

  		return this;

  	},

  	intersectsObject: function ( object ) {

  		const geometry = object.geometry;

  		if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

  		_sphere$1.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld );

  		return this.intersectsSphere( _sphere$1 );

  	},

  	intersectsSprite: function ( sprite ) {

  		_sphere$1.center.set( 0, 0, 0 );
  		_sphere$1.radius = 0.7071067811865476;
  		_sphere$1.applyMatrix4( sprite.matrixWorld );

  		return this.intersectsSphere( _sphere$1 );

  	},

  	intersectsSphere: function ( sphere ) {

  		const planes = this.planes;
  		const center = sphere.center;
  		const negRadius = - sphere.radius;

  		for ( let i = 0; i < 6; i ++ ) {

  			const distance = planes[ i ].distanceToPoint( center );

  			if ( distance < negRadius ) {

  				return false;

  			}

  		}

  		return true;

  	},

  	intersectsBox: function ( box ) {

  		const planes = this.planes;

  		for ( let i = 0; i < 6; i ++ ) {

  			const plane = planes[ i ];

  			// corner at max distance

  			_vector$5.x = plane.normal.x > 0 ? box.max.x : box.min.x;
  			_vector$5.y = plane.normal.y > 0 ? box.max.y : box.min.y;
  			_vector$5.z = plane.normal.z > 0 ? box.max.z : box.min.z;

  			if ( plane.distanceToPoint( _vector$5 ) < 0 ) {

  				return false;

  			}

  		}

  		return true;

  	},

  	containsPoint: function ( point ) {

  		const planes = this.planes;

  		for ( let i = 0; i < 6; i ++ ) {

  			if ( planes[ i ].distanceToPoint( point ) < 0 ) {

  				return false;

  			}

  		}

  		return true;

  	}

  } );

  /**
   * Uniforms library for shared webgl shaders
   */

  const UniformsLib = {

  	common: {

  		diffuse: { value: new Color( 0xeeeeee ) },
  		opacity: { value: 1.0 },

  		map: { value: null },
  		uvTransform: { value: new Matrix3() },
  		uv2Transform: { value: new Matrix3() },

  		alphaMap: { value: null },

  	},

  	specularmap: {

  		specularMap: { value: null },

  	},

  	envmap: {

  		envMap: { value: null },
  		flipEnvMap: { value: - 1 },
  		reflectivity: { value: 1.0 },
  		refractionRatio: { value: 0.98 },
  		maxMipLevel: { value: 0 }

  	},

  	aomap: {

  		aoMap: { value: null },
  		aoMapIntensity: { value: 1 }

  	},

  	lightmap: {

  		lightMap: { value: null },
  		lightMapIntensity: { value: 1 }

  	},

  	emissivemap: {

  		emissiveMap: { value: null }

  	},

  	bumpmap: {

  		bumpMap: { value: null },
  		bumpScale: { value: 1 }

  	},

  	normalmap: {

  		normalMap: { value: null },
  		normalScale: { value: new Vector2( 1, 1 ) }

  	},

  	displacementmap: {

  		displacementMap: { value: null },
  		displacementScale: { value: 1 },
  		displacementBias: { value: 0 }

  	},

  	roughnessmap: {

  		roughnessMap: { value: null }

  	},

  	metalnessmap: {

  		metalnessMap: { value: null }

  	},

  	gradientmap: {

  		gradientMap: { value: null }

  	},

  	fog: {

  		fogDensity: { value: 0.00025 },
  		fogNear: { value: 1 },
  		fogFar: { value: 2000 },
  		fogColor: { value: new Color( 0xffffff ) }

  	},

  	lights: {

  		ambientLightColor: { value: [] },

  		lightProbe: { value: [] },

  		directionalLights: { value: [], properties: {
  			direction: {},
  			color: {}
  		} },

  		directionalLightShadows: { value: [], properties: {
  			shadowBias: {},
  			shadowNormalBias: {},
  			shadowRadius: {},
  			shadowMapSize: {}
  		} },

  		directionalShadowMap: { value: [] },
  		directionalShadowMatrix: { value: [] },

  		spotLights: { value: [], properties: {
  			color: {},
  			position: {},
  			direction: {},
  			distance: {},
  			coneCos: {},
  			penumbraCos: {},
  			decay: {}
  		} },

  		spotLightShadows: { value: [], properties: {
  			shadowBias: {},
  			shadowNormalBias: {},
  			shadowRadius: {},
  			shadowMapSize: {}
  		} },

  		spotShadowMap: { value: [] },
  		spotShadowMatrix: { value: [] },

  		pointLights: { value: [], properties: {
  			color: {},
  			position: {},
  			decay: {},
  			distance: {}
  		} },

  		pointLightShadows: { value: [], properties: {
  			shadowBias: {},
  			shadowNormalBias: {},
  			shadowRadius: {},
  			shadowMapSize: {},
  			shadowCameraNear: {},
  			shadowCameraFar: {}
  		} },

  		pointShadowMap: { value: [] },
  		pointShadowMatrix: { value: [] },

  		hemisphereLights: { value: [], properties: {
  			direction: {},
  			skyColor: {},
  			groundColor: {}
  		} },

  		// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
  		rectAreaLights: { value: [], properties: {
  			color: {},
  			position: {},
  			width: {},
  			height: {}
  		} }

  	},

  	points: {

  		diffuse: { value: new Color( 0xeeeeee ) },
  		opacity: { value: 1.0 },
  		size: { value: 1.0 },
  		scale: { value: 1.0 },
  		map: { value: null },
  		alphaMap: { value: null },
  		uvTransform: { value: new Matrix3() }

  	},

  	sprite: {

  		diffuse: { value: new Color( 0xeeeeee ) },
  		opacity: { value: 1.0 },
  		center: { value: new Vector2( 0.5, 0.5 ) },
  		rotation: { value: 0.0 },
  		map: { value: null },
  		alphaMap: { value: null },
  		uvTransform: { value: new Matrix3() }

  	}

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLAnimation() {

  	let context = null;
  	let isAnimating = false;
  	let animationLoop = null;
  	let requestId = null;

  	function onAnimationFrame( time, frame ) {

  		animationLoop( time, frame );

  		requestId = context.requestAnimationFrame( onAnimationFrame );

  	}

  	return {

  		start: function () {

  			if ( isAnimating === true ) return;
  			if ( animationLoop === null ) return;

  			requestId = context.requestAnimationFrame( onAnimationFrame );

  			isAnimating = true;

  		},

  		stop: function () {

  			context.cancelAnimationFrame( requestId );

  			isAnimating = false;

  		},

  		setAnimationLoop: function ( callback ) {

  			animationLoop = callback;

  		},

  		setContext: function ( value ) {

  			context = value;

  		}

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLAttributes( gl, capabilities ) {

  	const isWebGL2 = capabilities.isWebGL2;

  	const buffers = new WeakMap();

  	function createBuffer( attribute, bufferType ) {

  		const array = attribute.array;
  		const usage = attribute.usage;

  		const buffer = gl.createBuffer();

  		gl.bindBuffer( bufferType, buffer );
  		gl.bufferData( bufferType, array, usage );

  		attribute.onUploadCallback();

  		let type = 5126;

  		if ( array instanceof Float32Array ) {

  			type = 5126;

  		} else if ( array instanceof Float64Array ) {

  			console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' );

  		} else if ( array instanceof Uint16Array ) {

  			type = 5123;

  		} else if ( array instanceof Int16Array ) {

  			type = 5122;

  		} else if ( array instanceof Uint32Array ) {

  			type = 5125;

  		} else if ( array instanceof Int32Array ) {

  			type = 5124;

  		} else if ( array instanceof Int8Array ) {

  			type = 5120;

  		} else if ( array instanceof Uint8Array ) {

  			type = 5121;

  		}

  		return {
  			buffer: buffer,
  			type: type,
  			bytesPerElement: array.BYTES_PER_ELEMENT,
  			version: attribute.version
  		};

  	}

  	function updateBuffer( buffer, attribute, bufferType ) {

  		const array = attribute.array;
  		const updateRange = attribute.updateRange;

  		gl.bindBuffer( bufferType, buffer );

  		if ( updateRange.count === - 1 ) {

  			// Not using update ranges

  			gl.bufferSubData( bufferType, 0, array );

  		} else {

  			if ( isWebGL2 ) {

  				gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
  					array, updateRange.offset, updateRange.count );

  			} else {

  				gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
  					array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );

  			}

  			updateRange.count = - 1; // reset range

  		}

  	}

  	//

  	function get( attribute ) {

  		if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

  		return buffers.get( attribute );

  	}

  	function remove( attribute ) {

  		if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

  		const data = buffers.get( attribute );

  		if ( data ) {

  			gl.deleteBuffer( data.buffer );

  			buffers.delete( attribute );

  		}

  	}

  	function update( attribute, bufferType ) {

  		if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

  		const data = buffers.get( attribute );

  		if ( data === undefined ) {

  			buffers.set( attribute, createBuffer( attribute, bufferType ) );

  		} else if ( data.version < attribute.version ) {

  			updateBuffer( data.buffer, attribute, bufferType );

  			data.version = attribute.version;

  		}

  	}

  	return {

  		get: get,
  		remove: remove,
  		update: update

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  // PlaneGeometry

  function PlaneGeometry( width, height, widthSegments, heightSegments ) {

  	Geometry.call( this );

  	this.type = 'PlaneGeometry';

  	this.parameters = {
  		width: width,
  		height: height,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments
  	};

  	this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) );
  	this.mergeVertices();

  }

  PlaneGeometry.prototype = Object.create( Geometry.prototype );
  PlaneGeometry.prototype.constructor = PlaneGeometry;

  // PlaneBufferGeometry

  function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) {

  	BufferGeometry.call( this );

  	this.type = 'PlaneBufferGeometry';

  	this.parameters = {
  		width: width,
  		height: height,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments
  	};

  	width = width || 1;
  	height = height || 1;

  	const width_half = width / 2;
  	const height_half = height / 2;

  	const gridX = Math.floor( widthSegments ) || 1;
  	const gridY = Math.floor( heightSegments ) || 1;

  	const gridX1 = gridX + 1;
  	const gridY1 = gridY + 1;

  	const segment_width = width / gridX;
  	const segment_height = height / gridY;

  	// buffers

  	const indices = [];
  	const vertices = [];
  	const normals = [];
  	const uvs = [];

  	// generate vertices, normals and uvs

  	for ( let iy = 0; iy < gridY1; iy ++ ) {

  		const y = iy * segment_height - height_half;

  		for ( let ix = 0; ix < gridX1; ix ++ ) {

  			const x = ix * segment_width - width_half;

  			vertices.push( x, - y, 0 );

  			normals.push( 0, 0, 1 );

  			uvs.push( ix / gridX );
  			uvs.push( 1 - ( iy / gridY ) );

  		}

  	}

  	// indices

  	for ( let iy = 0; iy < gridY; iy ++ ) {

  		for ( let ix = 0; ix < gridX; ix ++ ) {

  			const a = ix + gridX1 * iy;
  			const b = ix + gridX1 * ( iy + 1 );
  			const c = ( ix + 1 ) + gridX1 * ( iy + 1 );
  			const d = ( ix + 1 ) + gridX1 * iy;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry;

  var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";

  var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";

  var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif";

  var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif";

  var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";

  var begin_vertex = "vec3 transformed = vec3( position );";

  var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";

  var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE  = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS  = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha  = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif";

  var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";

  var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";

  var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";

  var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";

  var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";

  var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif";

  var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";

  var color_pars_vertex = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";

  var color_vertex = "#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif";

  var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n  return m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";

  var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_maxMipLevel 8.0\n#define cubeUV_minMipLevel 4.0\n#define cubeUV_maxTileSize 256.0\n#define cubeUV_minTileSize 16.0\nfloat getFace(vec3 direction) {\n    vec3 absDirection = abs(direction);\n    float face = -1.0;\n    if (absDirection.x > absDirection.z) {\n      if (absDirection.x > absDirection.y)\n        face = direction.x > 0.0 ? 0.0 : 3.0;\n      else\n        face = direction.y > 0.0 ? 1.0 : 4.0;\n    } else {\n      if (absDirection.z > absDirection.y)\n        face = direction.z > 0.0 ? 2.0 : 5.0;\n      else\n        face = direction.y > 0.0 ? 1.0 : 4.0;\n    }\n    return face;\n}\nvec2 getUV(vec3 direction, float face) {\n    vec2 uv;\n    if (face == 0.0) {\n      uv = vec2(direction.z, direction.y) / abs(direction.x);    } else if (face == 1.0) {\n      uv = vec2(-direction.x, -direction.z) / abs(direction.y);    } else if (face == 2.0) {\n      uv = vec2(-direction.x, direction.y) / abs(direction.z);    } else if (face == 3.0) {\n      uv = vec2(-direction.z, direction.y) / abs(direction.x);    } else if (face == 4.0) {\n      uv = vec2(-direction.x, direction.z) / abs(direction.y);    } else {\n      uv = vec2(direction.x, direction.y) / abs(direction.z);    }\n    return 0.5 * (uv + 1.0);\n}\nvec3 bilinearCubeUV(sampler2D envMap, vec3 direction, float mipInt) {\n  float face = getFace(direction);\n  float filterInt = max(cubeUV_minMipLevel - mipInt, 0.0);\n  mipInt = max(mipInt, cubeUV_minMipLevel);\n  float faceSize = exp2(mipInt);\n  float texelSize = 1.0 / (3.0 * cubeUV_maxTileSize);\n  vec2 uv = getUV(direction, face) * (faceSize - 1.0);\n  vec2 f = fract(uv);\n  uv += 0.5 - f;\n  if (face > 2.0) {\n    uv.y += faceSize;\n    face -= 3.0;\n  }\n  uv.x += face * faceSize;\n  if(mipInt < cubeUV_maxMipLevel){\n    uv.y += 2.0 * cubeUV_maxTileSize;\n  }\n  uv.y += filterInt * 2.0 * cubeUV_minTileSize;\n  uv.x += 3.0 * max(0.0, cubeUV_maxTileSize - 2.0 * faceSize);\n  uv *= texelSize;\n  vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n  uv.x += texelSize;\n  vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n  uv.y += texelSize;\n  vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n  uv.x -= texelSize;\n  vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n  vec3 tm = mix(tl, tr, f.x);\n  vec3 bm = mix(bl, br, f.x);\n  return mix(tm, bm, f.y);\n}\n#define r0 1.0\n#define v0 0.339\n#define m0 -2.0\n#define r1 0.8\n#define v1 0.276\n#define m1 -1.0\n#define r4 0.4\n#define v4 0.046\n#define m4 2.0\n#define r5 0.305\n#define v5 0.016\n#define m5 3.0\n#define r6 0.21\n#define v6 0.0038\n#define m6 4.0\nfloat roughnessToMip(float roughness) {\n  float mip = 0.0;\n  if (roughness >= r1) {\n    mip = (r0 - roughness) * (m1 - m0) / (r0 - r1) + m0;\n  } else if (roughness >= r4) {\n    mip = (r1 - roughness) * (m4 - m1) / (r1 - r4) + m1;\n  } else if (roughness >= r5) {\n    mip = (r4 - roughness) * (m5 - m4) / (r4 - r5) + m4;\n  } else if (roughness >= r6) {\n    mip = (r5 - roughness) * (m6 - m5) / (r5 - r6) + m5;\n  } else {\n    mip = -2.0 * log2(1.16 * roughness);  }\n  return mip;\n}\nvec4 textureCubeUV(sampler2D envMap, vec3 sampleDir, float roughness) {\n  float mip = clamp(roughnessToMip(roughness), m0, cubeUV_maxMipLevel);\n  float mipF = fract(mip);\n  float mipInt = floor(mip);\n  vec3 color0 = bilinearCubeUV(envMap, sampleDir, mipInt);\n  if (mipF == 0.0) {\n    return vec4(color0, 1.0);\n  } else {\n    vec3 color1 = bilinearCubeUV(envMap, sampleDir, mipInt + 1.0);\n    return vec4(mix(color0, color1, mipF), 1.0);\n  }\n}\n#endif";

  var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";

  var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";

  var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";

  var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";

  var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";

  var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";

  var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value )  {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";

  var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\t\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t}  else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\treflectVec = normalize( reflectVec );\n\t\tvec2 sampleUV = equirectUv( reflectVec );\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";

  var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";

  var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";

  var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";

  var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) { \n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";

  var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = -mvPosition.z;\n#endif";

  var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif";

  var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";

  var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";

  var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";

  var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif";

  var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";

  var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";

  var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight  ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif";

  var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t  vec3 reflectVec = reflect( -viewDir, normal );\n\t\t  reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t  vec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV = equirectUv( reflectVec );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif";

  var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";

  var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3\tdiffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";

  var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";

  var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";

  var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif";

  var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3\tdiffuseColor;\n\tfloat\tspecularRoughness;\n\tvec3\tspecularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3(    0, 1,    0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";

  var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";

  var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif";

  var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";

  var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";

  var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";

  var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";

  var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";

  var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";

  var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";

  var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";

  var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";

  var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";

  var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";

  var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif";

  var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";

  var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif";

  var normal_fragment_begin = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t\tbitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";

  var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif";

  var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\n\t\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n\t\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n\t\tvec3 N = normalize( surf_norm );\n\t\tmat3 tsn = mat3( S, T, N );\n\t\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif";

  var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";

  var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN );\n\t#endif\n#endif";

  var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";

  var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256.,  256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";

  var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";

  var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";

  var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";

  var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";

  var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";

  var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";

  var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t  texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t  f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t  texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t  f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";

  var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";

  var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";

  var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";

  var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";

  var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";

  var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";

  var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix  = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";

  var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";

  var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";

  var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";

  var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3(  1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108,  1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605,  1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";

  var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";

  var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";

  var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";

  var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";

  var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";

  var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";

  var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";

  var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";

  var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";

  var cube_frag = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";

  var cube_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";

  var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";

  var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";

  var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";

  var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";

  var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";

  var equirect_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";

  var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";

  var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";

  var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

  var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_ENVMAP\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";

  var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

  var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

  var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

  var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";

  var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

  var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

  var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

  var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

  var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define REFLECTIVITY\n\t#define CLEARCOAT\n\t#define TRANSPARENCY\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef TRANSPARENCY\n\tuniform float transparency;\n#endif\n#ifdef REFLECTIVITY\n\tuniform float reflectivity;\n#endif\n#ifdef CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheen;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#ifdef TRANSPARENCY\n\t\tdiffuseColor.a *= saturate( 1. - transparency + linearToRelativeLuminance( reflectedLight.directSpecular + reflectedLight.indirectSpecular ) );\n\t#endif\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";

  var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

  var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";

  var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";

  var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";

  var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";

  var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";

  var shadow_vert = "#include <common>\n#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";

  var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";

  var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";

  const ShaderChunk = {
  	alphamap_fragment: alphamap_fragment,
  	alphamap_pars_fragment: alphamap_pars_fragment,
  	alphatest_fragment: alphatest_fragment,
  	aomap_fragment: aomap_fragment,
  	aomap_pars_fragment: aomap_pars_fragment,
  	begin_vertex: begin_vertex,
  	beginnormal_vertex: beginnormal_vertex,
  	bsdfs: bsdfs,
  	bumpmap_pars_fragment: bumpmap_pars_fragment,
  	clipping_planes_fragment: clipping_planes_fragment,
  	clipping_planes_pars_fragment: clipping_planes_pars_fragment,
  	clipping_planes_pars_vertex: clipping_planes_pars_vertex,
  	clipping_planes_vertex: clipping_planes_vertex,
  	color_fragment: color_fragment,
  	color_pars_fragment: color_pars_fragment,
  	color_pars_vertex: color_pars_vertex,
  	color_vertex: color_vertex,
  	common: common,
  	cube_uv_reflection_fragment: cube_uv_reflection_fragment,
  	defaultnormal_vertex: defaultnormal_vertex,
  	displacementmap_pars_vertex: displacementmap_pars_vertex,
  	displacementmap_vertex: displacementmap_vertex,
  	emissivemap_fragment: emissivemap_fragment,
  	emissivemap_pars_fragment: emissivemap_pars_fragment,
  	encodings_fragment: encodings_fragment,
  	encodings_pars_fragment: encodings_pars_fragment,
  	envmap_fragment: envmap_fragment,
  	envmap_common_pars_fragment: envmap_common_pars_fragment,
  	envmap_pars_fragment: envmap_pars_fragment,
  	envmap_pars_vertex: envmap_pars_vertex,
  	envmap_physical_pars_fragment: envmap_physical_pars_fragment,
  	envmap_vertex: envmap_vertex,
  	fog_vertex: fog_vertex,
  	fog_pars_vertex: fog_pars_vertex,
  	fog_fragment: fog_fragment,
  	fog_pars_fragment: fog_pars_fragment,
  	gradientmap_pars_fragment: gradientmap_pars_fragment,
  	lightmap_fragment: lightmap_fragment,
  	lightmap_pars_fragment: lightmap_pars_fragment,
  	lights_lambert_vertex: lights_lambert_vertex,
  	lights_pars_begin: lights_pars_begin,
  	lights_toon_fragment: lights_toon_fragment,
  	lights_toon_pars_fragment: lights_toon_pars_fragment,
  	lights_phong_fragment: lights_phong_fragment,
  	lights_phong_pars_fragment: lights_phong_pars_fragment,
  	lights_physical_fragment: lights_physical_fragment,
  	lights_physical_pars_fragment: lights_physical_pars_fragment,
  	lights_fragment_begin: lights_fragment_begin,
  	lights_fragment_maps: lights_fragment_maps,
  	lights_fragment_end: lights_fragment_end,
  	logdepthbuf_fragment: logdepthbuf_fragment,
  	logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
  	logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
  	logdepthbuf_vertex: logdepthbuf_vertex,
  	map_fragment: map_fragment,
  	map_pars_fragment: map_pars_fragment,
  	map_particle_fragment: map_particle_fragment,
  	map_particle_pars_fragment: map_particle_pars_fragment,
  	metalnessmap_fragment: metalnessmap_fragment,
  	metalnessmap_pars_fragment: metalnessmap_pars_fragment,
  	morphnormal_vertex: morphnormal_vertex,
  	morphtarget_pars_vertex: morphtarget_pars_vertex,
  	morphtarget_vertex: morphtarget_vertex,
  	normal_fragment_begin: normal_fragment_begin,
  	normal_fragment_maps: normal_fragment_maps,
  	normalmap_pars_fragment: normalmap_pars_fragment,
  	clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
  	clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
  	clearcoat_pars_fragment: clearcoat_pars_fragment,
  	packing: packing,
  	premultiplied_alpha_fragment: premultiplied_alpha_fragment,
  	project_vertex: project_vertex,
  	dithering_fragment: dithering_fragment,
  	dithering_pars_fragment: dithering_pars_fragment,
  	roughnessmap_fragment: roughnessmap_fragment,
  	roughnessmap_pars_fragment: roughnessmap_pars_fragment,
  	shadowmap_pars_fragment: shadowmap_pars_fragment,
  	shadowmap_pars_vertex: shadowmap_pars_vertex,
  	shadowmap_vertex: shadowmap_vertex,
  	shadowmask_pars_fragment: shadowmask_pars_fragment,
  	skinbase_vertex: skinbase_vertex,
  	skinning_pars_vertex: skinning_pars_vertex,
  	skinning_vertex: skinning_vertex,
  	skinnormal_vertex: skinnormal_vertex,
  	specularmap_fragment: specularmap_fragment,
  	specularmap_pars_fragment: specularmap_pars_fragment,
  	tonemapping_fragment: tonemapping_fragment,
  	tonemapping_pars_fragment: tonemapping_pars_fragment,
  	uv_pars_fragment: uv_pars_fragment,
  	uv_pars_vertex: uv_pars_vertex,
  	uv_vertex: uv_vertex,
  	uv2_pars_fragment: uv2_pars_fragment,
  	uv2_pars_vertex: uv2_pars_vertex,
  	uv2_vertex: uv2_vertex,
  	worldpos_vertex: worldpos_vertex,

  	background_frag: background_frag,
  	background_vert: background_vert,
  	cube_frag: cube_frag,
  	cube_vert: cube_vert,
  	depth_frag: depth_frag,
  	depth_vert: depth_vert,
  	distanceRGBA_frag: distanceRGBA_frag,
  	distanceRGBA_vert: distanceRGBA_vert,
  	equirect_frag: equirect_frag,
  	equirect_vert: equirect_vert,
  	linedashed_frag: linedashed_frag,
  	linedashed_vert: linedashed_vert,
  	meshbasic_frag: meshbasic_frag,
  	meshbasic_vert: meshbasic_vert,
  	meshlambert_frag: meshlambert_frag,
  	meshlambert_vert: meshlambert_vert,
  	meshmatcap_frag: meshmatcap_frag,
  	meshmatcap_vert: meshmatcap_vert,
  	meshtoon_frag: meshtoon_frag,
  	meshtoon_vert: meshtoon_vert,
  	meshphong_frag: meshphong_frag,
  	meshphong_vert: meshphong_vert,
  	meshphysical_frag: meshphysical_frag,
  	meshphysical_vert: meshphysical_vert,
  	normal_frag: normal_frag,
  	normal_vert: normal_vert,
  	points_frag: points_frag,
  	points_vert: points_vert,
  	shadow_frag: shadow_frag,
  	shadow_vert: shadow_vert,
  	sprite_frag: sprite_frag,
  	sprite_vert: sprite_vert
  };

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   * @author mikael emtinger / http://gomo.se/
   */

  const ShaderLib = {

  	basic: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.specularmap,
  			UniformsLib.envmap,
  			UniformsLib.aomap,
  			UniformsLib.lightmap,
  			UniformsLib.fog
  		] ),

  		vertexShader: ShaderChunk.meshbasic_vert,
  		fragmentShader: ShaderChunk.meshbasic_frag

  	},

  	lambert: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.specularmap,
  			UniformsLib.envmap,
  			UniformsLib.aomap,
  			UniformsLib.lightmap,
  			UniformsLib.emissivemap,
  			UniformsLib.fog,
  			UniformsLib.lights,
  			{
  				emissive: { value: new Color( 0x000000 ) }
  			}
  		] ),

  		vertexShader: ShaderChunk.meshlambert_vert,
  		fragmentShader: ShaderChunk.meshlambert_frag

  	},

  	phong: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.specularmap,
  			UniformsLib.envmap,
  			UniformsLib.aomap,
  			UniformsLib.lightmap,
  			UniformsLib.emissivemap,
  			UniformsLib.bumpmap,
  			UniformsLib.normalmap,
  			UniformsLib.displacementmap,
  			UniformsLib.fog,
  			UniformsLib.lights,
  			{
  				emissive: { value: new Color( 0x000000 ) },
  				specular: { value: new Color( 0x111111 ) },
  				shininess: { value: 30 }
  			}
  		] ),

  		vertexShader: ShaderChunk.meshphong_vert,
  		fragmentShader: ShaderChunk.meshphong_frag

  	},

  	standard: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.envmap,
  			UniformsLib.aomap,
  			UniformsLib.lightmap,
  			UniformsLib.emissivemap,
  			UniformsLib.bumpmap,
  			UniformsLib.normalmap,
  			UniformsLib.displacementmap,
  			UniformsLib.roughnessmap,
  			UniformsLib.metalnessmap,
  			UniformsLib.fog,
  			UniformsLib.lights,
  			{
  				emissive: { value: new Color( 0x000000 ) },
  				roughness: { value: 1.0 },
  				metalness: { value: 0.0 },
  				envMapIntensity: { value: 1 } // temporary
  			}
  		] ),

  		vertexShader: ShaderChunk.meshphysical_vert,
  		fragmentShader: ShaderChunk.meshphysical_frag

  	},

  	toon: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.aomap,
  			UniformsLib.lightmap,
  			UniformsLib.emissivemap,
  			UniformsLib.bumpmap,
  			UniformsLib.normalmap,
  			UniformsLib.displacementmap,
  			UniformsLib.gradientmap,
  			UniformsLib.fog,
  			UniformsLib.lights,
  			{
  				emissive: { value: new Color( 0x000000 ) }
  			}
  		] ),

  		vertexShader: ShaderChunk.meshtoon_vert,
  		fragmentShader: ShaderChunk.meshtoon_frag

  	},

  	matcap: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.bumpmap,
  			UniformsLib.normalmap,
  			UniformsLib.displacementmap,
  			UniformsLib.fog,
  			{
  				matcap: { value: null }
  			}
  		] ),

  		vertexShader: ShaderChunk.meshmatcap_vert,
  		fragmentShader: ShaderChunk.meshmatcap_frag

  	},

  	points: {

  		uniforms: mergeUniforms( [
  			UniformsLib.points,
  			UniformsLib.fog
  		] ),

  		vertexShader: ShaderChunk.points_vert,
  		fragmentShader: ShaderChunk.points_frag

  	},

  	dashed: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.fog,
  			{
  				scale: { value: 1 },
  				dashSize: { value: 1 },
  				totalSize: { value: 2 }
  			}
  		] ),

  		vertexShader: ShaderChunk.linedashed_vert,
  		fragmentShader: ShaderChunk.linedashed_frag

  	},

  	depth: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.displacementmap
  		] ),

  		vertexShader: ShaderChunk.depth_vert,
  		fragmentShader: ShaderChunk.depth_frag

  	},

  	normal: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.bumpmap,
  			UniformsLib.normalmap,
  			UniformsLib.displacementmap,
  			{
  				opacity: { value: 1.0 }
  			}
  		] ),

  		vertexShader: ShaderChunk.normal_vert,
  		fragmentShader: ShaderChunk.normal_frag

  	},

  	sprite: {

  		uniforms: mergeUniforms( [
  			UniformsLib.sprite,
  			UniformsLib.fog
  		] ),

  		vertexShader: ShaderChunk.sprite_vert,
  		fragmentShader: ShaderChunk.sprite_frag

  	},

  	background: {

  		uniforms: {
  			uvTransform: { value: new Matrix3() },
  			t2D: { value: null },
  		},

  		vertexShader: ShaderChunk.background_vert,
  		fragmentShader: ShaderChunk.background_frag

  	},
  	/* -------------------------------------------------------------------------
  	//	Cube map shader
  	 ------------------------------------------------------------------------- */

  	cube: {

  		uniforms: mergeUniforms( [
  			UniformsLib.envmap,
  			{
  				opacity: { value: 1.0 }
  			}
  		] ),

  		vertexShader: ShaderChunk.cube_vert,
  		fragmentShader: ShaderChunk.cube_frag

  	},

  	equirect: {

  		uniforms: {
  			tEquirect: { value: null },
  		},

  		vertexShader: ShaderChunk.equirect_vert,
  		fragmentShader: ShaderChunk.equirect_frag

  	},

  	distanceRGBA: {

  		uniforms: mergeUniforms( [
  			UniformsLib.common,
  			UniformsLib.displacementmap,
  			{
  				referencePosition: { value: new Vector3() },
  				nearDistance: { value: 1 },
  				farDistance: { value: 1000 }
  			}
  		] ),

  		vertexShader: ShaderChunk.distanceRGBA_vert,
  		fragmentShader: ShaderChunk.distanceRGBA_frag

  	},

  	shadow: {

  		uniforms: mergeUniforms( [
  			UniformsLib.lights,
  			UniformsLib.fog,
  			{
  				color: { value: new Color( 0x00000 ) },
  				opacity: { value: 1.0 }
  			},
  		] ),

  		vertexShader: ShaderChunk.shadow_vert,
  		fragmentShader: ShaderChunk.shadow_frag

  	}

  };

  ShaderLib.physical = {

  	uniforms: mergeUniforms( [
  		ShaderLib.standard.uniforms,
  		{
  			clearcoat: { value: 0 },
  			clearcoatMap: { value: null },
  			clearcoatRoughness: { value: 0 },
  			clearcoatRoughnessMap: { value: null },
  			clearcoatNormalScale: { value: new Vector2( 1, 1 ) },
  			clearcoatNormalMap: { value: null },
  			sheen: { value: new Color( 0x000000 ) },
  			transparency: { value: 0 },
  		}
  	] ),

  	vertexShader: ShaderChunk.meshphysical_vert,
  	fragmentShader: ShaderChunk.meshphysical_frag

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLBackground( renderer, state, objects, premultipliedAlpha ) {

  	const clearColor = new Color( 0x000000 );
  	let clearAlpha = 0;

  	let planeMesh;
  	let boxMesh;

  	let currentBackground = null;
  	let currentBackgroundVersion = 0;
  	let currentTonemapping = null;

  	function render( renderList, scene, camera, forceClear ) {

  		let background = scene.isScene === true ? scene.background : null;

  		// Ignore background in AR
  		// TODO: Reconsider this.

  		const xr = renderer.xr;
  		const session = xr.getSession && xr.getSession();

  		if ( session && session.environmentBlendMode === 'additive' ) {

  			background = null;

  		}

  		if ( background === null ) {

  			setClear( clearColor, clearAlpha );

  		} else if ( background && background.isColor ) {

  			setClear( background, 1 );
  			forceClear = true;

  		}

  		if ( renderer.autoClear || forceClear ) {

  			renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );

  		}

  		if ( background && ( background.isCubeTexture || background.isWebGLCubeRenderTarget || background.mapping === CubeUVReflectionMapping ) ) {

  			if ( boxMesh === undefined ) {

  				boxMesh = new Mesh(
  					new BoxBufferGeometry( 1, 1, 1 ),
  					new ShaderMaterial( {
  						name: 'BackgroundCubeMaterial',
  						uniforms: cloneUniforms( ShaderLib.cube.uniforms ),
  						vertexShader: ShaderLib.cube.vertexShader,
  						fragmentShader: ShaderLib.cube.fragmentShader,
  						side: BackSide,
  						depthTest: false,
  						depthWrite: false,
  						fog: false
  					} )
  				);

  				boxMesh.geometry.deleteAttribute( 'normal' );
  				boxMesh.geometry.deleteAttribute( 'uv' );

  				boxMesh.onBeforeRender = function ( renderer, scene, camera ) {

  					this.matrixWorld.copyPosition( camera.matrixWorld );

  				};

  				// enable code injection for non-built-in material
  				Object.defineProperty( boxMesh.material, 'envMap', {

  					get: function () {

  						return this.uniforms.envMap.value;

  					}

  				} );

  				objects.update( boxMesh );

  			}

  			const texture = background.isWebGLCubeRenderTarget ? background.texture : background;

  			boxMesh.material.uniforms.envMap.value = texture;
  			boxMesh.material.uniforms.flipEnvMap.value = texture.isCubeTexture ? - 1 : 1;

  			if ( currentBackground !== background ||
  				currentBackgroundVersion !== texture.version ||
  				currentTonemapping !== renderer.toneMapping ) {

  				boxMesh.material.needsUpdate = true;

  				currentBackground = background;
  				currentBackgroundVersion = texture.version;
  				currentTonemapping = renderer.toneMapping;

  			}

  			// push to the pre-sorted opaque render list
  			renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null );

  		} else if ( background && background.isTexture ) {

  			if ( planeMesh === undefined ) {

  				planeMesh = new Mesh(
  					new PlaneBufferGeometry( 2, 2 ),
  					new ShaderMaterial( {
  						name: 'BackgroundMaterial',
  						uniforms: cloneUniforms( ShaderLib.background.uniforms ),
  						vertexShader: ShaderLib.background.vertexShader,
  						fragmentShader: ShaderLib.background.fragmentShader,
  						side: FrontSide,
  						depthTest: false,
  						depthWrite: false,
  						fog: false
  					} )
  				);

  				planeMesh.geometry.deleteAttribute( 'normal' );

  				// enable code injection for non-built-in material
  				Object.defineProperty( planeMesh.material, 'map', {

  					get: function () {

  						return this.uniforms.t2D.value;

  					}

  				} );

  				objects.update( planeMesh );

  			}

  			planeMesh.material.uniforms.t2D.value = background;

  			if ( background.matrixAutoUpdate === true ) {

  				background.updateMatrix();

  			}

  			planeMesh.material.uniforms.uvTransform.value.copy( background.matrix );

  			if ( currentBackground !== background ||
  				currentBackgroundVersion !== background.version ||
  				currentTonemapping !== renderer.toneMapping ) {

  				planeMesh.material.needsUpdate = true;

  				currentBackground = background;
  				currentBackgroundVersion = background.version;
  				currentTonemapping = renderer.toneMapping;

  			}


  			// push to the pre-sorted opaque render list
  			renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null );

  		}

  	}

  	function setClear( color, alpha ) {

  		state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha );

  	}

  	return {

  		getClearColor: function () {

  			return clearColor;

  		},
  		setClearColor: function ( color, alpha ) {

  			clearColor.set( color );
  			clearAlpha = alpha !== undefined ? alpha : 1;
  			setClear( clearColor, clearAlpha );

  		},
  		getClearAlpha: function () {

  			return clearAlpha;

  		},
  		setClearAlpha: function ( alpha ) {

  			clearAlpha = alpha;
  			setClear( clearColor, clearAlpha );

  		},
  		render: render

  	};

  }

  /**
   * @author Mugen87 / https://github.com/Mugen87
   * @author Takahiro / https://github.com/takahirox
   */

  function WebGLBindingStates( gl, extensions, attributes, capabilities ) {

  	const maxVertexAttributes = gl.getParameter( 34921 );

  	const extension = capabilities.isWebGL2 ? null : extensions.get( 'OES_vertex_array_object' );
  	const vaoAvailable = capabilities.isWebGL2 || extension !== null;

  	const bindingStates = {};

  	const defaultState = createBindingState( null );
  	let currentState = defaultState;

  	function setup( object, material, program, geometry, index ) {

  		let updateBuffers = false;

  		if ( vaoAvailable ) {

  			const state = getBindingState( geometry, program, material );

  			if ( currentState !== state ) {

  				currentState = state;
  				bindVertexArrayObject( currentState.object );

  			}

  			updateBuffers = needsUpdate( geometry );

  			if ( updateBuffers ) saveCache( geometry );

  		} else {

  			const wireframe = ( material.wireframe === true );

  			if ( currentState.geometry !== geometry.id ||
  				currentState.program !== program.id ||
  				currentState.wireframe !== wireframe ) {

  				currentState.geometry = geometry.id;
  				currentState.program = program.id;
  				currentState.wireframe = wireframe;

  				updateBuffers = true;

  			}

  		}

  		if ( object.isInstancedMesh === true ) {

  			updateBuffers = true;

  		}

  		if ( index !== null ) {

  			attributes.update( index, 34963 );

  		}

  		if ( updateBuffers ) {

  			setupVertexAttributes( object, material, program, geometry );

  			if ( index !== null ) {

  				gl.bindBuffer( 34963, attributes.get( index ).buffer );

  			}

  		}

  	}

  	function createVertexArrayObject() {

  		if ( capabilities.isWebGL2 ) return gl.createVertexArray();

  		return extension.createVertexArrayOES();

  	}

  	function bindVertexArrayObject( vao ) {

  		if ( capabilities.isWebGL2 ) return gl.bindVertexArray( vao );

  		return extension.bindVertexArrayOES( vao );

  	}

  	function deleteVertexArrayObject( vao ) {

  		if ( capabilities.isWebGL2 ) return gl.deleteVertexArray( vao );

  		return extension.deleteVertexArrayOES( vao );

  	}

  	function getBindingState( geometry, program, material ) {

  		const wireframe = ( material.wireframe === true );

  		let programMap = bindingStates[ geometry.id ];

  		if ( programMap === undefined ) {

  			programMap = {};
  			bindingStates[ geometry.id ] = programMap;

  		}

  		let stateMap = programMap[ program.id ];

  		if ( stateMap === undefined ) {

  			stateMap = {};
  			programMap[ program.id ] = stateMap;

  		}

  		let state = stateMap[ wireframe ];

  		if ( state === undefined ) {

  			state = createBindingState( createVertexArrayObject() );
  			stateMap[ wireframe ] = state;

  		}

  		return state;

  	}

  	function createBindingState( vao ) {

  		const newAttributes = [];
  		const enabledAttributes = [];
  		const attributeDivisors = [];

  		for ( let i = 0; i < maxVertexAttributes; i ++ ) {

  			newAttributes[ i ] = 0;
  			enabledAttributes[ i ] = 0;
  			attributeDivisors[ i ] = 0;

  		}

  		return {

  			// for backward compatibility on non-VAO support browser
  			geometry: null,
  			program: null,
  			wireframe: false,

  			newAttributes: newAttributes,
  			enabledAttributes: enabledAttributes,
  			attributeDivisors: attributeDivisors,
  			object: vao,
  			attributes: {}

  		};

  	}

  	function needsUpdate( geometry ) {

  		const cachedAttributes = currentState.attributes;
  		const geometryAttributes = geometry.attributes;

  		if ( Object.keys( cachedAttributes ).length !== Object.keys( geometryAttributes ).length ) return true;

  		for ( const key in geometryAttributes ) {

  			const cachedAttribute = cachedAttributes[ key ];
  			const geometryAttribute = geometryAttributes[ key ];

  			if ( cachedAttribute.attribute !== geometryAttribute ) return true;

  			if ( cachedAttribute.data !== geometryAttribute.data ) return true;

  		}

  		return false;

  	}

  	function saveCache( geometry ) {

  		const cache = {};
  		const attributes = geometry.attributes;

  		for ( const key in attributes ) {

  			const attribute = attributes[ key ];

  			const data = {};
  			data.attribute = attribute;

  			if ( attribute.data ) {

  				data.data = attribute.data;

  			}

  			cache[ key ] = data;

  		}

  		currentState.attributes = cache;

  	}

  	function initAttributes() {

  		const newAttributes = currentState.newAttributes;

  		for ( let i = 0, il = newAttributes.length; i < il; i ++ ) {

  			newAttributes[ i ] = 0;

  		}

  	}

  	function enableAttribute( attribute ) {

  		enableAttributeAndDivisor( attribute, 0 );

  	}

  	function enableAttributeAndDivisor( attribute, meshPerAttribute ) {

  		const newAttributes = currentState.newAttributes;
  		const enabledAttributes = currentState.enabledAttributes;
  		const attributeDivisors = currentState.attributeDivisors;

  		newAttributes[ attribute ] = 1;

  		if ( enabledAttributes[ attribute ] === 0 ) {

  			gl.enableVertexAttribArray( attribute );
  			enabledAttributes[ attribute ] = 1;

  		}

  		if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {

  			const extension = capabilities.isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' );

  			extension[ capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute );
  			attributeDivisors[ attribute ] = meshPerAttribute;

  		}

  	}

  	function disableUnusedAttributes() {

  		const newAttributes = currentState.newAttributes;
  		const enabledAttributes = currentState.enabledAttributes;

  		for ( let i = 0, il = enabledAttributes.length; i < il; i ++ ) {

  			if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {

  				gl.disableVertexAttribArray( i );
  				enabledAttributes[ i ] = 0;

  			}

  		}

  	}

  	function vertexAttribPointer( index, size, type, normalized, stride, offset ) {

  		if ( capabilities.isWebGL2 === true && ( type === 5124 || type === 5125 ) ) {

  			gl.vertexAttribIPointer( index, size, type, normalized, stride, offset );

  		} else {

  			gl.vertexAttribPointer( index, size, type, normalized, stride, offset );

  		}

  	}

  	function setupVertexAttributes( object, material, program, geometry ) {

  		if ( capabilities.isWebGL2 === false && ( object.isInstancedMesh || geometry.isInstancedBufferGeometry ) ) {

  			if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) return;

  		}

  		initAttributes();

  		const geometryAttributes = geometry.attributes;

  		const programAttributes = program.getAttributes();

  		const materialDefaultAttributeValues = material.defaultAttributeValues;

  		for ( const name in programAttributes ) {

  			const programAttribute = programAttributes[ name ];

  			if ( programAttribute >= 0 ) {

  				const geometryAttribute = geometryAttributes[ name ];

  				if ( geometryAttribute !== undefined ) {

  					const normalized = geometryAttribute.normalized;
  					const size = geometryAttribute.itemSize;

  					const attribute = attributes.get( geometryAttribute );

  					// TODO Attribute may not be available on context restore

  					if ( attribute === undefined ) continue;

  					const buffer = attribute.buffer;
  					const type = attribute.type;
  					const bytesPerElement = attribute.bytesPerElement;

  					if ( geometryAttribute.isInterleavedBufferAttribute ) {

  						const data = geometryAttribute.data;
  						const stride = data.stride;
  						const offset = geometryAttribute.offset;

  						if ( data && data.isInstancedInterleavedBuffer ) {

  							enableAttributeAndDivisor( programAttribute, data.meshPerAttribute );

  							if ( geometry._maxInstanceCount === undefined ) {

  								geometry._maxInstanceCount = data.meshPerAttribute * data.count;

  							}

  						} else {

  							enableAttribute( programAttribute );

  						}

  						gl.bindBuffer( 34962, buffer );
  						vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement );

  					} else {

  						if ( geometryAttribute.isInstancedBufferAttribute ) {

  							enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute );

  							if ( geometry._maxInstanceCount === undefined ) {

  								geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;

  							}

  						} else {

  							enableAttribute( programAttribute );

  						}

  						gl.bindBuffer( 34962, buffer );
  						vertexAttribPointer( programAttribute, size, type, normalized, 0, 0 );

  					}

  				} else if ( name === 'instanceMatrix' ) {

  					const attribute = attributes.get( object.instanceMatrix );

  					// TODO Attribute may not be available on context restore

  					if ( attribute === undefined ) continue;

  					const buffer = attribute.buffer;
  					const type = attribute.type;

  					enableAttributeAndDivisor( programAttribute + 0, 1 );
  					enableAttributeAndDivisor( programAttribute + 1, 1 );
  					enableAttributeAndDivisor( programAttribute + 2, 1 );
  					enableAttributeAndDivisor( programAttribute + 3, 1 );

  					gl.bindBuffer( 34962, buffer );

  					gl.vertexAttribPointer( programAttribute + 0, 4, type, false, 64, 0 );
  					gl.vertexAttribPointer( programAttribute + 1, 4, type, false, 64, 16 );
  					gl.vertexAttribPointer( programAttribute + 2, 4, type, false, 64, 32 );
  					gl.vertexAttribPointer( programAttribute + 3, 4, type, false, 64, 48 );

  				} else if ( materialDefaultAttributeValues !== undefined ) {

  					const value = materialDefaultAttributeValues[ name ];

  					if ( value !== undefined ) {

  						switch ( value.length ) {

  							case 2:
  								gl.vertexAttrib2fv( programAttribute, value );
  								break;

  							case 3:
  								gl.vertexAttrib3fv( programAttribute, value );
  								break;

  							case 4:
  								gl.vertexAttrib4fv( programAttribute, value );
  								break;

  							default:
  								gl.vertexAttrib1fv( programAttribute, value );

  						}

  					}

  				}

  			}

  		}

  		disableUnusedAttributes();

  	}

  	function dispose() {

  		reset();

  		for ( const geometryId in bindingStates ) {

  			const programMap = bindingStates[ geometryId ];

  			for ( const programId in programMap ) {

  				const stateMap = programMap[ programId ];

  				for ( const wireframe in stateMap ) {

  					deleteVertexArrayObject( stateMap[ wireframe ].object );

  					delete stateMap[ wireframe ];

  				}

  				delete programMap[ programId ];

  			}

  			delete bindingStates[ geometryId ];

  		}

  	}

  	function releaseStatesOfGeometry( geometry ) {

  		if ( bindingStates[ geometry.id ] === undefined ) return;

  		const programMap = bindingStates[ geometry.id ];

  		for ( const programId in programMap ) {

  			const stateMap = programMap[ programId ];

  			for ( const wireframe in stateMap ) {

  				deleteVertexArrayObject( stateMap[ wireframe ].object );

  				delete stateMap[ wireframe ];

  			}

  			delete programMap[ programId ];

  		}

  		delete bindingStates[ geometry.id ];

  	}

  	function releaseStatesOfProgram( program ) {

  		for ( const geometryId in bindingStates ) {

  			const programMap = bindingStates[ geometryId ];

  			if ( programMap[ program.id ] === undefined ) continue;

  			const stateMap = programMap[ program.id ];

  			for ( const wireframe in stateMap ) {

  				deleteVertexArrayObject( stateMap[ wireframe ].object );

  				delete stateMap[ wireframe ];

  			}

  			delete programMap[ program.id ];

  		}

  	}

  	function reset() {

  		resetDefaultState();

  		if ( currentState === defaultState ) return;

  		currentState = defaultState;
  		bindVertexArrayObject( currentState.object );

  	}

  	// for backward-compatilibity

  	function resetDefaultState() {

  		defaultState.geometry = null;
  		defaultState.program = null;
  		defaultState.wireframe = false;

  	}

  	return {

  		setup: setup,
  		reset: reset,
  		resetDefaultState: resetDefaultState,
  		dispose: dispose,
  		releaseStatesOfGeometry: releaseStatesOfGeometry,
  		releaseStatesOfProgram: releaseStatesOfProgram,

  		initAttributes: initAttributes,
  		enableAttribute: enableAttribute,
  		disableUnusedAttributes: disableUnusedAttributes

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLBufferRenderer( gl, extensions, info, capabilities ) {

  	const isWebGL2 = capabilities.isWebGL2;

  	let mode;

  	function setMode( value ) {

  		mode = value;

  	}

  	function render( start, count ) {

  		gl.drawArrays( mode, start, count );

  		info.update( count, mode );

  	}

  	function renderInstances( geometry, start, count, primcount ) {

  		if ( primcount === 0 ) return;

  		let extension, methodName;

  		if ( isWebGL2 ) {

  			extension = gl;
  			methodName = 'drawArraysInstanced';

  		} else {

  			extension = extensions.get( 'ANGLE_instanced_arrays' );
  			methodName = 'drawArraysInstancedANGLE';

  			if ( extension === null ) {

  				console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
  				return;

  			}

  		}

  		extension[ methodName ]( mode, start, count, primcount );

  		info.update( count, mode, primcount );

  	}

  	//

  	this.setMode = setMode;
  	this.render = render;
  	this.renderInstances = renderInstances;

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLCapabilities( gl, extensions, parameters ) {

  	let maxAnisotropy;

  	function getMaxAnisotropy() {

  		if ( maxAnisotropy !== undefined ) return maxAnisotropy;

  		const extension = extensions.get( 'EXT_texture_filter_anisotropic' );

  		if ( extension !== null ) {

  			maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );

  		} else {

  			maxAnisotropy = 0;

  		}

  		return maxAnisotropy;

  	}

  	function getMaxPrecision( precision ) {

  		if ( precision === 'highp' ) {

  			if ( gl.getShaderPrecisionFormat( 35633, 36338 ).precision > 0 &&
  				gl.getShaderPrecisionFormat( 35632, 36338 ).precision > 0 ) {

  				return 'highp';

  			}

  			precision = 'mediump';

  		}

  		if ( precision === 'mediump' ) {

  			if ( gl.getShaderPrecisionFormat( 35633, 36337 ).precision > 0 &&
  				gl.getShaderPrecisionFormat( 35632, 36337 ).precision > 0 ) {

  				return 'mediump';

  			}

  		}

  		return 'lowp';

  	}

  	/* eslint-disable no-undef */
  	const isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext ) ||
  		( typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext );
  	/* eslint-enable no-undef */

  	let precision = parameters.precision !== undefined ? parameters.precision : 'highp';
  	const maxPrecision = getMaxPrecision( precision );

  	if ( maxPrecision !== precision ) {

  		console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' );
  		precision = maxPrecision;

  	}

  	const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;

  	const maxTextures = gl.getParameter( 34930 );
  	const maxVertexTextures = gl.getParameter( 35660 );
  	const maxTextureSize = gl.getParameter( 3379 );
  	const maxCubemapSize = gl.getParameter( 34076 );

  	const maxAttributes = gl.getParameter( 34921 );
  	const maxVertexUniforms = gl.getParameter( 36347 );
  	const maxVaryings = gl.getParameter( 36348 );
  	const maxFragmentUniforms = gl.getParameter( 36349 );

  	const vertexTextures = maxVertexTextures > 0;
  	const floatFragmentTextures = isWebGL2 || !! extensions.get( 'OES_texture_float' );
  	const floatVertexTextures = vertexTextures && floatFragmentTextures;

  	const maxSamples = isWebGL2 ? gl.getParameter( 36183 ) : 0;

  	return {

  		isWebGL2: isWebGL2,

  		getMaxAnisotropy: getMaxAnisotropy,
  		getMaxPrecision: getMaxPrecision,

  		precision: precision,
  		logarithmicDepthBuffer: logarithmicDepthBuffer,

  		maxTextures: maxTextures,
  		maxVertexTextures: maxVertexTextures,
  		maxTextureSize: maxTextureSize,
  		maxCubemapSize: maxCubemapSize,

  		maxAttributes: maxAttributes,
  		maxVertexUniforms: maxVertexUniforms,
  		maxVaryings: maxVaryings,
  		maxFragmentUniforms: maxFragmentUniforms,

  		vertexTextures: vertexTextures,
  		floatFragmentTextures: floatFragmentTextures,
  		floatVertexTextures: floatVertexTextures,

  		maxSamples: maxSamples

  	};

  }

  /**
   * @author tschw
   */

  function WebGLClipping() {

  	const scope = this;

  	let globalState = null,
  		numGlobalPlanes = 0,
  		localClippingEnabled = false,
  		renderingShadows = false;

  	const plane = new Plane(),
  		viewNormalMatrix = new Matrix3(),

  		uniform = { value: null, needsUpdate: false };

  	this.uniform = uniform;
  	this.numPlanes = 0;
  	this.numIntersection = 0;

  	this.init = function ( planes, enableLocalClipping, camera ) {

  		const enabled =
  			planes.length !== 0 ||
  			enableLocalClipping ||
  			// enable state of previous frame - the clipping code has to
  			// run another frame in order to reset the state:
  			numGlobalPlanes !== 0 ||
  			localClippingEnabled;

  		localClippingEnabled = enableLocalClipping;

  		globalState = projectPlanes( planes, camera, 0 );
  		numGlobalPlanes = planes.length;

  		return enabled;

  	};

  	this.beginShadows = function () {

  		renderingShadows = true;
  		projectPlanes( null );

  	};

  	this.endShadows = function () {

  		renderingShadows = false;
  		resetGlobalState();

  	};

  	this.setState = function ( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {

  		if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) {

  			// there's no local clipping

  			if ( renderingShadows ) {

  				// there's no global clipping

  				projectPlanes( null );

  			} else {

  				resetGlobalState();

  			}

  		} else {

  			const nGlobal = renderingShadows ? 0 : numGlobalPlanes,
  				lGlobal = nGlobal * 4;

  			let dstArray = cache.clippingState || null;

  			uniform.value = dstArray; // ensure unique state

  			dstArray = projectPlanes( planes, camera, lGlobal, fromCache );

  			for ( let i = 0; i !== lGlobal; ++ i ) {

  				dstArray[ i ] = globalState[ i ];

  			}

  			cache.clippingState = dstArray;
  			this.numIntersection = clipIntersection ? this.numPlanes : 0;
  			this.numPlanes += nGlobal;

  		}


  	};

  	function resetGlobalState() {

  		if ( uniform.value !== globalState ) {

  			uniform.value = globalState;
  			uniform.needsUpdate = numGlobalPlanes > 0;

  		}

  		scope.numPlanes = numGlobalPlanes;
  		scope.numIntersection = 0;

  	}

  	function projectPlanes( planes, camera, dstOffset, skipTransform ) {

  		let nPlanes = planes !== null ? planes.length : 0,
  			dstArray = null;

  		if ( nPlanes !== 0 ) {

  			dstArray = uniform.value;

  			if ( skipTransform !== true || dstArray === null ) {

  				const flatSize = dstOffset + nPlanes * 4,
  					viewMatrix = camera.matrixWorldInverse;

  				viewNormalMatrix.getNormalMatrix( viewMatrix );

  				if ( dstArray === null || dstArray.length < flatSize ) {

  					dstArray = new Float32Array( flatSize );

  				}

  				for ( let i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) {

  					plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix );

  					plane.normal.toArray( dstArray, i4 );
  					dstArray[ i4 + 3 ] = plane.constant;

  				}

  			}

  			uniform.value = dstArray;
  			uniform.needsUpdate = true;

  		}

  		scope.numPlanes = nPlanes;
  		scope.numIntersection = 0;

  		return dstArray;

  	}

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLExtensions( gl ) {

  	const extensions = {};

  	return {

  		get: function ( name ) {

  			if ( extensions[ name ] !== undefined ) {

  				return extensions[ name ];

  			}

  			let extension;

  			switch ( name ) {

  				case 'WEBGL_depth_texture':
  					extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
  					break;

  				case 'EXT_texture_filter_anisotropic':
  					extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
  					break;

  				case 'WEBGL_compressed_texture_s3tc':
  					extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
  					break;

  				case 'WEBGL_compressed_texture_pvrtc':
  					extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
  					break;

  				default:
  					extension = gl.getExtension( name );

  			}

  			if ( extension === null ) {

  				console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );

  			}

  			extensions[ name ] = extension;

  			return extension;

  		}

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLGeometries( gl, attributes, info, bindingStates ) {

  	const geometries = new WeakMap();
  	const wireframeAttributes = new WeakMap();

  	function onGeometryDispose( event ) {

  		const geometry = event.target;
  		const buffergeometry = geometries.get( geometry );

  		if ( buffergeometry.index !== null ) {

  			attributes.remove( buffergeometry.index );

  		}

  		for ( const name in buffergeometry.attributes ) {

  			attributes.remove( buffergeometry.attributes[ name ] );

  		}

  		geometry.removeEventListener( 'dispose', onGeometryDispose );

  		geometries.delete( geometry );

  		const attribute = wireframeAttributes.get( buffergeometry );

  		if ( attribute ) {

  			attributes.remove( attribute );
  			wireframeAttributes.delete( buffergeometry );

  		}

  		bindingStates.releaseStatesOfGeometry( geometry );

  		if ( geometry.isInstancedBufferGeometry === true ) {

  			delete geometry._maxInstanceCount;

  		}

  		//

  		info.memory.geometries --;

  	}

  	function get( object, geometry ) {

  		let buffergeometry = geometries.get( geometry );

  		if ( buffergeometry ) return buffergeometry;

  		geometry.addEventListener( 'dispose', onGeometryDispose );

  		if ( geometry.isBufferGeometry ) {

  			buffergeometry = geometry;

  		} else if ( geometry.isGeometry ) {

  			if ( geometry._bufferGeometry === undefined ) {

  				geometry._bufferGeometry = new BufferGeometry().setFromObject( object );

  			}

  			buffergeometry = geometry._bufferGeometry;

  		}

  		geometries.set( geometry, buffergeometry );

  		info.memory.geometries ++;

  		return buffergeometry;

  	}

  	function update( geometry ) {

  		const geometryAttributes = geometry.attributes;

  		// Updating index buffer in VAO now. See WebGLBindingStates.

  		for ( const name in geometryAttributes ) {

  			attributes.update( geometryAttributes[ name ], 34962 );

  		}

  		// morph targets

  		const morphAttributes = geometry.morphAttributes;

  		for ( const name in morphAttributes ) {

  			const array = morphAttributes[ name ];

  			for ( let i = 0, l = array.length; i < l; i ++ ) {

  				attributes.update( array[ i ], 34962 );

  			}

  		}

  	}

  	function updateWireframeAttribute( geometry ) {

  		const indices = [];

  		const geometryIndex = geometry.index;
  		const geometryPosition = geometry.attributes.position;
  		let version = 0;

  		if ( geometryIndex !== null ) {

  			const array = geometryIndex.array;
  			version = geometryIndex.version;

  			for ( let i = 0, l = array.length; i < l; i += 3 ) {

  				const a = array[ i + 0 ];
  				const b = array[ i + 1 ];
  				const c = array[ i + 2 ];

  				indices.push( a, b, b, c, c, a );

  			}

  		} else {

  			const array = geometryPosition.array;
  			version = geometryPosition.version;

  			for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {

  				const a = i + 0;
  				const b = i + 1;
  				const c = i + 2;

  				indices.push( a, b, b, c, c, a );

  			}

  		}

  		const attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 );
  		attribute.version = version;

  		// Updating index buffer in VAO now. See WebGLBindingStates

  		//

  		const previousAttribute = wireframeAttributes.get( geometry );

  		if ( previousAttribute ) attributes.remove( previousAttribute );

  		//

  		wireframeAttributes.set( geometry, attribute );

  	}

  	function getWireframeAttribute( geometry ) {

  		const currentAttribute = wireframeAttributes.get( geometry );

  		if ( currentAttribute ) {

  			const geometryIndex = geometry.index;

  			if ( geometryIndex !== null ) {

  				// if the attribute is obsolete, create a new one

  				if ( currentAttribute.version < geometryIndex.version ) {

  					updateWireframeAttribute( geometry );

  				}

  			}

  		} else {

  			updateWireframeAttribute( geometry );

  		}

  		return wireframeAttributes.get( geometry );

  	}

  	return {

  		get: get,
  		update: update,

  		getWireframeAttribute: getWireframeAttribute

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) {

  	const isWebGL2 = capabilities.isWebGL2;

  	let mode;

  	function setMode( value ) {

  		mode = value;

  	}

  	let type, bytesPerElement;

  	function setIndex( value ) {

  		type = value.type;
  		bytesPerElement = value.bytesPerElement;

  	}

  	function render( start, count ) {

  		gl.drawElements( mode, count, type, start * bytesPerElement );

  		info.update( count, mode );

  	}

  	function renderInstances( geometry, start, count, primcount ) {

  		if ( primcount === 0 ) return;

  		let extension, methodName;

  		if ( isWebGL2 ) {

  			extension = gl;
  			methodName = 'drawElementsInstanced';

  		} else {

  			extension = extensions.get( 'ANGLE_instanced_arrays' );
  			methodName = 'drawElementsInstancedANGLE';

  			if ( extension === null ) {

  				console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
  				return;

  			}

  		}

  		extension[ methodName ]( mode, count, type, start * bytesPerElement, primcount );

  		info.update( count, mode, primcount );

  	}

  	//

  	this.setMode = setMode;
  	this.setIndex = setIndex;
  	this.render = render;
  	this.renderInstances = renderInstances;

  }

  /**
   * @author Mugen87 / https://github.com/Mugen87
   */

  function WebGLInfo( gl ) {

  	const memory = {
  		geometries: 0,
  		textures: 0
  	};

  	const render = {
  		frame: 0,
  		calls: 0,
  		triangles: 0,
  		points: 0,
  		lines: 0
  	};

  	function update( count, mode, instanceCount ) {

  		instanceCount = instanceCount || 1;

  		render.calls ++;

  		switch ( mode ) {

  			case 4:
  				render.triangles += instanceCount * ( count / 3 );
  				break;

  			case 1:
  				render.lines += instanceCount * ( count / 2 );
  				break;

  			case 3:
  				render.lines += instanceCount * ( count - 1 );
  				break;

  			case 2:
  				render.lines += instanceCount * count;
  				break;

  			case 0:
  				render.points += instanceCount * count;
  				break;

  			default:
  				console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode );
  				break;

  		}

  	}

  	function reset() {

  		render.frame ++;
  		render.calls = 0;
  		render.triangles = 0;
  		render.points = 0;
  		render.lines = 0;

  	}

  	return {
  		memory: memory,
  		render: render,
  		programs: null,
  		autoReset: true,
  		reset: reset,
  		update: update
  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function numericalSort( a, b ) {

  	return a[ 0 ] - b[ 0 ];

  }

  function absNumericalSort( a, b ) {

  	return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] );

  }

  function WebGLMorphtargets( gl ) {

  	const influencesList = {};
  	const morphInfluences = new Float32Array( 8 );

  	const workInfluences = [];

  	for ( let i = 0; i < 8; i ++ ) {

  		workInfluences[ i ] = [ i, 0 ];

  	}

  	function update( object, geometry, material, program ) {

  		const objectInfluences = object.morphTargetInfluences;

  		// When object doesn't have morph target influences defined, we treat it as a 0-length array
  		// This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences

  		const length = objectInfluences === undefined ? 0 : objectInfluences.length;

  		let influences = influencesList[ geometry.id ];

  		if ( influences === undefined ) {

  			// initialise list

  			influences = [];

  			for ( let i = 0; i < length; i ++ ) {

  				influences[ i ] = [ i, 0 ];

  			}

  			influencesList[ geometry.id ] = influences;

  		}

  		// Collect influences

  		for ( let i = 0; i < length; i ++ ) {

  			const influence = influences[ i ];

  			influence[ 0 ] = i;
  			influence[ 1 ] = objectInfluences[ i ];

  		}

  		influences.sort( absNumericalSort );

  		for ( let i = 0; i < 8; i ++ ) {

  			if ( i < length && influences[ i ][ 1 ] ) {

  				workInfluences[ i ][ 0 ] = influences[ i ][ 0 ];
  				workInfluences[ i ][ 1 ] = influences[ i ][ 1 ];

  			} else {

  				workInfluences[ i ][ 0 ] = Number.MAX_SAFE_INTEGER;
  				workInfluences[ i ][ 1 ] = 0;

  			}

  		}

  		workInfluences.sort( numericalSort );

  		const morphTargets = material.morphTargets && geometry.morphAttributes.position;
  		const morphNormals = material.morphNormals && geometry.morphAttributes.normal;

  		let morphInfluencesSum = 0;

  		for ( let i = 0; i < 8; i ++ ) {

  			const influence = workInfluences[ i ];
  			const index = influence[ 0 ];
  			const value = influence[ 1 ];

  			if ( index !== Number.MAX_SAFE_INTEGER && value ) {

  				if ( morphTargets && geometry.getAttribute( 'morphTarget' + i ) !== morphTargets[ index ] ) {

  					geometry.setAttribute( 'morphTarget' + i, morphTargets[ index ] );

  				}

  				if ( morphNormals && geometry.getAttribute( 'morphNormal' + i ) !== morphNormals[ index ] ) {

  					geometry.setAttribute( 'morphNormal' + i, morphNormals[ index ] );

  				}

  				morphInfluences[ i ] = value;
  				morphInfluencesSum += value;

  			} else {

  				if ( morphTargets && geometry.getAttribute( 'morphTarget' + i ) !== undefined ) {

  					geometry.deleteAttribute( 'morphTarget' + i );

  				}

  				if ( morphNormals && geometry.getAttribute( 'morphNormal' + i ) !== undefined ) {

  					geometry.deleteAttribute( 'morphNormal' + i );

  				}

  				morphInfluences[ i ] = 0;

  			}

  		}

  		// GLSL shader uses formula baseinfluence * base + sum(target * influence)
  		// This allows us to switch between absolute morphs and relative morphs without changing shader code
  		// When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
  		const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;

  		program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence );
  		program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences );

  	}

  	return {

  		update: update

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLObjects( gl, geometries, attributes, info ) {

  	let updateMap = new WeakMap();

  	function update( object ) {

  		const frame = info.render.frame;

  		const geometry = object.geometry;
  		const buffergeometry = geometries.get( object, geometry );

  		// Update once per frame

  		if ( updateMap.get( buffergeometry ) !== frame ) {

  			if ( geometry.isGeometry ) {

  				buffergeometry.updateFromObject( object );

  			}

  			geometries.update( buffergeometry );

  			updateMap.set( buffergeometry, frame );

  		}

  		if ( object.isInstancedMesh ) {

  			attributes.update( object.instanceMatrix, 34962 );

  		}

  		return buffergeometry;

  	}

  	function dispose() {

  		updateMap = new WeakMap();

  	}

  	return {

  		update: update,
  		dispose: dispose

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

  	images = images !== undefined ? images : [];
  	mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
  	format = format !== undefined ? format : RGBFormat;

  	Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

  	this.flipY = false;

  }

  CubeTexture.prototype = Object.create( Texture.prototype );
  CubeTexture.prototype.constructor = CubeTexture;

  CubeTexture.prototype.isCubeTexture = true;

  Object.defineProperty( CubeTexture.prototype, 'images', {

  	get: function () {

  		return this.image;

  	},

  	set: function ( value ) {

  		this.image = value;

  	}

  } );

  /**
   * @author Takahiro https://github.com/takahirox
   */

  function DataTexture2DArray( data, width, height, depth ) {

  	Texture.call( this, null );

  	this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 };

  	this.magFilter = NearestFilter;
  	this.minFilter = NearestFilter;

  	this.wrapR = ClampToEdgeWrapping;

  	this.generateMipmaps = false;
  	this.flipY = false;

  	this.needsUpdate = true;

  }

  DataTexture2DArray.prototype = Object.create( Texture.prototype );
  DataTexture2DArray.prototype.constructor = DataTexture2DArray;
  DataTexture2DArray.prototype.isDataTexture2DArray = true;

  /**
   * @author Artur Trzesiok
   */

  function DataTexture3D( data, width, height, depth ) {

  	// We're going to add .setXXX() methods for setting properties later.
  	// Users can still set in DataTexture3D directly.
  	//
  	//	const texture = new THREE.DataTexture3D( data, width, height, depth );
  	// 	texture.anisotropy = 16;
  	//
  	// See #14839

  	Texture.call( this, null );

  	this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 };

  	this.magFilter = NearestFilter;
  	this.minFilter = NearestFilter;

  	this.wrapR = ClampToEdgeWrapping;

  	this.generateMipmaps = false;
  	this.flipY = false;

  	this.needsUpdate = true;


  }

  DataTexture3D.prototype = Object.create( Texture.prototype );
  DataTexture3D.prototype.constructor = DataTexture3D;
  DataTexture3D.prototype.isDataTexture3D = true;

  /**
   * @author tschw
   * @author Mugen87 / https://github.com/Mugen87
   * @author mrdoob / http://mrdoob.com/
   *
   * Uniforms of a program.
   * Those form a tree structure with a special top-level container for the root,
   * which you get by calling 'new WebGLUniforms( gl, program )'.
   *
   *
   * Properties of inner nodes including the top-level container:
   *
   * .seq - array of nested uniforms
   * .map - nested uniforms by name
   *
   *
   * Methods of all nodes except the top-level container:
   *
   * .setValue( gl, value, [textures] )
   *
   * 		uploads a uniform value(s)
   *  	the 'textures' parameter is needed for sampler uniforms
   *
   *
   * Static methods of the top-level container (textures factorizations):
   *
   * .upload( gl, seq, values, textures )
   *
   * 		sets uniforms in 'seq' to 'values[id].value'
   *
   * .seqWithValue( seq, values ) : filteredSeq
   *
   * 		filters 'seq' entries with corresponding entry in values
   *
   *
   * Methods of the top-level container (textures factorizations):
   *
   * .setValue( gl, name, value, textures )
   *
   * 		sets uniform with  name 'name' to 'value'
   *
   * .setOptional( gl, obj, prop )
   *
   * 		like .set for an optional property of the object
   *
   */

  const emptyTexture = new Texture();
  const emptyTexture2dArray = new DataTexture2DArray();
  const emptyTexture3d = new DataTexture3D();
  const emptyCubeTexture = new CubeTexture();

  // --- Utilities ---

  // Array Caches (provide typed arrays for temporary by size)

  const arrayCacheF32 = [];
  const arrayCacheI32 = [];

  // Float32Array caches used for uploading Matrix uniforms

  const mat4array = new Float32Array( 16 );
  const mat3array = new Float32Array( 9 );
  const mat2array = new Float32Array( 4 );

  // Flattening for arrays of vectors and matrices

  function flatten( array, nBlocks, blockSize ) {

  	const firstElem = array[ 0 ];

  	if ( firstElem <= 0 || firstElem > 0 ) return array;
  	// unoptimized: ! isNaN( firstElem )
  	// see http://jacksondunstan.com/articles/983

  	let n = nBlocks * blockSize,
  		r = arrayCacheF32[ n ];

  	if ( r === undefined ) {

  		r = new Float32Array( n );
  		arrayCacheF32[ n ] = r;

  	}

  	if ( nBlocks !== 0 ) {

  		firstElem.toArray( r, 0 );

  		for ( let i = 1, offset = 0; i !== nBlocks; ++ i ) {

  			offset += blockSize;
  			array[ i ].toArray( r, offset );

  		}

  	}

  	return r;

  }

  function arraysEqual( a, b ) {

  	if ( a.length !== b.length ) return false;

  	for ( let i = 0, l = a.length; i < l; i ++ ) {

  		if ( a[ i ] !== b[ i ] ) return false;

  	}

  	return true;

  }

  function copyArray( a, b ) {

  	for ( let i = 0, l = b.length; i < l; i ++ ) {

  		a[ i ] = b[ i ];

  	}

  }

  // Texture unit allocation

  function allocTexUnits( textures, n ) {

  	let r = arrayCacheI32[ n ];

  	if ( r === undefined ) {

  		r = new Int32Array( n );
  		arrayCacheI32[ n ] = r;

  	}

  	for ( let i = 0; i !== n; ++ i ) {

  		r[ i ] = textures.allocateTextureUnit();

  	}

  	return r;

  }

  // --- Setters ---

  // Note: Defining these methods externally, because they come in a bunch
  // and this way their names minify.

  // Single scalar

  function setValueV1f( gl, v ) {

  	const cache = this.cache;

  	if ( cache[ 0 ] === v ) return;

  	gl.uniform1f( this.addr, v );

  	cache[ 0 ] = v;

  }

  // Single float vector (from flat array or THREE.VectorN)

  function setValueV2f( gl, v ) {

  	const cache = this.cache;

  	if ( v.x !== undefined ) {

  		if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) {

  			gl.uniform2f( this.addr, v.x, v.y );

  			cache[ 0 ] = v.x;
  			cache[ 1 ] = v.y;

  		}

  	} else {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniform2fv( this.addr, v );

  		copyArray( cache, v );

  	}

  }

  function setValueV3f( gl, v ) {

  	const cache = this.cache;

  	if ( v.x !== undefined ) {

  		if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) {

  			gl.uniform3f( this.addr, v.x, v.y, v.z );

  			cache[ 0 ] = v.x;
  			cache[ 1 ] = v.y;
  			cache[ 2 ] = v.z;

  		}

  	} else if ( v.r !== undefined ) {

  		if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) {

  			gl.uniform3f( this.addr, v.r, v.g, v.b );

  			cache[ 0 ] = v.r;
  			cache[ 1 ] = v.g;
  			cache[ 2 ] = v.b;

  		}

  	} else {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniform3fv( this.addr, v );

  		copyArray( cache, v );

  	}

  }

  function setValueV4f( gl, v ) {

  	const cache = this.cache;

  	if ( v.x !== undefined ) {

  		if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) {

  			gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );

  			cache[ 0 ] = v.x;
  			cache[ 1 ] = v.y;
  			cache[ 2 ] = v.z;
  			cache[ 3 ] = v.w;

  		}

  	} else {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniform4fv( this.addr, v );

  		copyArray( cache, v );

  	}

  }

  // Single matrix (from flat array or MatrixN)

  function setValueM2( gl, v ) {

  	const cache = this.cache;
  	const elements = v.elements;

  	if ( elements === undefined ) {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniformMatrix2fv( this.addr, false, v );

  		copyArray( cache, v );

  	} else {

  		if ( arraysEqual( cache, elements ) ) return;

  		mat2array.set( elements );

  		gl.uniformMatrix2fv( this.addr, false, mat2array );

  		copyArray( cache, elements );

  	}

  }

  function setValueM3( gl, v ) {

  	const cache = this.cache;
  	const elements = v.elements;

  	if ( elements === undefined ) {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniformMatrix3fv( this.addr, false, v );

  		copyArray( cache, v );

  	} else {

  		if ( arraysEqual( cache, elements ) ) return;

  		mat3array.set( elements );

  		gl.uniformMatrix3fv( this.addr, false, mat3array );

  		copyArray( cache, elements );

  	}

  }

  function setValueM4( gl, v ) {

  	const cache = this.cache;
  	const elements = v.elements;

  	if ( elements === undefined ) {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniformMatrix4fv( this.addr, false, v );

  		copyArray( cache, v );

  	} else {

  		if ( arraysEqual( cache, elements ) ) return;

  		mat4array.set( elements );

  		gl.uniformMatrix4fv( this.addr, false, mat4array );

  		copyArray( cache, elements );

  	}

  }

  // Single texture (2D / Cube)

  function setValueT1( gl, v, textures ) {

  	const cache = this.cache;
  	const unit = textures.allocateTextureUnit();

  	if ( cache[ 0 ] !== unit ) {

  		gl.uniform1i( this.addr, unit );
  		cache[ 0 ] = unit;

  	}

  	textures.safeSetTexture2D( v || emptyTexture, unit );

  }

  function setValueT2DArray1( gl, v, textures ) {

  	const cache = this.cache;
  	const unit = textures.allocateTextureUnit();

  	if ( cache[ 0 ] !== unit ) {

  		gl.uniform1i( this.addr, unit );
  		cache[ 0 ] = unit;

  	}

  	textures.setTexture2DArray( v || emptyTexture2dArray, unit );

  }

  function setValueT3D1( gl, v, textures ) {

  	const cache = this.cache;
  	const unit = textures.allocateTextureUnit();

  	if ( cache[ 0 ] !== unit ) {

  		gl.uniform1i( this.addr, unit );
  		cache[ 0 ] = unit;

  	}

  	textures.setTexture3D( v || emptyTexture3d, unit );

  }

  function setValueT6( gl, v, textures ) {

  	const cache = this.cache;
  	const unit = textures.allocateTextureUnit();

  	if ( cache[ 0 ] !== unit ) {

  		gl.uniform1i( this.addr, unit );
  		cache[ 0 ] = unit;

  	}

  	textures.safeSetTextureCube( v || emptyCubeTexture, unit );

  }

  // Integer / Boolean vectors or arrays thereof (always flat arrays)

  function setValueV1i( gl, v ) {

  	const cache = this.cache;

  	if ( cache[ 0 ] === v ) return;

  	gl.uniform1i( this.addr, v );

  	cache[ 0 ] = v;

  }

  function setValueV2i( gl, v ) {

  	const cache = this.cache;

  	if ( arraysEqual( cache, v ) ) return;

  	gl.uniform2iv( this.addr, v );

  	copyArray( cache, v );

  }

  function setValueV3i( gl, v ) {

  	const cache = this.cache;

  	if ( arraysEqual( cache, v ) ) return;

  	gl.uniform3iv( this.addr, v );

  	copyArray( cache, v );

  }

  function setValueV4i( gl, v ) {

  	const cache = this.cache;

  	if ( arraysEqual( cache, v ) ) return;

  	gl.uniform4iv( this.addr, v );

  	copyArray( cache, v );

  }

  // uint

  function setValueV1ui( gl, v ) {

  	const cache = this.cache;

  	if ( cache[ 0 ] === v ) return;

  	gl.uniform1ui( this.addr, v );

  	cache[ 0 ] = v;

  }

  // Helper to pick the right setter for the singular case

  function getSingularSetter( type ) {

  	switch ( type ) {

  		case 0x1406: return setValueV1f; // FLOAT
  		case 0x8b50: return setValueV2f; // _VEC2
  		case 0x8b51: return setValueV3f; // _VEC3
  		case 0x8b52: return setValueV4f; // _VEC4

  		case 0x8b5a: return setValueM2; // _MAT2
  		case 0x8b5b: return setValueM3; // _MAT3
  		case 0x8b5c: return setValueM4; // _MAT4

  		case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL
  		case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2
  		case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3
  		case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4

  		case 0x1405: return setValueV1ui; // UINT

  		case 0x8b5e: // SAMPLER_2D
  		case 0x8d66: // SAMPLER_EXTERNAL_OES
  		case 0x8dca: // INT_SAMPLER_2D
  		case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
  		case 0x8b62: // SAMPLER_2D_SHADOW
  			return setValueT1;

  		case 0x8b5f: // SAMPLER_3D
  		case 0x8dcb: // INT_SAMPLER_3D
  		case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D
  			return setValueT3D1;

  		case 0x8b60: // SAMPLER_CUBE
  		case 0x8dcc: // INT_SAMPLER_CUBE
  		case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
  		case 0x8dc5: // SAMPLER_CUBE_SHADOW
  			return setValueT6;

  		case 0x8dc1: // SAMPLER_2D_ARRAY
  		case 0x8dcf: // INT_SAMPLER_2D_ARRAY
  		case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
  		case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW
  			return setValueT2DArray1;

  	}

  }

  // Array of scalars
  function setValueV1fArray( gl, v ) {

  	gl.uniform1fv( this.addr, v );

  }

  // Integer / Boolean vectors or arrays thereof (always flat arrays)
  function setValueV1iArray( gl, v ) {

  	gl.uniform1iv( this.addr, v );

  }

  function setValueV2iArray( gl, v ) {

  	gl.uniform2iv( this.addr, v );

  }

  function setValueV3iArray( gl, v ) {

  	gl.uniform3iv( this.addr, v );

  }

  function setValueV4iArray( gl, v ) {

  	gl.uniform4iv( this.addr, v );

  }


  // Array of vectors (flat or from THREE classes)

  function setValueV2fArray( gl, v ) {

  	const data = flatten( v, this.size, 2 );

  	gl.uniform2fv( this.addr, data );

  }

  function setValueV3fArray( gl, v ) {

  	const data = flatten( v, this.size, 3 );

  	gl.uniform3fv( this.addr, data );

  }

  function setValueV4fArray( gl, v ) {

  	const data = flatten( v, this.size, 4 );

  	gl.uniform4fv( this.addr, data );

  }

  // Array of matrices (flat or from THREE clases)

  function setValueM2Array( gl, v ) {

  	const data = flatten( v, this.size, 4 );

  	gl.uniformMatrix2fv( this.addr, false, data );

  }

  function setValueM3Array( gl, v ) {

  	const data = flatten( v, this.size, 9 );

  	gl.uniformMatrix3fv( this.addr, false, data );

  }

  function setValueM4Array( gl, v ) {

  	const data = flatten( v, this.size, 16 );

  	gl.uniformMatrix4fv( this.addr, false, data );

  }

  // Array of textures (2D / Cube)

  function setValueT1Array( gl, v, textures ) {

  	const n = v.length;

  	const units = allocTexUnits( textures, n );

  	gl.uniform1iv( this.addr, units );

  	for ( let i = 0; i !== n; ++ i ) {

  		textures.safeSetTexture2D( v[ i ] || emptyTexture, units[ i ] );

  	}

  }

  function setValueT6Array( gl, v, textures ) {

  	const n = v.length;

  	const units = allocTexUnits( textures, n );

  	gl.uniform1iv( this.addr, units );

  	for ( let i = 0; i !== n; ++ i ) {

  		textures.safeSetTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );

  	}

  }

  // Helper to pick the right setter for a pure (bottom-level) array

  function getPureArraySetter( type ) {

  	switch ( type ) {

  		case 0x1406: return setValueV1fArray; // FLOAT
  		case 0x8b50: return setValueV2fArray; // _VEC2
  		case 0x8b51: return setValueV3fArray; // _VEC3
  		case 0x8b52: return setValueV4fArray; // _VEC4

  		case 0x8b5a: return setValueM2Array; // _MAT2
  		case 0x8b5b: return setValueM3Array; // _MAT3
  		case 0x8b5c: return setValueM4Array; // _MAT4

  		case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL
  		case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2
  		case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3
  		case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4

  		case 0x8b5e: // SAMPLER_2D
  		case 0x8d66: // SAMPLER_EXTERNAL_OES
  		case 0x8dca: // INT_SAMPLER_2D
  		case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
  		case 0x8b62: // SAMPLER_2D_SHADOW
  			return setValueT1Array;

  		case 0x8b60: // SAMPLER_CUBE
  		case 0x8dcc: // INT_SAMPLER_CUBE
  		case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
  		case 0x8dc5: // SAMPLER_CUBE_SHADOW
  			return setValueT6Array;

  	}

  }

  // --- Uniform Classes ---

  function SingleUniform( id, activeInfo, addr ) {

  	this.id = id;
  	this.addr = addr;
  	this.cache = [];
  	this.setValue = getSingularSetter( activeInfo.type );

  	// this.path = activeInfo.name; // DEBUG

  }

  function PureArrayUniform( id, activeInfo, addr ) {

  	this.id = id;
  	this.addr = addr;
  	this.cache = [];
  	this.size = activeInfo.size;
  	this.setValue = getPureArraySetter( activeInfo.type );

  	// this.path = activeInfo.name; // DEBUG

  }

  PureArrayUniform.prototype.updateCache = function ( data ) {

  	let cache = this.cache;

  	if ( data instanceof Float32Array && cache.length !== data.length ) {

  		this.cache = new Float32Array( data.length );

  	}

  	copyArray( cache, data );

  };

  function StructuredUniform( id ) {

  	this.id = id;

  	this.seq = [];
  	this.map = {};

  }

  StructuredUniform.prototype.setValue = function ( gl, value, textures ) {

  	const seq = this.seq;

  	for ( let i = 0, n = seq.length; i !== n; ++ i ) {

  		const u = seq[ i ];
  		u.setValue( gl, value[ u.id ], textures );

  	}

  };

  // --- Top-level ---

  // Parser - builds up the property tree from the path strings

  const RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;

  // extracts
  // 	- the identifier (member name or array index)
  //  - followed by an optional right bracket (found when array index)
  //  - followed by an optional left bracket or dot (type of subscript)
  //
  // Note: These portions can be read in a non-overlapping fashion and
  // allow straightforward parsing of the hierarchy that WebGL encodes
  // in the uniform names.

  function addUniform( container, uniformObject ) {

  	container.seq.push( uniformObject );
  	container.map[ uniformObject.id ] = uniformObject;

  }

  function parseUniform( activeInfo, addr, container ) {

  	const path = activeInfo.name,
  		pathLength = path.length;

  	// reset RegExp object, because of the early exit of a previous run
  	RePathPart.lastIndex = 0;

  	while ( true ) {

  		const match = RePathPart.exec( path ),
  			matchEnd = RePathPart.lastIndex;

  		let id = match[ 1 ],
  			idIsIndex = match[ 2 ] === ']',
  			subscript = match[ 3 ];

  		if ( idIsIndex ) id = id | 0; // convert to integer

  		if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {

  			// bare name or "pure" bottom-level array "[0]" suffix

  			addUniform( container, subscript === undefined ?
  				new SingleUniform( id, activeInfo, addr ) :
  				new PureArrayUniform( id, activeInfo, addr ) );

  			break;

  		} else {

  			// step into inner node / create it in case it doesn't exist

  			const map = container.map;
  			let next = map[ id ];

  			if ( next === undefined ) {

  				next = new StructuredUniform( id );
  				addUniform( container, next );

  			}

  			container = next;

  		}

  	}

  }

  // Root Container

  function WebGLUniforms( gl, program ) {

  	this.seq = [];
  	this.map = {};

  	const n = gl.getProgramParameter( program, 35718 );

  	for ( let i = 0; i < n; ++ i ) {

  		const info = gl.getActiveUniform( program, i ),
  			addr = gl.getUniformLocation( program, info.name );

  		parseUniform( info, addr, this );

  	}

  }

  WebGLUniforms.prototype.setValue = function ( gl, name, value, textures ) {

  	const u = this.map[ name ];

  	if ( u !== undefined ) u.setValue( gl, value, textures );

  };

  WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {

  	const v = object[ name ];

  	if ( v !== undefined ) this.setValue( gl, name, v );

  };


  // Static interface

  WebGLUniforms.upload = function ( gl, seq, values, textures ) {

  	for ( let i = 0, n = seq.length; i !== n; ++ i ) {

  		const u = seq[ i ],
  			v = values[ u.id ];

  		if ( v.needsUpdate !== false ) {

  			// note: always updating when .needsUpdate is undefined
  			u.setValue( gl, v.value, textures );

  		}

  	}

  };

  WebGLUniforms.seqWithValue = function ( seq, values ) {

  	const r = [];

  	for ( let i = 0, n = seq.length; i !== n; ++ i ) {

  		const u = seq[ i ];
  		if ( u.id in values ) r.push( u );

  	}

  	return r;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLShader( gl, type, string ) {

  	const shader = gl.createShader( type );

  	gl.shaderSource( shader, string );
  	gl.compileShader( shader );

  	return shader;

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  let programIdCount = 0;

  function addLineNumbers( string ) {

  	const lines = string.split( '\n' );

  	for ( let i = 0; i < lines.length; i ++ ) {

  		lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];

  	}

  	return lines.join( '\n' );

  }

  function getEncodingComponents( encoding ) {

  	switch ( encoding ) {

  		case LinearEncoding:
  			return [ 'Linear', '( value )' ];
  		case sRGBEncoding:
  			return [ 'sRGB', '( value )' ];
  		case RGBEEncoding:
  			return [ 'RGBE', '( value )' ];
  		case RGBM7Encoding:
  			return [ 'RGBM', '( value, 7.0 )' ];
  		case RGBM16Encoding:
  			return [ 'RGBM', '( value, 16.0 )' ];
  		case RGBDEncoding:
  			return [ 'RGBD', '( value, 256.0 )' ];
  		case GammaEncoding:
  			return [ 'Gamma', '( value, float( GAMMA_FACTOR ) )' ];
  		case LogLuvEncoding:
  			return [ 'LogLuv', '( value )' ];
  		default:
  			console.warn( 'THREE.WebGLProgram: Unsupported encoding:', encoding );
  			return [ 'Linear', '( value )' ];

  	}

  }

  function getShaderErrors( gl, shader, type ) {

  	const status = gl.getShaderParameter( shader, 35713 );
  	const log = gl.getShaderInfoLog( shader ).trim();

  	if ( status && log === '' ) return '';

  	// --enable-privileged-webgl-extension
  	// console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );

  	const source = gl.getShaderSource( shader );

  	return 'THREE.WebGLShader: gl.getShaderInfoLog() ' + type + '\n' + log + addLineNumbers( source );

  }

  function getTexelDecodingFunction( functionName, encoding ) {

  	const components = getEncodingComponents( encoding );
  	return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[ 0 ] + 'ToLinear' + components[ 1 ] + '; }';

  }

  function getTexelEncodingFunction( functionName, encoding ) {

  	const components = getEncodingComponents( encoding );
  	return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }';

  }

  function getToneMappingFunction( functionName, toneMapping ) {

  	let toneMappingName;

  	switch ( toneMapping ) {

  		case LinearToneMapping:
  			toneMappingName = 'Linear';
  			break;

  		case ReinhardToneMapping:
  			toneMappingName = 'Reinhard';
  			break;

  		case CineonToneMapping:
  			toneMappingName = 'OptimizedCineon';
  			break;

  		case ACESFilmicToneMapping:
  			toneMappingName = 'ACESFilmic';
  			break;

  		case CustomToneMapping:
  			toneMappingName = 'Custom';
  			break;

  		default:
  			console.warn( 'THREE.WebGLProgram: Unsupported toneMapping:', toneMapping );
  			toneMappingName = 'Linear';

  	}

  	return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';

  }

  function generateExtensions( parameters ) {

  	const chunks = [
  		( parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ) ? '#extension GL_OES_standard_derivatives : enable' : '',
  		( parameters.extensionFragDepth || parameters.logarithmicDepthBuffer ) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '',
  		( parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ) ? '#extension GL_EXT_draw_buffers : require' : '',
  		( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''
  	];

  	return chunks.filter( filterEmptyLine ).join( '\n' );

  }

  function generateDefines( defines ) {

  	const chunks = [];

  	for ( const name in defines ) {

  		const value = defines[ name ];

  		if ( value === false ) continue;

  		chunks.push( '#define ' + name + ' ' + value );

  	}

  	return chunks.join( '\n' );

  }

  function fetchAttributeLocations( gl, program ) {

  	const attributes = {};

  	const n = gl.getProgramParameter( program, 35721 );

  	for ( let i = 0; i < n; i ++ ) {

  		const info = gl.getActiveAttrib( program, i );
  		const name = info.name;

  		// console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );

  		attributes[ name ] = gl.getAttribLocation( program, name );

  	}

  	return attributes;

  }

  function filterEmptyLine( string ) {

  	return string !== '';

  }

  function replaceLightNums( string, parameters ) {

  	return string
  		.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
  		.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
  		.replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights )
  		.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
  		.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights )
  		.replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows )
  		.replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows )
  		.replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows );

  }

  function replaceClippingPlaneNums( string, parameters ) {

  	return string
  		.replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes )
  		.replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) );

  }

  // Resolve Includes

  const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;

  function resolveIncludes( string ) {

  	return string.replace( includePattern, includeReplacer );

  }

  function includeReplacer( match, include ) {

  	const string = ShaderChunk[ include ];

  	if ( string === undefined ) {

  		throw new Error( 'Can not resolve #include <' + include + '>' );

  	}

  	return resolveIncludes( string );

  }

  // Unroll Loops

  const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
  const unrollLoopPattern = /#pragma unroll_loop_start[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}[\s]+?#pragma unroll_loop_end/g;

  function unrollLoops( string ) {

  	return string
  		.replace( unrollLoopPattern, loopReplacer )
  		.replace( deprecatedUnrollLoopPattern, deprecatedLoopReplacer );

  }

  function deprecatedLoopReplacer( match, start, end, snippet ) {

  	console.warn( 'WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.' );
  	return loopReplacer( match, start, end, snippet );

  }

  function loopReplacer( match, start, end, snippet ) {

  	let string = '';

  	for ( let i = parseInt( start ); i < parseInt( end ); i ++ ) {

  		string += snippet
  			.replace( /\[ i \]/g, '[ ' + i + ' ]' )
  			.replace( /UNROLLED_LOOP_INDEX/g, i );

  	}

  	return string;

  }

  //

  function generatePrecision( parameters ) {

  	let precisionstring = "precision " + parameters.precision + " float;\nprecision " + parameters.precision + " int;";

  	if ( parameters.precision === "highp" ) {

  		precisionstring += "\n#define HIGH_PRECISION";

  	} else if ( parameters.precision === "mediump" ) {

  		precisionstring += "\n#define MEDIUM_PRECISION";

  	} else if ( parameters.precision === "lowp" ) {

  		precisionstring += "\n#define LOW_PRECISION";

  	}

  	return precisionstring;

  }

  function generateShadowMapTypeDefine( parameters ) {

  	let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';

  	if ( parameters.shadowMapType === PCFShadowMap ) {

  		shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';

  	} else if ( parameters.shadowMapType === PCFSoftShadowMap ) {

  		shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';

  	} else if ( parameters.shadowMapType === VSMShadowMap ) {

  		shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';

  	}

  	return shadowMapTypeDefine;

  }

  function generateEnvMapTypeDefine( parameters ) {

  	let envMapTypeDefine = 'ENVMAP_TYPE_CUBE';

  	if ( parameters.envMap ) {

  		switch ( parameters.envMapMode ) {

  			case CubeReflectionMapping:
  			case CubeRefractionMapping:
  				envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
  				break;

  			case CubeUVReflectionMapping:
  			case CubeUVRefractionMapping:
  				envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
  				break;

  			case EquirectangularReflectionMapping:
  			case EquirectangularRefractionMapping:
  				envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
  				break;

  		}

  	}

  	return envMapTypeDefine;

  }

  function generateEnvMapModeDefine( parameters ) {

  	let envMapModeDefine = 'ENVMAP_MODE_REFLECTION';

  	if ( parameters.envMap ) {

  		switch ( parameters.envMapMode ) {

  			case CubeRefractionMapping:
  			case EquirectangularRefractionMapping:
  				envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
  				break;

  		}

  	}

  	return envMapModeDefine;

  }

  function generateEnvMapBlendingDefine( parameters ) {

  	let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';

  	if ( parameters.envMap ) {

  		switch ( parameters.combine ) {

  			case MultiplyOperation:
  				envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
  				break;

  			case MixOperation:
  				envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
  				break;

  			case AddOperation:
  				envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
  				break;

  		}

  	}

  	return envMapBlendingDefine;

  }

  function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) {

  	const gl = renderer.getContext();

  	const defines = parameters.defines;

  	let vertexShader = parameters.vertexShader;
  	let fragmentShader = parameters.fragmentShader;

  	const shadowMapTypeDefine = generateShadowMapTypeDefine( parameters );
  	const envMapTypeDefine = generateEnvMapTypeDefine( parameters );
  	const envMapModeDefine = generateEnvMapModeDefine( parameters );
  	const envMapBlendingDefine = generateEnvMapBlendingDefine( parameters );


  	const gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;

  	const customExtensions = parameters.isWebGL2 ? '' : generateExtensions( parameters );

  	const customDefines = generateDefines( defines );

  	const program = gl.createProgram();

  	let prefixVertex, prefixFragment;

  	if ( parameters.isRawShaderMaterial ) {

  		prefixVertex = [

  			customDefines

  		].filter( filterEmptyLine ).join( '\n' );

  		if ( prefixVertex.length > 0 ) {

  			prefixVertex += '\n';

  		}

  		prefixFragment = [

  			customExtensions,
  			customDefines

  		].filter( filterEmptyLine ).join( '\n' );

  		if ( prefixFragment.length > 0 ) {

  			prefixFragment += '\n';

  		}

  	} else {

  		prefixVertex = [

  			generatePrecision( parameters ),

  			'#define SHADER_NAME ' + parameters.shaderName,

  			customDefines,

  			parameters.instancing ? '#define USE_INSTANCING' : '',
  			parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',

  			'#define GAMMA_FACTOR ' + gammaFactorDefine,

  			'#define MAX_BONES ' + parameters.maxBones,
  			( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
  			( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '',

  			parameters.map ? '#define USE_MAP' : '',
  			parameters.envMap ? '#define USE_ENVMAP' : '',
  			parameters.envMap ? '#define ' + envMapModeDefine : '',
  			parameters.lightMap ? '#define USE_LIGHTMAP' : '',
  			parameters.aoMap ? '#define USE_AOMAP' : '',
  			parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
  			parameters.bumpMap ? '#define USE_BUMPMAP' : '',
  			parameters.normalMap ? '#define USE_NORMALMAP' : '',
  			( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '',
  			( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '',

  			parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '',
  			parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '',
  			parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '',
  			parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
  			parameters.specularMap ? '#define USE_SPECULARMAP' : '',
  			parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
  			parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
  			parameters.alphaMap ? '#define USE_ALPHAMAP' : '',

  			parameters.vertexTangents ? '#define USE_TANGENT' : '',
  			parameters.vertexColors ? '#define USE_COLOR' : '',
  			parameters.vertexUvs ? '#define USE_UV' : '',
  			parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '',

  			parameters.flatShading ? '#define FLAT_SHADED' : '',

  			parameters.skinning ? '#define USE_SKINNING' : '',
  			parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',

  			parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
  			parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
  			parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
  			parameters.flipSided ? '#define FLIP_SIDED' : '',

  			parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
  			parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',

  			parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',

  			parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
  			( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '',

  			'uniform mat4 modelMatrix;',
  			'uniform mat4 modelViewMatrix;',
  			'uniform mat4 projectionMatrix;',
  			'uniform mat4 viewMatrix;',
  			'uniform mat3 normalMatrix;',
  			'uniform vec3 cameraPosition;',
  			'uniform bool isOrthographic;',

  			'#ifdef USE_INSTANCING',

  			' attribute mat4 instanceMatrix;',

  			'#endif',

  			'attribute vec3 position;',
  			'attribute vec3 normal;',
  			'attribute vec2 uv;',

  			'#ifdef USE_TANGENT',

  			'	attribute vec4 tangent;',

  			'#endif',

  			'#ifdef USE_COLOR',

  			'	attribute vec3 color;',

  			'#endif',

  			'#ifdef USE_MORPHTARGETS',

  			'	attribute vec3 morphTarget0;',
  			'	attribute vec3 morphTarget1;',
  			'	attribute vec3 morphTarget2;',
  			'	attribute vec3 morphTarget3;',

  			'	#ifdef USE_MORPHNORMALS',

  			'		attribute vec3 morphNormal0;',
  			'		attribute vec3 morphNormal1;',
  			'		attribute vec3 morphNormal2;',
  			'		attribute vec3 morphNormal3;',

  			'	#else',

  			'		attribute vec3 morphTarget4;',
  			'		attribute vec3 morphTarget5;',
  			'		attribute vec3 morphTarget6;',
  			'		attribute vec3 morphTarget7;',

  			'	#endif',

  			'#endif',

  			'#ifdef USE_SKINNING',

  			'	attribute vec4 skinIndex;',
  			'	attribute vec4 skinWeight;',

  			'#endif',

  			'\n'

  		].filter( filterEmptyLine ).join( '\n' );

  		prefixFragment = [

  			customExtensions,

  			generatePrecision( parameters ),

  			'#define SHADER_NAME ' + parameters.shaderName,

  			customDefines,

  			parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + ( parameters.alphaTest % 1 ? '' : '.0' ) : '', // add '.0' if integer

  			'#define GAMMA_FACTOR ' + gammaFactorDefine,

  			( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
  			( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '',

  			parameters.map ? '#define USE_MAP' : '',
  			parameters.matcap ? '#define USE_MATCAP' : '',
  			parameters.envMap ? '#define USE_ENVMAP' : '',
  			parameters.envMap ? '#define ' + envMapTypeDefine : '',
  			parameters.envMap ? '#define ' + envMapModeDefine : '',
  			parameters.envMap ? '#define ' + envMapBlendingDefine : '',
  			parameters.lightMap ? '#define USE_LIGHTMAP' : '',
  			parameters.aoMap ? '#define USE_AOMAP' : '',
  			parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
  			parameters.bumpMap ? '#define USE_BUMPMAP' : '',
  			parameters.normalMap ? '#define USE_NORMALMAP' : '',
  			( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '',
  			( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '',
  			parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '',
  			parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '',
  			parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '',
  			parameters.specularMap ? '#define USE_SPECULARMAP' : '',
  			parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
  			parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
  			parameters.alphaMap ? '#define USE_ALPHAMAP' : '',

  			parameters.sheen ? '#define USE_SHEEN' : '',

  			parameters.vertexTangents ? '#define USE_TANGENT' : '',
  			parameters.vertexColors ? '#define USE_COLOR' : '',
  			parameters.vertexUvs ? '#define USE_UV' : '',
  			parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '',

  			parameters.gradientMap ? '#define USE_GRADIENTMAP' : '',

  			parameters.flatShading ? '#define FLAT_SHADED' : '',

  			parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
  			parameters.flipSided ? '#define FLIP_SIDED' : '',

  			parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
  			parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',

  			parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '',

  			parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '',

  			parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
  			( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '',

  			( ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ) ? '#define TEXTURE_LOD_EXT' : '',

  			'uniform mat4 viewMatrix;',
  			'uniform vec3 cameraPosition;',
  			'uniform bool isOrthographic;',

  			( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '',
  			( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below
  			( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '',

  			parameters.dithering ? '#define DITHERING' : '',

  			ShaderChunk[ 'encodings_pars_fragment' ], // this code is required here because it is used by the various encoding/decoding function defined below
  			parameters.map ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
  			parameters.matcap ? getTexelDecodingFunction( 'matcapTexelToLinear', parameters.matcapEncoding ) : '',
  			parameters.envMap ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
  			parameters.emissiveMap ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
  			parameters.lightMap ? getTexelDecodingFunction( 'lightMapTexelToLinear', parameters.lightMapEncoding ) : '',
  			getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ),

  			parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '',

  			'\n'

  		].filter( filterEmptyLine ).join( '\n' );

  	}

  	vertexShader = resolveIncludes( vertexShader );
  	vertexShader = replaceLightNums( vertexShader, parameters );
  	vertexShader = replaceClippingPlaneNums( vertexShader, parameters );

  	fragmentShader = resolveIncludes( fragmentShader );
  	fragmentShader = replaceLightNums( fragmentShader, parameters );
  	fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters );

  	vertexShader = unrollLoops( vertexShader );
  	fragmentShader = unrollLoops( fragmentShader );

  	if ( parameters.isWebGL2 && ! parameters.isRawShaderMaterial ) {

  		let isGLSL3ShaderMaterial = false;

  		const versionRegex = /^\s*#version\s+300\s+es\s*\n/;

  		if ( parameters.isShaderMaterial &&
  			vertexShader.match( versionRegex ) !== null &&
  			fragmentShader.match( versionRegex ) !== null ) {

  			isGLSL3ShaderMaterial = true;

  			vertexShader = vertexShader.replace( versionRegex, '' );
  			fragmentShader = fragmentShader.replace( versionRegex, '' );

  		}

  		// GLSL 3.0 conversion

  		prefixVertex = [
  			'#version 300 es\n',
  			'#define attribute in',
  			'#define varying out',
  			'#define texture2D texture'
  		].join( '\n' ) + '\n' + prefixVertex;

  		prefixFragment = [
  			'#version 300 es\n',
  			'#define varying in',
  			isGLSL3ShaderMaterial ? '' : 'out highp vec4 pc_fragColor;',
  			isGLSL3ShaderMaterial ? '' : '#define gl_FragColor pc_fragColor',
  			'#define gl_FragDepthEXT gl_FragDepth',
  			'#define texture2D texture',
  			'#define textureCube texture',
  			'#define texture2DProj textureProj',
  			'#define texture2DLodEXT textureLod',
  			'#define texture2DProjLodEXT textureProjLod',
  			'#define textureCubeLodEXT textureLod',
  			'#define texture2DGradEXT textureGrad',
  			'#define texture2DProjGradEXT textureProjGrad',
  			'#define textureCubeGradEXT textureGrad'
  		].join( '\n' ) + '\n' + prefixFragment;

  	}

  	const vertexGlsl = prefixVertex + vertexShader;
  	const fragmentGlsl = prefixFragment + fragmentShader;

  	// console.log( '*VERTEX*', vertexGlsl );
  	// console.log( '*FRAGMENT*', fragmentGlsl );

  	const glVertexShader = WebGLShader( gl, 35633, vertexGlsl );
  	const glFragmentShader = WebGLShader( gl, 35632, fragmentGlsl );

  	gl.attachShader( program, glVertexShader );
  	gl.attachShader( program, glFragmentShader );

  	// Force a particular attribute to index 0.

  	if ( parameters.index0AttributeName !== undefined ) {

  		gl.bindAttribLocation( program, 0, parameters.index0AttributeName );

  	} else if ( parameters.morphTargets === true ) {

  		// programs with morphTargets displace position out of attribute 0
  		gl.bindAttribLocation( program, 0, 'position' );

  	}

  	gl.linkProgram( program );

  	// check for link errors
  	if ( renderer.debug.checkShaderErrors ) {

  		const programLog = gl.getProgramInfoLog( program ).trim();
  		const vertexLog = gl.getShaderInfoLog( glVertexShader ).trim();
  		const fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim();

  		let runnable = true;
  		let haveDiagnostics = true;

  		if ( gl.getProgramParameter( program, 35714 ) === false ) {

  			runnable = false;

  			const vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' );
  			const fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' );

  			console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), '35715', gl.getProgramParameter( program, 35715 ), 'gl.getProgramInfoLog', programLog, vertexErrors, fragmentErrors );

  		} else if ( programLog !== '' ) {

  			console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );

  		} else if ( vertexLog === '' || fragmentLog === '' ) {

  			haveDiagnostics = false;

  		}

  		if ( haveDiagnostics ) {

  			this.diagnostics = {

  				runnable: runnable,

  				programLog: programLog,

  				vertexShader: {

  					log: vertexLog,
  					prefix: prefixVertex

  				},

  				fragmentShader: {

  					log: fragmentLog,
  					prefix: prefixFragment

  				}

  			};

  		}

  	}

  	// Clean up

  	// Crashes in iOS9 and iOS10. #18402
  	// gl.detachShader( program, glVertexShader );
  	// gl.detachShader( program, glFragmentShader );

  	gl.deleteShader( glVertexShader );
  	gl.deleteShader( glFragmentShader );

  	// set up caching for uniform locations

  	let cachedUniforms;

  	this.getUniforms = function () {

  		if ( cachedUniforms === undefined ) {

  			cachedUniforms = new WebGLUniforms( gl, program );

  		}

  		return cachedUniforms;

  	};

  	// set up caching for attribute locations

  	let cachedAttributes;

  	this.getAttributes = function () {

  		if ( cachedAttributes === undefined ) {

  			cachedAttributes = fetchAttributeLocations( gl, program );

  		}

  		return cachedAttributes;

  	};

  	// free resource

  	this.destroy = function () {

  		bindingStates.releaseStatesOfProgram( this );

  		gl.deleteProgram( program );
  		this.program = undefined;

  	};

  	//

  	this.name = parameters.shaderName;
  	this.id = programIdCount ++;
  	this.cacheKey = cacheKey;
  	this.usedTimes = 1;
  	this.program = program;
  	this.vertexShader = glVertexShader;
  	this.fragmentShader = glFragmentShader;

  	return this;

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLPrograms( renderer, extensions, capabilities, bindingStates ) {

  	const programs = [];

  	const isWebGL2 = capabilities.isWebGL2;
  	const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
  	const floatVertexTextures = capabilities.floatVertexTextures;
  	const maxVertexUniforms = capabilities.maxVertexUniforms;
  	const vertexTextures = capabilities.vertexTextures;

  	let precision = capabilities.precision;

  	const shaderIDs = {
  		MeshDepthMaterial: 'depth',
  		MeshDistanceMaterial: 'distanceRGBA',
  		MeshNormalMaterial: 'normal',
  		MeshBasicMaterial: 'basic',
  		MeshLambertMaterial: 'lambert',
  		MeshPhongMaterial: 'phong',
  		MeshToonMaterial: 'toon',
  		MeshStandardMaterial: 'physical',
  		MeshPhysicalMaterial: 'physical',
  		MeshMatcapMaterial: 'matcap',
  		LineBasicMaterial: 'basic',
  		LineDashedMaterial: 'dashed',
  		PointsMaterial: 'points',
  		ShadowMaterial: 'shadow',
  		SpriteMaterial: 'sprite'
  	};

  	const parameterNames = [
  		"precision", "isWebGL2", "supportsVertexTextures", "outputEncoding", "instancing",
  		"map", "mapEncoding", "matcap", "matcapEncoding", "envMap", "envMapMode", "envMapEncoding", "envMapCubeUV",
  		"lightMap", "lightMapEncoding", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "objectSpaceNormalMap", "tangentSpaceNormalMap", "clearcoatMap", "clearcoatRoughnessMap", "clearcoatNormalMap", "displacementMap", "specularMap",
  		"roughnessMap", "metalnessMap", "gradientMap",
  		"alphaMap", "combine", "vertexColors", "vertexTangents", "vertexUvs", "uvsVertexOnly", "fog", "useFog", "fogExp2",
  		"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
  		"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
  		"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
  		"numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights",
  		"numDirLightShadows", "numPointLightShadows", "numSpotLightShadows",
  		"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
  		"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering",
  		"sheen"
  	];

  	function getShaderObject( material, shaderID ) {

  		let shaderobject;

  		if ( shaderID ) {

  			const shader = ShaderLib[ shaderID ];

  			shaderobject = {
  				name: material.name || material.type,
  				uniforms: UniformsUtils.clone( shader.uniforms ),
  				vertexShader: shader.vertexShader,
  				fragmentShader: shader.fragmentShader
  			};

  		} else {

  			shaderobject = {
  				name: material.name || material.type,
  				uniforms: material.uniforms,
  				vertexShader: material.vertexShader,
  				fragmentShader: material.fragmentShader
  			};

  		}

  		return shaderobject;

  	}

  	function allocateBones( object ) {

  		const skeleton = object.skeleton;
  		const bones = skeleton.bones;

  		if ( floatVertexTextures ) {

  			return 1024;

  		} else {

  			// default for when object is not specified
  			// ( for example when prebuilding shader to be used with multiple objects )
  			//
  			//  - leave some extra space for other uniforms
  			//  - limit here is ANGLE's 254 max uniform vectors
  			//    (up to 54 should be safe)

  			const nVertexUniforms = maxVertexUniforms;
  			const nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );

  			const maxBones = Math.min( nVertexMatrices, bones.length );

  			if ( maxBones < bones.length ) {

  				console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' );
  				return 0;

  			}

  			return maxBones;

  		}

  	}

  	function getTextureEncodingFromMap( map ) {

  		let encoding;

  		if ( ! map ) {

  			encoding = LinearEncoding;

  		} else if ( map.isTexture ) {

  			encoding = map.encoding;

  		} else if ( map.isWebGLRenderTarget ) {

  			console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." );
  			encoding = map.texture.encoding;

  		}

  		return encoding;

  	}

  	function getParameters( material, lights, shadows, scene, nClipPlanes, nClipIntersection, object ) {

  		const fog = scene.fog;
  		const environment = material.isMeshStandardMaterial ? scene.environment : null;

  		const envMap = material.envMap || environment;

  		const shaderID = shaderIDs[ material.type ];

  		// heuristics to create shader parameters according to lights in the scene
  		// (not to blow over maxLights budget)

  		const maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0;

  		if ( material.precision !== null ) {

  			precision = capabilities.getMaxPrecision( material.precision );

  			if ( precision !== material.precision ) {

  				console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );

  			}

  		}

  		const shaderobject = getShaderObject( material, shaderID );
  		material.onBeforeCompile( shaderobject, renderer );

  		const currentRenderTarget = renderer.getRenderTarget();

  		const parameters = {

  			isWebGL2: isWebGL2,

  			shaderID: shaderID,
  			shaderName: shaderobject.name,

  			uniforms: shaderobject.uniforms,
  			vertexShader: shaderobject.vertexShader,
  			fragmentShader: shaderobject.fragmentShader,
  			defines: material.defines,

  			isRawShaderMaterial: material.isRawShaderMaterial,
  			isShaderMaterial: material.isShaderMaterial,

  			precision: precision,

  			instancing: object.isInstancedMesh === true,

  			supportsVertexTextures: vertexTextures,
  			outputEncoding: ( currentRenderTarget !== null ) ? getTextureEncodingFromMap( currentRenderTarget.texture ) : renderer.outputEncoding,
  			map: !! material.map,
  			mapEncoding: getTextureEncodingFromMap( material.map ),
  			matcap: !! material.matcap,
  			matcapEncoding: getTextureEncodingFromMap( material.matcap ),
  			envMap: !! envMap,
  			envMapMode: envMap && envMap.mapping,
  			envMapEncoding: getTextureEncodingFromMap( envMap ),
  			envMapCubeUV: ( !! envMap ) && ( ( envMap.mapping === CubeUVReflectionMapping ) || ( envMap.mapping === CubeUVRefractionMapping ) ),
  			lightMap: !! material.lightMap,
  			lightMapEncoding: getTextureEncodingFromMap( material.lightMap ),
  			aoMap: !! material.aoMap,
  			emissiveMap: !! material.emissiveMap,
  			emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap ),
  			bumpMap: !! material.bumpMap,
  			normalMap: !! material.normalMap,
  			objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
  			tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
  			clearcoatMap: !! material.clearcoatMap,
  			clearcoatRoughnessMap: !! material.clearcoatRoughnessMap,
  			clearcoatNormalMap: !! material.clearcoatNormalMap,
  			displacementMap: !! material.displacementMap,
  			roughnessMap: !! material.roughnessMap,
  			metalnessMap: !! material.metalnessMap,
  			specularMap: !! material.specularMap,
  			alphaMap: !! material.alphaMap,

  			gradientMap: !! material.gradientMap,

  			sheen: !! material.sheen,

  			combine: material.combine,

  			vertexTangents: ( material.normalMap && material.vertexTangents ),
  			vertexColors: material.vertexColors,
  			vertexUvs: !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatMap || !! material.clearcoatRoughnessMap || !! material.clearcoatNormalMap || !! material.displacementMap,
  			uvsVertexOnly: ! ( !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatNormalMap ) && !! material.displacementMap,

  			fog: !! fog,
  			useFog: material.fog,
  			fogExp2: ( fog && fog.isFogExp2 ),

  			flatShading: material.flatShading,

  			sizeAttenuation: material.sizeAttenuation,
  			logarithmicDepthBuffer: logarithmicDepthBuffer,

  			skinning: material.skinning && maxBones > 0,
  			maxBones: maxBones,
  			useVertexTexture: floatVertexTextures,

  			morphTargets: material.morphTargets,
  			morphNormals: material.morphNormals,
  			maxMorphTargets: renderer.maxMorphTargets,
  			maxMorphNormals: renderer.maxMorphNormals,

  			numDirLights: lights.directional.length,
  			numPointLights: lights.point.length,
  			numSpotLights: lights.spot.length,
  			numRectAreaLights: lights.rectArea.length,
  			numHemiLights: lights.hemi.length,

  			numDirLightShadows: lights.directionalShadowMap.length,
  			numPointLightShadows: lights.pointShadowMap.length,
  			numSpotLightShadows: lights.spotShadowMap.length,

  			numClippingPlanes: nClipPlanes,
  			numClipIntersection: nClipIntersection,

  			dithering: material.dithering,

  			shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
  			shadowMapType: renderer.shadowMap.type,

  			toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
  			physicallyCorrectLights: renderer.physicallyCorrectLights,

  			premultipliedAlpha: material.premultipliedAlpha,

  			alphaTest: material.alphaTest,
  			doubleSided: material.side === DoubleSide,
  			flipSided: material.side === BackSide,

  			depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false,

  			index0AttributeName: material.index0AttributeName,

  			extensionDerivatives: material.extensions && material.extensions.derivatives,
  			extensionFragDepth: material.extensions && material.extensions.fragDepth,
  			extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
  			extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,

  			rendererExtensionFragDepth: isWebGL2 || extensions.get( 'EXT_frag_depth' ) !== null,
  			rendererExtensionDrawBuffers: isWebGL2 || extensions.get( 'WEBGL_draw_buffers' ) !== null,
  			rendererExtensionShaderTextureLod: isWebGL2 || extensions.get( 'EXT_shader_texture_lod' ) !== null,

  			customProgramCacheKey: material.customProgramCacheKey()

  		};

  		return parameters;

  	}

  	function getProgramCacheKey( parameters ) {

  		const array = [];

  		if ( parameters.shaderID ) {

  			array.push( parameters.shaderID );

  		} else {

  			array.push( parameters.fragmentShader );
  			array.push( parameters.vertexShader );

  		}

  		if ( parameters.defines !== undefined ) {

  			for ( const name in parameters.defines ) {

  				array.push( name );
  				array.push( parameters.defines[ name ] );

  			}

  		}

  		if ( parameters.isRawShaderMaterial === undefined ) {

  			for ( let i = 0; i < parameterNames.length; i ++ ) {

  				array.push( parameters[ parameterNames[ i ] ] );

  			}

  			array.push( renderer.outputEncoding );
  			array.push( renderer.gammaFactor );

  		}

  		array.push( parameters.customProgramCacheKey );

  		return array.join();

  	}

  	function acquireProgram( parameters, cacheKey ) {

  		let program;

  		// Check if code has been already compiled
  		for ( let p = 0, pl = programs.length; p < pl; p ++ ) {

  			const preexistingProgram = programs[ p ];

  			if ( preexistingProgram.cacheKey === cacheKey ) {

  				program = preexistingProgram;
  				++ program.usedTimes;

  				break;

  			}

  		}

  		if ( program === undefined ) {

  			program = new WebGLProgram( renderer, cacheKey, parameters, bindingStates );
  			programs.push( program );

  		}

  		return program;

  	}

  	function releaseProgram( program ) {

  		if ( -- program.usedTimes === 0 ) {

  			// Remove from unordered set
  			const i = programs.indexOf( program );
  			programs[ i ] = programs[ programs.length - 1 ];
  			programs.pop();

  			// Free WebGL resources
  			program.destroy();

  		}

  	}

  	return {
  		getParameters: getParameters,
  		getProgramCacheKey: getProgramCacheKey,
  		acquireProgram: acquireProgram,
  		releaseProgram: releaseProgram,
  		// Exposed for resource monitoring & error feedback via renderer.info:
  		programs: programs
  	};

  }

  /**
   * @author fordacious / fordacious.github.io
   */

  function WebGLProperties() {

  	let properties = new WeakMap();

  	function get( object ) {

  		let map = properties.get( object );

  		if ( map === undefined ) {

  			map = {};
  			properties.set( object, map );

  		}

  		return map;

  	}

  	function remove( object ) {

  		properties.delete( object );

  	}

  	function update( object, key, value ) {

  		properties.get( object )[ key ] = value;

  	}

  	function dispose() {

  		properties = new WeakMap();

  	}

  	return {
  		get: get,
  		remove: remove,
  		update: update,
  		dispose: dispose
  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function painterSortStable( a, b ) {

  	if ( a.groupOrder !== b.groupOrder ) {

  		return a.groupOrder - b.groupOrder;

  	} else if ( a.renderOrder !== b.renderOrder ) {

  		return a.renderOrder - b.renderOrder;

  	} else if ( a.program !== b.program ) {

  		return a.program.id - b.program.id;

  	} else if ( a.material.id !== b.material.id ) {

  		return a.material.id - b.material.id;

  	} else if ( a.z !== b.z ) {

  		return a.z - b.z;

  	} else {

  		return a.id - b.id;

  	}

  }

  function reversePainterSortStable( a, b ) {

  	if ( a.groupOrder !== b.groupOrder ) {

  		return a.groupOrder - b.groupOrder;

  	} else if ( a.renderOrder !== b.renderOrder ) {

  		return a.renderOrder - b.renderOrder;

  	} else if ( a.z !== b.z ) {

  		return b.z - a.z;

  	} else {

  		return a.id - b.id;

  	}

  }


  function WebGLRenderList() {

  	const renderItems = [];
  	let renderItemsIndex = 0;

  	const opaque = [];
  	const transparent = [];

  	const defaultProgram = { id: - 1 };

  	function init() {

  		renderItemsIndex = 0;

  		opaque.length = 0;
  		transparent.length = 0;

  	}

  	function getNextRenderItem( object, geometry, material, groupOrder, z, group ) {

  		let renderItem = renderItems[ renderItemsIndex ];

  		if ( renderItem === undefined ) {

  			renderItem = {
  				id: object.id,
  				object: object,
  				geometry: geometry,
  				material: material,
  				program: material.program || defaultProgram,
  				groupOrder: groupOrder,
  				renderOrder: object.renderOrder,
  				z: z,
  				group: group
  			};

  			renderItems[ renderItemsIndex ] = renderItem;

  		} else {

  			renderItem.id = object.id;
  			renderItem.object = object;
  			renderItem.geometry = geometry;
  			renderItem.material = material;
  			renderItem.program = material.program || defaultProgram;
  			renderItem.groupOrder = groupOrder;
  			renderItem.renderOrder = object.renderOrder;
  			renderItem.z = z;
  			renderItem.group = group;

  		}

  		renderItemsIndex ++;

  		return renderItem;

  	}

  	function push( object, geometry, material, groupOrder, z, group ) {

  		const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group );

  		( material.transparent === true ? transparent : opaque ).push( renderItem );

  	}

  	function unshift( object, geometry, material, groupOrder, z, group ) {

  		const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group );

  		( material.transparent === true ? transparent : opaque ).unshift( renderItem );

  	}

  	function sort( customOpaqueSort, customTransparentSort ) {

  		if ( opaque.length > 1 ) opaque.sort( customOpaqueSort || painterSortStable );
  		if ( transparent.length > 1 ) transparent.sort( customTransparentSort || reversePainterSortStable );

  	}

  	function finish() {

  		// Clear references from inactive renderItems in the list

  		for ( let i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) {

  			const renderItem = renderItems[ i ];

  			if ( renderItem.id === null ) break;

  			renderItem.id = null;
  			renderItem.object = null;
  			renderItem.geometry = null;
  			renderItem.material = null;
  			renderItem.program = null;
  			renderItem.group = null;

  		}

  	}

  	return {
  		opaque: opaque,
  		transparent: transparent,

  		init: init,
  		push: push,
  		unshift: unshift,
  		finish: finish,

  		sort: sort
  	};

  }

  function WebGLRenderLists() {

  	let lists = new WeakMap();

  	function onSceneDispose( event ) {

  		const scene = event.target;

  		scene.removeEventListener( 'dispose', onSceneDispose );

  		lists.delete( scene );

  	}

  	function get( scene, camera ) {

  		const cameras = lists.get( scene );
  		let list;

  		if ( cameras === undefined ) {

  			list = new WebGLRenderList();
  			lists.set( scene, new WeakMap() );
  			lists.get( scene ).set( camera, list );

  			scene.addEventListener( 'dispose', onSceneDispose );

  		} else {

  			list = cameras.get( camera );
  			if ( list === undefined ) {

  				list = new WebGLRenderList();
  				cameras.set( camera, list );

  			}

  		}

  		return list;

  	}

  	function dispose() {

  		lists = new WeakMap();

  	}

  	return {
  		get: get,
  		dispose: dispose
  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function UniformsCache() {

  	const lights = {};

  	return {

  		get: function ( light ) {

  			if ( lights[ light.id ] !== undefined ) {

  				return lights[ light.id ];

  			}

  			let uniforms;

  			switch ( light.type ) {

  				case 'DirectionalLight':
  					uniforms = {
  						direction: new Vector3(),
  						color: new Color()
  					};
  					break;

  				case 'SpotLight':
  					uniforms = {
  						position: new Vector3(),
  						direction: new Vector3(),
  						color: new Color(),
  						distance: 0,
  						coneCos: 0,
  						penumbraCos: 0,
  						decay: 0
  					};
  					break;

  				case 'PointLight':
  					uniforms = {
  						position: new Vector3(),
  						color: new Color(),
  						distance: 0,
  						decay: 0
  					};
  					break;

  				case 'HemisphereLight':
  					uniforms = {
  						direction: new Vector3(),
  						skyColor: new Color(),
  						groundColor: new Color()
  					};
  					break;

  				case 'RectAreaLight':
  					uniforms = {
  						color: new Color(),
  						position: new Vector3(),
  						halfWidth: new Vector3(),
  						halfHeight: new Vector3()
  					};
  					break;

  			}

  			lights[ light.id ] = uniforms;

  			return uniforms;

  		}

  	};

  }

  function ShadowUniformsCache() {

  	const lights = {};

  	return {

  		get: function ( light ) {

  			if ( lights[ light.id ] !== undefined ) {

  				return lights[ light.id ];

  			}

  			let uniforms;

  			switch ( light.type ) {

  				case 'DirectionalLight':
  					uniforms = {
  						shadowBias: 0,
  						shadowNormalBias: 0,
  						shadowRadius: 1,
  						shadowMapSize: new Vector2()
  					};
  					break;

  				case 'SpotLight':
  					uniforms = {
  						shadowBias: 0,
  						shadowNormalBias: 0,
  						shadowRadius: 1,
  						shadowMapSize: new Vector2()
  					};
  					break;

  				case 'PointLight':
  					uniforms = {
  						shadowBias: 0,
  						shadowNormalBias: 0,
  						shadowRadius: 1,
  						shadowMapSize: new Vector2(),
  						shadowCameraNear: 1,
  						shadowCameraFar: 1000
  					};
  					break;

  				// TODO (abelnation): set RectAreaLight shadow uniforms

  			}

  			lights[ light.id ] = uniforms;

  			return uniforms;

  		}

  	};

  }



  let nextVersion = 0;

  function shadowCastingLightsFirst( lightA, lightB ) {

  	return ( lightB.castShadow ? 1 : 0 ) - ( lightA.castShadow ? 1 : 0 );

  }

  function WebGLLights() {

  	const cache = new UniformsCache();

  	const shadowCache = ShadowUniformsCache();

  	const state = {

  		version: 0,

  		hash: {
  			directionalLength: - 1,
  			pointLength: - 1,
  			spotLength: - 1,
  			rectAreaLength: - 1,
  			hemiLength: - 1,

  			numDirectionalShadows: - 1,
  			numPointShadows: - 1,
  			numSpotShadows: - 1
  		},

  		ambient: [ 0, 0, 0 ],
  		probe: [],
  		directional: [],
  		directionalShadow: [],
  		directionalShadowMap: [],
  		directionalShadowMatrix: [],
  		spot: [],
  		spotShadow: [],
  		spotShadowMap: [],
  		spotShadowMatrix: [],
  		rectArea: [],
  		point: [],
  		pointShadow: [],
  		pointShadowMap: [],
  		pointShadowMatrix: [],
  		hemi: []

  	};

  	for ( let i = 0; i < 9; i ++ ) state.probe.push( new Vector3() );

  	const vector3 = new Vector3();
  	const matrix4 = new Matrix4();
  	const matrix42 = new Matrix4();

  	function setup( lights, shadows, camera ) {

  		let r = 0, g = 0, b = 0;

  		for ( let i = 0; i < 9; i ++ ) state.probe[ i ].set( 0, 0, 0 );

  		let directionalLength = 0;
  		let pointLength = 0;
  		let spotLength = 0;
  		let rectAreaLength = 0;
  		let hemiLength = 0;

  		let numDirectionalShadows = 0;
  		let numPointShadows = 0;
  		let numSpotShadows = 0;

  		const viewMatrix = camera.matrixWorldInverse;

  		lights.sort( shadowCastingLightsFirst );

  		for ( let i = 0, l = lights.length; i < l; i ++ ) {

  			const light = lights[ i ];

  			const color = light.color;
  			const intensity = light.intensity;
  			const distance = light.distance;

  			const shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null;

  			if ( light.isAmbientLight ) {

  				r += color.r * intensity;
  				g += color.g * intensity;
  				b += color.b * intensity;

  			} else if ( light.isLightProbe ) {

  				for ( let j = 0; j < 9; j ++ ) {

  					state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity );

  				}

  			} else if ( light.isDirectionalLight ) {

  				const uniforms = cache.get( light );

  				uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
  				uniforms.direction.setFromMatrixPosition( light.matrixWorld );
  				vector3.setFromMatrixPosition( light.target.matrixWorld );
  				uniforms.direction.sub( vector3 );
  				uniforms.direction.transformDirection( viewMatrix );

  				if ( light.castShadow ) {

  					const shadow = light.shadow;

  					const shadowUniforms = shadowCache.get( light );

  					shadowUniforms.shadowBias = shadow.bias;
  					shadowUniforms.shadowNormalBias = shadow.normalBias;
  					shadowUniforms.shadowRadius = shadow.radius;
  					shadowUniforms.shadowMapSize = shadow.mapSize;

  					state.directionalShadow[ directionalLength ] = shadowUniforms;
  					state.directionalShadowMap[ directionalLength ] = shadowMap;
  					state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;

  					numDirectionalShadows ++;

  				}

  				state.directional[ directionalLength ] = uniforms;

  				directionalLength ++;

  			} else if ( light.isSpotLight ) {

  				const uniforms = cache.get( light );

  				uniforms.position.setFromMatrixPosition( light.matrixWorld );
  				uniforms.position.applyMatrix4( viewMatrix );

  				uniforms.color.copy( color ).multiplyScalar( intensity );
  				uniforms.distance = distance;

  				uniforms.direction.setFromMatrixPosition( light.matrixWorld );
  				vector3.setFromMatrixPosition( light.target.matrixWorld );
  				uniforms.direction.sub( vector3 );
  				uniforms.direction.transformDirection( viewMatrix );

  				uniforms.coneCos = Math.cos( light.angle );
  				uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) );
  				uniforms.decay = light.decay;

  				if ( light.castShadow ) {

  					const shadow = light.shadow;

  					const shadowUniforms = shadowCache.get( light );

  					shadowUniforms.shadowBias = shadow.bias;
  					shadowUniforms.shadowNormalBias = shadow.normalBias;
  					shadowUniforms.shadowRadius = shadow.radius;
  					shadowUniforms.shadowMapSize = shadow.mapSize;

  					state.spotShadow[ spotLength ] = shadowUniforms;
  					state.spotShadowMap[ spotLength ] = shadowMap;
  					state.spotShadowMatrix[ spotLength ] = light.shadow.matrix;

  					numSpotShadows ++;

  				}

  				state.spot[ spotLength ] = uniforms;

  				spotLength ++;

  			} else if ( light.isRectAreaLight ) {

  				const uniforms = cache.get( light );

  				// (a) intensity is the total visible light emitted
  				//uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );

  				// (b) intensity is the brightness of the light
  				uniforms.color.copy( color ).multiplyScalar( intensity );

  				uniforms.position.setFromMatrixPosition( light.matrixWorld );
  				uniforms.position.applyMatrix4( viewMatrix );

  				// extract local rotation of light to derive width/height half vectors
  				matrix42.identity();
  				matrix4.copy( light.matrixWorld );
  				matrix4.premultiply( viewMatrix );
  				matrix42.extractRotation( matrix4 );

  				uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 );
  				uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 );

  				uniforms.halfWidth.applyMatrix4( matrix42 );
  				uniforms.halfHeight.applyMatrix4( matrix42 );

  				// TODO (abelnation): RectAreaLight distance?
  				// uniforms.distance = distance;

  				state.rectArea[ rectAreaLength ] = uniforms;

  				rectAreaLength ++;

  			} else if ( light.isPointLight ) {

  				const uniforms = cache.get( light );

  				uniforms.position.setFromMatrixPosition( light.matrixWorld );
  				uniforms.position.applyMatrix4( viewMatrix );

  				uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
  				uniforms.distance = light.distance;
  				uniforms.decay = light.decay;

  				if ( light.castShadow ) {

  					const shadow = light.shadow;

  					const shadowUniforms = shadowCache.get( light );

  					shadowUniforms.shadowBias = shadow.bias;
  					shadowUniforms.shadowNormalBias = shadow.normalBias;
  					shadowUniforms.shadowRadius = shadow.radius;
  					shadowUniforms.shadowMapSize = shadow.mapSize;
  					shadowUniforms.shadowCameraNear = shadow.camera.near;
  					shadowUniforms.shadowCameraFar = shadow.camera.far;

  					state.pointShadow[ pointLength ] = shadowUniforms;
  					state.pointShadowMap[ pointLength ] = shadowMap;
  					state.pointShadowMatrix[ pointLength ] = light.shadow.matrix;

  					numPointShadows ++;

  				}

  				state.point[ pointLength ] = uniforms;

  				pointLength ++;

  			} else if ( light.isHemisphereLight ) {

  				const uniforms = cache.get( light );

  				uniforms.direction.setFromMatrixPosition( light.matrixWorld );
  				uniforms.direction.transformDirection( viewMatrix );
  				uniforms.direction.normalize();

  				uniforms.skyColor.copy( light.color ).multiplyScalar( intensity );
  				uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );

  				state.hemi[ hemiLength ] = uniforms;

  				hemiLength ++;

  			}

  		}

  		state.ambient[ 0 ] = r;
  		state.ambient[ 1 ] = g;
  		state.ambient[ 2 ] = b;

  		const hash = state.hash;

  		if ( hash.directionalLength !== directionalLength ||
  			hash.pointLength !== pointLength ||
  			hash.spotLength !== spotLength ||
  			hash.rectAreaLength !== rectAreaLength ||
  			hash.hemiLength !== hemiLength ||
  			hash.numDirectionalShadows !== numDirectionalShadows ||
  			hash.numPointShadows !== numPointShadows ||
  			hash.numSpotShadows !== numSpotShadows ) {

  			state.directional.length = directionalLength;
  			state.spot.length = spotLength;
  			state.rectArea.length = rectAreaLength;
  			state.point.length = pointLength;
  			state.hemi.length = hemiLength;

  			state.directionalShadow.length = numDirectionalShadows;
  			state.directionalShadowMap.length = numDirectionalShadows;
  			state.pointShadow.length = numPointShadows;
  			state.pointShadowMap.length = numPointShadows;
  			state.spotShadow.length = numSpotShadows;
  			state.spotShadowMap.length = numSpotShadows;
  			state.directionalShadowMatrix.length = numDirectionalShadows;
  			state.pointShadowMatrix.length = numPointShadows;
  			state.spotShadowMatrix.length = numSpotShadows;

  			hash.directionalLength = directionalLength;
  			hash.pointLength = pointLength;
  			hash.spotLength = spotLength;
  			hash.rectAreaLength = rectAreaLength;
  			hash.hemiLength = hemiLength;

  			hash.numDirectionalShadows = numDirectionalShadows;
  			hash.numPointShadows = numPointShadows;
  			hash.numSpotShadows = numSpotShadows;

  			state.version = nextVersion ++;

  		}

  	}

  	return {
  		setup: setup,
  		state: state
  	};

  }

  /**
   * @author Mugen87 / https://github.com/Mugen87
   */

  function WebGLRenderState() {

  	const lights = new WebGLLights();

  	const lightsArray = [];
  	const shadowsArray = [];

  	function init() {

  		lightsArray.length = 0;
  		shadowsArray.length = 0;

  	}

  	function pushLight( light ) {

  		lightsArray.push( light );

  	}

  	function pushShadow( shadowLight ) {

  		shadowsArray.push( shadowLight );

  	}

  	function setupLights( camera ) {

  		lights.setup( lightsArray, shadowsArray, camera );

  	}

  	const state = {
  		lightsArray: lightsArray,
  		shadowsArray: shadowsArray,

  		lights: lights
  	};

  	return {
  		init: init,
  		state: state,
  		setupLights: setupLights,

  		pushLight: pushLight,
  		pushShadow: pushShadow
  	};

  }

  function WebGLRenderStates() {

  	let renderStates = new WeakMap();

  	function onSceneDispose( event ) {

  		const scene = event.target;

  		scene.removeEventListener( 'dispose', onSceneDispose );

  		renderStates.delete( scene );

  	}

  	function get( scene, camera ) {

  		let renderState;

  		if ( renderStates.has( scene ) === false ) {

  			renderState = new WebGLRenderState();
  			renderStates.set( scene, new WeakMap() );
  			renderStates.get( scene ).set( camera, renderState );

  			scene.addEventListener( 'dispose', onSceneDispose );

  		} else {

  			if ( renderStates.get( scene ).has( camera ) === false ) {

  				renderState = new WebGLRenderState();
  				renderStates.get( scene ).set( camera, renderState );

  			} else {

  				renderState = renderStates.get( scene ).get( camera );

  			}

  		}

  		return renderState;

  	}

  	function dispose() {

  		renderStates = new WeakMap();

  	}

  	return {
  		get: get,
  		dispose: dispose
  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author bhouston / https://clara.io
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *
   *  opacity: <float>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>
   * }
   */

  function MeshDepthMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshDepthMaterial';

  	this.depthPacking = BasicDepthPacking;

  	this.skinning = false;
  	this.morphTargets = false;

  	this.map = null;

  	this.alphaMap = null;

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;

  	this.fog = false;

  	this.setValues( parameters );

  }

  MeshDepthMaterial.prototype = Object.create( Material.prototype );
  MeshDepthMaterial.prototype.constructor = MeshDepthMaterial;

  MeshDepthMaterial.prototype.isMeshDepthMaterial = true;

  MeshDepthMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.depthPacking = source.depthPacking;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;

  	this.map = source.map;

  	this.alphaMap = source.alphaMap;

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;

  	return this;

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *
   *  referencePosition: <float>,
   *  nearDistance: <float>,
   *  farDistance: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>
   *
   * }
   */

  function MeshDistanceMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshDistanceMaterial';

  	this.referencePosition = new Vector3();
  	this.nearDistance = 1;
  	this.farDistance = 1000;

  	this.skinning = false;
  	this.morphTargets = false;

  	this.map = null;

  	this.alphaMap = null;

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.fog = false;

  	this.setValues( parameters );

  }

  MeshDistanceMaterial.prototype = Object.create( Material.prototype );
  MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial;

  MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;

  MeshDistanceMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.referencePosition.copy( source.referencePosition );
  	this.nearDistance = source.nearDistance;
  	this.farDistance = source.farDistance;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;

  	this.map = source.map;

  	this.alphaMap = source.alphaMap;

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	return this;

  };

  var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include <packing>\nvoid main() {\n  float mean = 0.0;\n  float squared_mean = 0.0;\n\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy  ) / resolution ) );\n  for ( float i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {\n    #ifdef HORIZONAL_PASS\n      vec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );\n      mean += distribution.x;\n      squared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n    #else\n      float depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0,  i )  * radius ) / resolution ) );\n      mean += depth;\n      squared_mean += depth * depth;\n    #endif\n  }\n  mean = mean * HALF_SAMPLE_RATE;\n  squared_mean = squared_mean * HALF_SAMPLE_RATE;\n  float std_dev = sqrt( squared_mean - mean * mean );\n  gl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";

  var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLShadowMap( _renderer, _objects, maxTextureSize ) {

  	let _frustum = new Frustum();

  	const _shadowMapSize = new Vector2(),
  		_viewportSize = new Vector2(),

  		_viewport = new Vector4(),

  		_depthMaterials = [],
  		_distanceMaterials = [],

  		_materialCache = {};

  	const shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide };

  	const shadowMaterialVertical = new ShaderMaterial( {

  		defines: {
  			SAMPLE_RATE: 2.0 / 8.0,
  			HALF_SAMPLE_RATE: 1.0 / 8.0
  		},

  		uniforms: {
  			shadow_pass: { value: null },
  			resolution: { value: new Vector2() },
  			radius: { value: 4.0 }
  		},

  		vertexShader: vsm_vert,

  		fragmentShader: vsm_frag

  	} );

  	const shadowMaterialHorizonal = shadowMaterialVertical.clone();
  	shadowMaterialHorizonal.defines.HORIZONAL_PASS = 1;

  	const fullScreenTri = new BufferGeometry();
  	fullScreenTri.setAttribute(
  		"position",
  		new BufferAttribute(
  			new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ),
  			3
  		)
  	);

  	const fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical );

  	const scope = this;

  	this.enabled = false;

  	this.autoUpdate = true;
  	this.needsUpdate = false;

  	this.type = PCFShadowMap;

  	this.render = function ( lights, scene, camera ) {

  		if ( scope.enabled === false ) return;
  		if ( scope.autoUpdate === false && scope.needsUpdate === false ) return;

  		if ( lights.length === 0 ) return;

  		const currentRenderTarget = _renderer.getRenderTarget();
  		const activeCubeFace = _renderer.getActiveCubeFace();
  		const activeMipmapLevel = _renderer.getActiveMipmapLevel();

  		const _state = _renderer.state;

  		// Set GL state for depth map.
  		_state.setBlending( NoBlending );
  		_state.buffers.color.setClear( 1, 1, 1, 1 );
  		_state.buffers.depth.setTest( true );
  		_state.setScissorTest( false );

  		// render depth map

  		for ( let i = 0, il = lights.length; i < il; i ++ ) {

  			const light = lights[ i ];
  			const shadow = light.shadow;

  			if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) continue;

  			if ( shadow === undefined ) {

  				console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' );
  				continue;

  			}

  			_shadowMapSize.copy( shadow.mapSize );

  			const shadowFrameExtents = shadow.getFrameExtents();

  			_shadowMapSize.multiply( shadowFrameExtents );

  			_viewportSize.copy( shadow.mapSize );

  			if ( _shadowMapSize.x > maxTextureSize || _shadowMapSize.y > maxTextureSize ) {

  				if ( _shadowMapSize.x > maxTextureSize ) {

  					_viewportSize.x = Math.floor( maxTextureSize / shadowFrameExtents.x );
  					_shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
  					shadow.mapSize.x = _viewportSize.x;

  				}

  				if ( _shadowMapSize.y > maxTextureSize ) {

  					_viewportSize.y = Math.floor( maxTextureSize / shadowFrameExtents.y );
  					_shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
  					shadow.mapSize.y = _viewportSize.y;

  				}

  			}

  			if ( shadow.map === null && ! shadow.isPointLightShadow && this.type === VSMShadowMap ) {

  				const pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat };

  				shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
  				shadow.map.texture.name = light.name + ".shadowMap";

  				shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );

  				shadow.camera.updateProjectionMatrix();

  			}

  			if ( shadow.map === null ) {

  				const pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat };

  				shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
  				shadow.map.texture.name = light.name + ".shadowMap";

  				shadow.camera.updateProjectionMatrix();

  			}

  			_renderer.setRenderTarget( shadow.map );
  			_renderer.clear();

  			const viewportCount = shadow.getViewportCount();

  			for ( let vp = 0; vp < viewportCount; vp ++ ) {

  				const viewport = shadow.getViewport( vp );

  				_viewport.set(
  					_viewportSize.x * viewport.x,
  					_viewportSize.y * viewport.y,
  					_viewportSize.x * viewport.z,
  					_viewportSize.y * viewport.w
  				);

  				_state.viewport( _viewport );

  				shadow.updateMatrices( light, vp );

  				_frustum = shadow.getFrustum();

  				renderObject( scene, camera, shadow.camera, light, this.type );

  			}

  			// do blur pass for VSM

  			if ( ! shadow.isPointLightShadow && this.type === VSMShadowMap ) {

  				VSMPass( shadow, camera );

  			}

  			shadow.needsUpdate = false;

  		}

  		scope.needsUpdate = false;

  		_renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel );

  	};

  	function VSMPass( shadow, camera ) {

  		const geometry = _objects.update( fullScreenMesh );

  		// vertical pass

  		shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
  		shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
  		shadowMaterialVertical.uniforms.radius.value = shadow.radius;
  		_renderer.setRenderTarget( shadow.mapPass );
  		_renderer.clear();
  		_renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null );

  		// horizonal pass

  		shadowMaterialHorizonal.uniforms.shadow_pass.value = shadow.mapPass.texture;
  		shadowMaterialHorizonal.uniforms.resolution.value = shadow.mapSize;
  		shadowMaterialHorizonal.uniforms.radius.value = shadow.radius;
  		_renderer.setRenderTarget( shadow.map );
  		_renderer.clear();
  		_renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizonal, fullScreenMesh, null );

  	}

  	function getDepthMaterialVariant( useMorphing, useSkinning, useInstancing ) {

  		const index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;

  		let material = _depthMaterials[ index ];

  		if ( material === undefined ) {

  			material = new MeshDepthMaterial( {

  				depthPacking: RGBADepthPacking,

  				morphTargets: useMorphing,
  				skinning: useSkinning

  			} );

  			_depthMaterials[ index ] = material;

  		}

  		return material;

  	}

  	function getDistanceMaterialVariant( useMorphing, useSkinning, useInstancing ) {

  		const index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;

  		let material = _distanceMaterials[ index ];

  		if ( material === undefined ) {

  			material = new MeshDistanceMaterial( {

  				morphTargets: useMorphing,
  				skinning: useSkinning

  			} );

  			_distanceMaterials[ index ] = material;

  		}

  		return material;

  	}

  	function getDepthMaterial( object, geometry, material, light, shadowCameraNear, shadowCameraFar, type ) {

  		let result = null;

  		let getMaterialVariant = getDepthMaterialVariant;
  		let customMaterial = object.customDepthMaterial;

  		if ( light.isPointLight === true ) {

  			getMaterialVariant = getDistanceMaterialVariant;
  			customMaterial = object.customDistanceMaterial;

  		}

  		if ( customMaterial === undefined ) {

  			let useMorphing = false;

  			if ( material.morphTargets === true ) {

  				useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;

  			}

  			let useSkinning = false;

  			if ( object.isSkinnedMesh === true ) {

  				if ( material.skinning === true ) {

  					useSkinning = true;

  				} else {

  					console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object );

  				}

  			}

  			const useInstancing = object.isInstancedMesh === true;

  			result = getMaterialVariant( useMorphing, useSkinning, useInstancing );

  		} else {

  			result = customMaterial;

  		}

  		if ( _renderer.localClippingEnabled &&
  				material.clipShadows === true &&
  				material.clippingPlanes.length !== 0 ) {

  			// in this case we need a unique material instance reflecting the
  			// appropriate state

  			const keyA = result.uuid, keyB = material.uuid;

  			let materialsForVariant = _materialCache[ keyA ];

  			if ( materialsForVariant === undefined ) {

  				materialsForVariant = {};
  				_materialCache[ keyA ] = materialsForVariant;

  			}

  			let cachedMaterial = materialsForVariant[ keyB ];

  			if ( cachedMaterial === undefined ) {

  				cachedMaterial = result.clone();
  				materialsForVariant[ keyB ] = cachedMaterial;

  			}

  			result = cachedMaterial;

  		}

  		result.visible = material.visible;
  		result.wireframe = material.wireframe;

  		if ( type === VSMShadowMap ) {

  			result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side;

  		} else {

  			result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ];

  		}

  		result.clipShadows = material.clipShadows;
  		result.clippingPlanes = material.clippingPlanes;
  		result.clipIntersection = material.clipIntersection;

  		result.wireframeLinewidth = material.wireframeLinewidth;
  		result.linewidth = material.linewidth;

  		if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) {

  			result.referencePosition.setFromMatrixPosition( light.matrixWorld );
  			result.nearDistance = shadowCameraNear;
  			result.farDistance = shadowCameraFar;

  		}

  		return result;

  	}

  	function renderObject( object, camera, shadowCamera, light, type ) {

  		if ( object.visible === false ) return;

  		const visible = object.layers.test( camera.layers );

  		if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) {

  			if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) {

  				object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );

  				const geometry = _objects.update( object );
  				const material = object.material;

  				if ( Array.isArray( material ) ) {

  					const groups = geometry.groups;

  					for ( let k = 0, kl = groups.length; k < kl; k ++ ) {

  						const group = groups[ k ];
  						const groupMaterial = material[ group.materialIndex ];

  						if ( groupMaterial && groupMaterial.visible ) {

  							const depthMaterial = getDepthMaterial( object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type );

  							_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );

  						}

  					}

  				} else if ( material.visible ) {

  					const depthMaterial = getDepthMaterial( object, geometry, material, light, shadowCamera.near, shadowCamera.far, type );

  					_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );

  				}

  			}

  		}

  		const children = object.children;

  		for ( let i = 0, l = children.length; i < l; i ++ ) {

  			renderObject( children[ i ], camera, shadowCamera, light, type );

  		}

  	}

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLState( gl, extensions, capabilities ) {

  	const isWebGL2 = capabilities.isWebGL2;

  	function ColorBuffer() {

  		let locked = false;

  		const color = new Vector4();
  		let currentColorMask = null;
  		const currentColorClear = new Vector4( 0, 0, 0, 0 );

  		return {

  			setMask: function ( colorMask ) {

  				if ( currentColorMask !== colorMask && ! locked ) {

  					gl.colorMask( colorMask, colorMask, colorMask, colorMask );
  					currentColorMask = colorMask;

  				}

  			},

  			setLocked: function ( lock ) {

  				locked = lock;

  			},

  			setClear: function ( r, g, b, a, premultipliedAlpha ) {

  				if ( premultipliedAlpha === true ) {

  					r *= a; g *= a; b *= a;

  				}

  				color.set( r, g, b, a );

  				if ( currentColorClear.equals( color ) === false ) {

  					gl.clearColor( r, g, b, a );
  					currentColorClear.copy( color );

  				}

  			},

  			reset: function () {

  				locked = false;

  				currentColorMask = null;
  				currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state

  			}

  		};

  	}

  	function DepthBuffer() {

  		let locked = false;

  		let currentDepthMask = null;
  		let currentDepthFunc = null;
  		let currentDepthClear = null;

  		return {

  			setTest: function ( depthTest ) {

  				if ( depthTest ) {

  					enable( 2929 );

  				} else {

  					disable( 2929 );

  				}

  			},

  			setMask: function ( depthMask ) {

  				if ( currentDepthMask !== depthMask && ! locked ) {

  					gl.depthMask( depthMask );
  					currentDepthMask = depthMask;

  				}

  			},

  			setFunc: function ( depthFunc ) {

  				if ( currentDepthFunc !== depthFunc ) {

  					if ( depthFunc ) {

  						switch ( depthFunc ) {

  							case NeverDepth:

  								gl.depthFunc( 512 );
  								break;

  							case AlwaysDepth:

  								gl.depthFunc( 519 );
  								break;

  							case LessDepth:

  								gl.depthFunc( 513 );
  								break;

  							case LessEqualDepth:

  								gl.depthFunc( 515 );
  								break;

  							case EqualDepth:

  								gl.depthFunc( 514 );
  								break;

  							case GreaterEqualDepth:

  								gl.depthFunc( 518 );
  								break;

  							case GreaterDepth:

  								gl.depthFunc( 516 );
  								break;

  							case NotEqualDepth:

  								gl.depthFunc( 517 );
  								break;

  							default:

  								gl.depthFunc( 515 );

  						}

  					} else {

  						gl.depthFunc( 515 );

  					}

  					currentDepthFunc = depthFunc;

  				}

  			},

  			setLocked: function ( lock ) {

  				locked = lock;

  			},

  			setClear: function ( depth ) {

  				if ( currentDepthClear !== depth ) {

  					gl.clearDepth( depth );
  					currentDepthClear = depth;

  				}

  			},

  			reset: function () {

  				locked = false;

  				currentDepthMask = null;
  				currentDepthFunc = null;
  				currentDepthClear = null;

  			}

  		};

  	}

  	function StencilBuffer() {

  		let locked = false;

  		let currentStencilMask = null;
  		let currentStencilFunc = null;
  		let currentStencilRef = null;
  		let currentStencilFuncMask = null;
  		let currentStencilFail = null;
  		let currentStencilZFail = null;
  		let currentStencilZPass = null;
  		let currentStencilClear = null;

  		return {

  			setTest: function ( stencilTest ) {

  				if ( ! locked ) {

  					if ( stencilTest ) {

  						enable( 2960 );

  					} else {

  						disable( 2960 );

  					}

  				}

  			},

  			setMask: function ( stencilMask ) {

  				if ( currentStencilMask !== stencilMask && ! locked ) {

  					gl.stencilMask( stencilMask );
  					currentStencilMask = stencilMask;

  				}

  			},

  			setFunc: function ( stencilFunc, stencilRef, stencilMask ) {

  				if ( currentStencilFunc !== stencilFunc ||
  				     currentStencilRef 	!== stencilRef 	||
  				     currentStencilFuncMask !== stencilMask ) {

  					gl.stencilFunc( stencilFunc, stencilRef, stencilMask );

  					currentStencilFunc = stencilFunc;
  					currentStencilRef = stencilRef;
  					currentStencilFuncMask = stencilMask;

  				}

  			},

  			setOp: function ( stencilFail, stencilZFail, stencilZPass ) {

  				if ( currentStencilFail	 !== stencilFail 	||
  				     currentStencilZFail !== stencilZFail ||
  				     currentStencilZPass !== stencilZPass ) {

  					gl.stencilOp( stencilFail, stencilZFail, stencilZPass );

  					currentStencilFail = stencilFail;
  					currentStencilZFail = stencilZFail;
  					currentStencilZPass = stencilZPass;

  				}

  			},

  			setLocked: function ( lock ) {

  				locked = lock;

  			},

  			setClear: function ( stencil ) {

  				if ( currentStencilClear !== stencil ) {

  					gl.clearStencil( stencil );
  					currentStencilClear = stencil;

  				}

  			},

  			reset: function () {

  				locked = false;

  				currentStencilMask = null;
  				currentStencilFunc = null;
  				currentStencilRef = null;
  				currentStencilFuncMask = null;
  				currentStencilFail = null;
  				currentStencilZFail = null;
  				currentStencilZPass = null;
  				currentStencilClear = null;

  			}

  		};

  	}

  	//

  	const colorBuffer = new ColorBuffer();
  	const depthBuffer = new DepthBuffer();
  	const stencilBuffer = new StencilBuffer();

  	let enabledCapabilities = {};

  	let currentProgram = null;

  	let currentBlendingEnabled = null;
  	let currentBlending = null;
  	let currentBlendEquation = null;
  	let currentBlendSrc = null;
  	let currentBlendDst = null;
  	let currentBlendEquationAlpha = null;
  	let currentBlendSrcAlpha = null;
  	let currentBlendDstAlpha = null;
  	let currentPremultipledAlpha = false;

  	let currentFlipSided = null;
  	let currentCullFace = null;

  	let currentLineWidth = null;

  	let currentPolygonOffsetFactor = null;
  	let currentPolygonOffsetUnits = null;

  	const maxTextures = gl.getParameter( 35661 );

  	let lineWidthAvailable = false;
  	let version = 0;
  	const glVersion = gl.getParameter( 7938 );

  	if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) {

  		version = parseFloat( /^WebGL\ ([0-9])/.exec( glVersion )[ 1 ] );
  		lineWidthAvailable = ( version >= 1.0 );

  	} else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) {

  		version = parseFloat( /^OpenGL\ ES\ ([0-9])/.exec( glVersion )[ 1 ] );
  		lineWidthAvailable = ( version >= 2.0 );

  	}

  	let currentTextureSlot = null;
  	let currentBoundTextures = {};

  	const currentScissor = new Vector4();
  	const currentViewport = new Vector4();

  	function createTexture( type, target, count ) {

  		const data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4.
  		const texture = gl.createTexture();

  		gl.bindTexture( type, texture );
  		gl.texParameteri( type, 10241, 9728 );
  		gl.texParameteri( type, 10240, 9728 );

  		for ( let i = 0; i < count; i ++ ) {

  			gl.texImage2D( target + i, 0, 6408, 1, 1, 0, 6408, 5121, data );

  		}

  		return texture;

  	}

  	const emptyTextures = {};
  	emptyTextures[ 3553 ] = createTexture( 3553, 3553, 1 );
  	emptyTextures[ 34067 ] = createTexture( 34067, 34069, 6 );

  	// init

  	colorBuffer.setClear( 0, 0, 0, 1 );
  	depthBuffer.setClear( 1 );
  	stencilBuffer.setClear( 0 );

  	enable( 2929 );
  	depthBuffer.setFunc( LessEqualDepth );

  	setFlipSided( false );
  	setCullFace( CullFaceBack );
  	enable( 2884 );

  	setBlending( NoBlending );

  	//

  	function enable( id ) {

  		if ( enabledCapabilities[ id ] !== true ) {

  			gl.enable( id );
  			enabledCapabilities[ id ] = true;

  		}

  	}

  	function disable( id ) {

  		if ( enabledCapabilities[ id ] !== false ) {

  			gl.disable( id );
  			enabledCapabilities[ id ] = false;

  		}

  	}

  	function useProgram( program ) {

  		if ( currentProgram !== program ) {

  			gl.useProgram( program );

  			currentProgram = program;

  			return true;

  		}

  		return false;

  	}

  	const equationToGL = {
  		[ AddEquation ]: 32774,
  		[ SubtractEquation ]: 32778,
  		[ ReverseSubtractEquation ]: 32779
  	};

  	if ( isWebGL2 ) {

  		equationToGL[ MinEquation ] = 32775;
  		equationToGL[ MaxEquation ] = 32776;

  	} else {

  		const extension = extensions.get( 'EXT_blend_minmax' );

  		if ( extension !== null ) {

  			equationToGL[ MinEquation ] = extension.MIN_EXT;
  			equationToGL[ MaxEquation ] = extension.MAX_EXT;

  		}

  	}

  	const factorToGL = {
  		[ ZeroFactor ]: 0,
  		[ OneFactor ]: 1,
  		[ SrcColorFactor ]: 768,
  		[ SrcAlphaFactor ]: 770,
  		[ SrcAlphaSaturateFactor ]: 776,
  		[ DstColorFactor ]: 774,
  		[ DstAlphaFactor ]: 772,
  		[ OneMinusSrcColorFactor ]: 769,
  		[ OneMinusSrcAlphaFactor ]: 771,
  		[ OneMinusDstColorFactor ]: 775,
  		[ OneMinusDstAlphaFactor ]: 773
  	};

  	function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {

  		if ( blending === NoBlending ) {

  			if ( currentBlendingEnabled ) {

  				disable( 3042 );
  				currentBlendingEnabled = false;

  			}

  			return;

  		}

  		if ( ! currentBlendingEnabled ) {

  			enable( 3042 );
  			currentBlendingEnabled = true;

  		}

  		if ( blending !== CustomBlending ) {

  			if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) {

  				if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) {

  					gl.blendEquation( 32774 );

  					currentBlendEquation = AddEquation;
  					currentBlendEquationAlpha = AddEquation;

  				}

  				if ( premultipliedAlpha ) {

  					switch ( blending ) {

  						case NormalBlending:
  							gl.blendFuncSeparate( 1, 771, 1, 771 );
  							break;

  						case AdditiveBlending:
  							gl.blendFunc( 1, 1 );
  							break;

  						case SubtractiveBlending:
  							gl.blendFuncSeparate( 0, 0, 769, 771 );
  							break;

  						case MultiplyBlending:
  							gl.blendFuncSeparate( 0, 768, 0, 770 );
  							break;

  						default:
  							console.error( 'THREE.WebGLState: Invalid blending: ', blending );
  							break;

  					}

  				} else {

  					switch ( blending ) {

  						case NormalBlending:
  							gl.blendFuncSeparate( 770, 771, 1, 771 );
  							break;

  						case AdditiveBlending:
  							gl.blendFunc( 770, 1 );
  							break;

  						case SubtractiveBlending:
  							gl.blendFunc( 0, 769 );
  							break;

  						case MultiplyBlending:
  							gl.blendFunc( 0, 768 );
  							break;

  						default:
  							console.error( 'THREE.WebGLState: Invalid blending: ', blending );
  							break;

  					}

  				}

  				currentBlendSrc = null;
  				currentBlendDst = null;
  				currentBlendSrcAlpha = null;
  				currentBlendDstAlpha = null;

  				currentBlending = blending;
  				currentPremultipledAlpha = premultipliedAlpha;

  			}

  			return;

  		}

  		// custom blending

  		blendEquationAlpha = blendEquationAlpha || blendEquation;
  		blendSrcAlpha = blendSrcAlpha || blendSrc;
  		blendDstAlpha = blendDstAlpha || blendDst;

  		if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {

  			gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] );

  			currentBlendEquation = blendEquation;
  			currentBlendEquationAlpha = blendEquationAlpha;

  		}

  		if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {

  			gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] );

  			currentBlendSrc = blendSrc;
  			currentBlendDst = blendDst;
  			currentBlendSrcAlpha = blendSrcAlpha;
  			currentBlendDstAlpha = blendDstAlpha;

  		}

  		currentBlending = blending;
  		currentPremultipledAlpha = null;

  	}

  	function setMaterial( material, frontFaceCW ) {

  		material.side === DoubleSide
  			? disable( 2884 )
  			: enable( 2884 );

  		let flipSided = ( material.side === BackSide );
  		if ( frontFaceCW ) flipSided = ! flipSided;

  		setFlipSided( flipSided );

  		( material.blending === NormalBlending && material.transparent === false )
  			? setBlending( NoBlending )
  			: setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );

  		depthBuffer.setFunc( material.depthFunc );
  		depthBuffer.setTest( material.depthTest );
  		depthBuffer.setMask( material.depthWrite );
  		colorBuffer.setMask( material.colorWrite );

  		const stencilWrite = material.stencilWrite;
  		stencilBuffer.setTest( stencilWrite );
  		if ( stencilWrite ) {

  			stencilBuffer.setMask( material.stencilWriteMask );
  			stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask );
  			stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass );

  		}

  		setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );

  	}

  	//

  	function setFlipSided( flipSided ) {

  		if ( currentFlipSided !== flipSided ) {

  			if ( flipSided ) {

  				gl.frontFace( 2304 );

  			} else {

  				gl.frontFace( 2305 );

  			}

  			currentFlipSided = flipSided;

  		}

  	}

  	function setCullFace( cullFace ) {

  		if ( cullFace !== CullFaceNone ) {

  			enable( 2884 );

  			if ( cullFace !== currentCullFace ) {

  				if ( cullFace === CullFaceBack ) {

  					gl.cullFace( 1029 );

  				} else if ( cullFace === CullFaceFront ) {

  					gl.cullFace( 1028 );

  				} else {

  					gl.cullFace( 1032 );

  				}

  			}

  		} else {

  			disable( 2884 );

  		}

  		currentCullFace = cullFace;

  	}

  	function setLineWidth( width ) {

  		if ( width !== currentLineWidth ) {

  			if ( lineWidthAvailable ) gl.lineWidth( width );

  			currentLineWidth = width;

  		}

  	}

  	function setPolygonOffset( polygonOffset, factor, units ) {

  		if ( polygonOffset ) {

  			enable( 32823 );

  			if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) {

  				gl.polygonOffset( factor, units );

  				currentPolygonOffsetFactor = factor;
  				currentPolygonOffsetUnits = units;

  			}

  		} else {

  			disable( 32823 );

  		}

  	}

  	function setScissorTest( scissorTest ) {

  		if ( scissorTest ) {

  			enable( 3089 );

  		} else {

  			disable( 3089 );

  		}

  	}

  	// texture

  	function activeTexture( webglSlot ) {

  		if ( webglSlot === undefined ) webglSlot = 33984 + maxTextures - 1;

  		if ( currentTextureSlot !== webglSlot ) {

  			gl.activeTexture( webglSlot );
  			currentTextureSlot = webglSlot;

  		}

  	}

  	function bindTexture( webglType, webglTexture ) {

  		if ( currentTextureSlot === null ) {

  			activeTexture();

  		}

  		let boundTexture = currentBoundTextures[ currentTextureSlot ];

  		if ( boundTexture === undefined ) {

  			boundTexture = { type: undefined, texture: undefined };
  			currentBoundTextures[ currentTextureSlot ] = boundTexture;

  		}

  		if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {

  			gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] );

  			boundTexture.type = webglType;
  			boundTexture.texture = webglTexture;

  		}

  	}

  	function unbindTexture() {

  		const boundTexture = currentBoundTextures[ currentTextureSlot ];

  		if ( boundTexture !== undefined && boundTexture.type !== undefined ) {

  			gl.bindTexture( boundTexture.type, null );

  			boundTexture.type = undefined;
  			boundTexture.texture = undefined;

  		}

  	}

  	function compressedTexImage2D() {

  		try {

  			gl.compressedTexImage2D.apply( gl, arguments );

  		} catch ( error ) {

  			console.error( 'THREE.WebGLState:', error );

  		}

  	}

  	function texImage2D() {

  		try {

  			gl.texImage2D.apply( gl, arguments );

  		} catch ( error ) {

  			console.error( 'THREE.WebGLState:', error );

  		}

  	}

  	function texImage3D() {

  		try {

  			gl.texImage3D.apply( gl, arguments );

  		} catch ( error ) {

  			console.error( 'THREE.WebGLState:', error );

  		}

  	}

  	//

  	function scissor( scissor ) {

  		if ( currentScissor.equals( scissor ) === false ) {

  			gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w );
  			currentScissor.copy( scissor );

  		}

  	}

  	function viewport( viewport ) {

  		if ( currentViewport.equals( viewport ) === false ) {

  			gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w );
  			currentViewport.copy( viewport );

  		}

  	}

  	//

  	function reset() {

  		enabledCapabilities = {};

  		currentTextureSlot = null;
  		currentBoundTextures = {};

  		currentProgram = null;

  		currentBlending = null;

  		currentFlipSided = null;
  		currentCullFace = null;

  		colorBuffer.reset();
  		depthBuffer.reset();
  		stencilBuffer.reset();

  	}

  	return {

  		buffers: {
  			color: colorBuffer,
  			depth: depthBuffer,
  			stencil: stencilBuffer
  		},

  		enable: enable,
  		disable: disable,

  		useProgram: useProgram,

  		setBlending: setBlending,
  		setMaterial: setMaterial,

  		setFlipSided: setFlipSided,
  		setCullFace: setCullFace,

  		setLineWidth: setLineWidth,
  		setPolygonOffset: setPolygonOffset,

  		setScissorTest: setScissorTest,

  		activeTexture: activeTexture,
  		bindTexture: bindTexture,
  		unbindTexture: unbindTexture,
  		compressedTexImage2D: compressedTexImage2D,
  		texImage2D: texImage2D,
  		texImage3D: texImage3D,

  		scissor: scissor,
  		viewport: viewport,

  		reset: reset

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) {

  	const isWebGL2 = capabilities.isWebGL2;
  	const maxTextures = capabilities.maxTextures;
  	const maxCubemapSize = capabilities.maxCubemapSize;
  	const maxTextureSize = capabilities.maxTextureSize;
  	const maxSamples = capabilities.maxSamples;

  	const _videoTextures = new WeakMap();
  	let _canvas;

  	// cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
  	// also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
  	// Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).

  	let useOffscreenCanvas = false;

  	try {

  		useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined'
  			&& ( new OffscreenCanvas( 1, 1 ).getContext( "2d" ) ) !== null;

  	} catch ( err ) {

  		// Ignore any errors

  	}

  	function createCanvas( width, height ) {

  		// Use OffscreenCanvas when available. Specially needed in web workers

  		return useOffscreenCanvas ?
  			new OffscreenCanvas( width, height ) :
  			document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );

  	}

  	function resizeImage( image, needsPowerOfTwo, needsNewCanvas, maxSize ) {

  		let scale = 1;

  		// handle case if texture exceeds max size

  		if ( image.width > maxSize || image.height > maxSize ) {

  			scale = maxSize / Math.max( image.width, image.height );

  		}

  		// only perform resize if necessary

  		if ( scale < 1 || needsPowerOfTwo === true ) {

  			// only perform resize for certain image types

  			if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
  				( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
  				( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) {

  				const floor = needsPowerOfTwo ? MathUtils.floorPowerOfTwo : Math.floor;

  				const width = floor( scale * image.width );
  				const height = floor( scale * image.height );

  				if ( _canvas === undefined ) _canvas = createCanvas( width, height );

  				// cube textures can't reuse the same canvas

  				const canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas;

  				canvas.width = width;
  				canvas.height = height;

  				const context = canvas.getContext( '2d' );
  				context.drawImage( image, 0, 0, width, height );

  				console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').' );

  				return canvas;

  			} else {

  				if ( 'data' in image ) {

  					console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').' );

  				}

  				return image;

  			}

  		}

  		return image;

  	}

  	function isPowerOfTwo( image ) {

  		return MathUtils.isPowerOfTwo( image.width ) && MathUtils.isPowerOfTwo( image.height );

  	}

  	function textureNeedsPowerOfTwo( texture ) {

  		if ( isWebGL2 ) return false;

  		return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) ||
  			( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter );

  	}

  	function textureNeedsGenerateMipmaps( texture, supportsMips ) {

  		return texture.generateMipmaps && supportsMips &&
  			texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;

  	}

  	function generateMipmap( target, texture, width, height ) {

  		_gl.generateMipmap( target );

  		const textureProperties = properties.get( texture );

  		// Note: Math.log( x ) * Math.LOG2E used instead of Math.log2( x ) which is not supported by IE11
  		textureProperties.__maxMipLevel = Math.log( Math.max( width, height ) ) * Math.LOG2E;

  	}

  	function getInternalFormat( internalFormatName, glFormat, glType ) {

  		if ( isWebGL2 === false ) return glFormat;

  		if ( internalFormatName !== null ) {

  			if ( _gl[ internalFormatName ] !== undefined ) return _gl[ internalFormatName ];

  			console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' );

  		}

  		let internalFormat = glFormat;

  		if ( glFormat === 6403 ) {

  			if ( glType === 5126 ) internalFormat = 33326;
  			if ( glType === 5131 ) internalFormat = 33325;
  			if ( glType === 5121 ) internalFormat = 33321;

  		}

  		if ( glFormat === 6407 ) {

  			if ( glType === 5126 ) internalFormat = 34837;
  			if ( glType === 5131 ) internalFormat = 34843;
  			if ( glType === 5121 ) internalFormat = 32849;

  		}

  		if ( glFormat === 6408 ) {

  			if ( glType === 5126 ) internalFormat = 34836;
  			if ( glType === 5131 ) internalFormat = 34842;
  			if ( glType === 5121 ) internalFormat = 32856;

  		}

  		if ( internalFormat === 33325 || internalFormat === 33326 ||
  			internalFormat === 34842 || internalFormat === 34836 ) {

  			extensions.get( 'EXT_color_buffer_float' );

  		}

  		return internalFormat;

  	}

  	// Fallback filters for non-power-of-2 textures

  	function filterFallback( f ) {

  		if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) {

  			return 9728;

  		}

  		return 9729;

  	}

  	//

  	function onTextureDispose( event ) {

  		const texture = event.target;

  		texture.removeEventListener( 'dispose', onTextureDispose );

  		deallocateTexture( texture );

  		if ( texture.isVideoTexture ) {

  			_videoTextures.delete( texture );

  		}

  		info.memory.textures --;

  	}

  	function onRenderTargetDispose( event ) {

  		const renderTarget = event.target;

  		renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );

  		deallocateRenderTarget( renderTarget );

  		info.memory.textures --;

  	}

  	//

  	function deallocateTexture( texture ) {

  		const textureProperties = properties.get( texture );

  		if ( textureProperties.__webglInit === undefined ) return;

  		_gl.deleteTexture( textureProperties.__webglTexture );

  		properties.remove( texture );

  	}

  	function deallocateRenderTarget( renderTarget ) {

  		const renderTargetProperties = properties.get( renderTarget );
  		const textureProperties = properties.get( renderTarget.texture );

  		if ( ! renderTarget ) return;

  		if ( textureProperties.__webglTexture !== undefined ) {

  			_gl.deleteTexture( textureProperties.__webglTexture );

  		}

  		if ( renderTarget.depthTexture ) {

  			renderTarget.depthTexture.dispose();

  		}

  		if ( renderTarget.isWebGLCubeRenderTarget ) {

  			for ( let i = 0; i < 6; i ++ ) {

  				_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] );
  				if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] );

  			}

  		} else {

  			_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer );
  			if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer );
  			if ( renderTargetProperties.__webglMultisampledFramebuffer ) _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer );
  			if ( renderTargetProperties.__webglColorRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer );
  			if ( renderTargetProperties.__webglDepthRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer );

  		}

  		properties.remove( renderTarget.texture );
  		properties.remove( renderTarget );

  	}

  	//

  	let textureUnits = 0;

  	function resetTextureUnits() {

  		textureUnits = 0;

  	}

  	function allocateTextureUnit() {

  		const textureUnit = textureUnits;

  		if ( textureUnit >= maxTextures ) {

  			console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures );

  		}

  		textureUnits += 1;

  		return textureUnit;

  	}

  	//

  	function setTexture2D( texture, slot ) {

  		const textureProperties = properties.get( texture );

  		if ( texture.isVideoTexture ) updateVideoTexture( texture );

  		if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

  			const image = texture.image;

  			if ( image === undefined ) {

  				console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined' );

  			} else if ( image.complete === false ) {

  				console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' );

  			} else {

  				uploadTexture( textureProperties, texture, slot );
  				return;

  			}

  		}

  		state.activeTexture( 33984 + slot );
  		state.bindTexture( 3553, textureProperties.__webglTexture );

  	}

  	function setTexture2DArray( texture, slot ) {

  		const textureProperties = properties.get( texture );

  		if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

  			uploadTexture( textureProperties, texture, slot );
  			return;

  		}

  		state.activeTexture( 33984 + slot );
  		state.bindTexture( 35866, textureProperties.__webglTexture );

  	}

  	function setTexture3D( texture, slot ) {

  		const textureProperties = properties.get( texture );

  		if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

  			uploadTexture( textureProperties, texture, slot );
  			return;

  		}

  		state.activeTexture( 33984 + slot );
  		state.bindTexture( 32879, textureProperties.__webglTexture );

  	}

  	function setTextureCube( texture, slot ) {

  		if ( texture.image.length !== 6 ) return;

  		const textureProperties = properties.get( texture );

  		if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

  			initTexture( textureProperties, texture );

  			state.activeTexture( 33984 + slot );
  			state.bindTexture( 34067, textureProperties.__webglTexture );

  			_gl.pixelStorei( 37440, texture.flipY );

  			const isCompressed = ( texture && ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ) );
  			const isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture );

  			const cubeImage = [];

  			for ( let i = 0; i < 6; i ++ ) {

  				if ( ! isCompressed && ! isDataTexture ) {

  					cubeImage[ i ] = resizeImage( texture.image[ i ], false, true, maxCubemapSize );

  				} else {

  					cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];

  				}

  			}

  			const image = cubeImage[ 0 ],
  				supportsMips = isPowerOfTwo( image ) || isWebGL2,
  				glFormat = utils.convert( texture.format ),
  				glType = utils.convert( texture.type ),
  				glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType );

  			setTextureParameters( 34067, texture, supportsMips );

  			let mipmaps;

  			if ( isCompressed ) {

  				for ( let i = 0; i < 6; i ++ ) {

  					mipmaps = cubeImage[ i ].mipmaps;

  					for ( let j = 0; j < mipmaps.length; j ++ ) {

  						const mipmap = mipmaps[ j ];

  						if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

  							if ( glFormat !== null ) {

  								state.compressedTexImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );

  							} else {

  								console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' );

  							}

  						} else {

  							state.texImage2D( 34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

  						}

  					}

  				}

  				textureProperties.__maxMipLevel = mipmaps.length - 1;

  			} else {

  				mipmaps = texture.mipmaps;

  				for ( let i = 0; i < 6; i ++ ) {

  					if ( isDataTexture ) {

  						state.texImage2D( 34069 + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );

  						for ( let j = 0; j < mipmaps.length; j ++ ) {

  							const mipmap = mipmaps[ j ];
  							const mipmapImage = mipmap.image[ i ].image;

  							state.texImage2D( 34069 + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data );

  						}

  					} else {

  						state.texImage2D( 34069 + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] );

  						for ( let j = 0; j < mipmaps.length; j ++ ) {

  							const mipmap = mipmaps[ j ];

  							state.texImage2D( 34069 + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[ i ] );

  						}

  					}

  				}

  				textureProperties.__maxMipLevel = mipmaps.length;

  			}

  			if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {

  				// We assume images for cube map have the same size.
  				generateMipmap( 34067, texture, image.width, image.height );

  			}

  			textureProperties.__version = texture.version;

  			if ( texture.onUpdate ) texture.onUpdate( texture );

  		} else {

  			state.activeTexture( 33984 + slot );
  			state.bindTexture( 34067, textureProperties.__webglTexture );

  		}

  	}

  	function setTextureCubeDynamic( texture, slot ) {

  		state.activeTexture( 33984 + slot );
  		state.bindTexture( 34067, properties.get( texture ).__webglTexture );

  	}

  	const wrappingToGL = {
  		[ RepeatWrapping ]: 10497,
  		[ ClampToEdgeWrapping ]: 33071,
  		[ MirroredRepeatWrapping ]: 33648
  	};

  	const filterToGL = {
  		[ NearestFilter ]: 9728,
  		[ NearestMipmapNearestFilter ]: 9984,
  		[ NearestMipmapLinearFilter ]: 9986,

  		[ LinearFilter ]: 9729,
  		[ LinearMipmapNearestFilter ]: 9985,
  		[ LinearMipmapLinearFilter ]: 9987
  	};

  	function setTextureParameters( textureType, texture, supportsMips ) {

  		if ( supportsMips ) {

  			_gl.texParameteri( textureType, 10242, wrappingToGL[ texture.wrapS ] );
  			_gl.texParameteri( textureType, 10243, wrappingToGL[ texture.wrapT ] );

  			if ( textureType === 32879 || textureType === 35866 ) {

  				_gl.texParameteri( textureType, 32882, wrappingToGL[ texture.wrapR ] );

  			}

  			_gl.texParameteri( textureType, 10240, filterToGL[ texture.magFilter ] );
  			_gl.texParameteri( textureType, 10241, filterToGL[ texture.minFilter ] );

  		} else {

  			_gl.texParameteri( textureType, 10242, 33071 );
  			_gl.texParameteri( textureType, 10243, 33071 );

  			if ( textureType === 32879 || textureType === 35866 ) {

  				_gl.texParameteri( textureType, 32882, 33071 );

  			}

  			if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) {

  				console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' );

  			}

  			_gl.texParameteri( textureType, 10240, filterFallback( texture.magFilter ) );
  			_gl.texParameteri( textureType, 10241, filterFallback( texture.minFilter ) );

  			if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) {

  				console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' );

  			}

  		}

  		const extension = extensions.get( 'EXT_texture_filter_anisotropic' );

  		if ( extension ) {

  			if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return;
  			if ( texture.type === HalfFloatType && ( isWebGL2 || extensions.get( 'OES_texture_half_float_linear' ) ) === null ) return;

  			if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {

  				_gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) );
  				properties.get( texture ).__currentAnisotropy = texture.anisotropy;

  			}

  		}

  	}

  	function initTexture( textureProperties, texture ) {

  		if ( textureProperties.__webglInit === undefined ) {

  			textureProperties.__webglInit = true;

  			texture.addEventListener( 'dispose', onTextureDispose );

  			textureProperties.__webglTexture = _gl.createTexture();

  			info.memory.textures ++;

  		}

  	}

  	function uploadTexture( textureProperties, texture, slot ) {

  		let textureType = 3553;

  		if ( texture.isDataTexture2DArray ) textureType = 35866;
  		if ( texture.isDataTexture3D ) textureType = 32879;

  		initTexture( textureProperties, texture );

  		state.activeTexture( 33984 + slot );
  		state.bindTexture( textureType, textureProperties.__webglTexture );

  		_gl.pixelStorei( 37440, texture.flipY );
  		_gl.pixelStorei( 37441, texture.premultiplyAlpha );
  		_gl.pixelStorei( 3317, texture.unpackAlignment );

  		const needsPowerOfTwo = textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( texture.image ) === false;
  		const image = resizeImage( texture.image, needsPowerOfTwo, false, maxTextureSize );

  		const supportsMips = isPowerOfTwo( image ) || isWebGL2,
  			glFormat = utils.convert( texture.format );

  		let glType = utils.convert( texture.type ),
  			glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType );

  		setTextureParameters( textureType, texture, supportsMips );

  		let mipmap;
  		const mipmaps = texture.mipmaps;

  		if ( texture.isDepthTexture ) {

  			// populate depth texture with dummy data

  			glInternalFormat = 6402;

  			if ( isWebGL2 ) {

  				if ( texture.type === FloatType ) {

  					glInternalFormat = 36012;

  				} else if ( texture.type === UnsignedIntType ) {

  					glInternalFormat = 33190;

  				} else if ( texture.type === UnsignedInt248Type ) {

  					glInternalFormat = 35056;

  				} else {

  					glInternalFormat = 33189; // WebGL2 requires sized internalformat for glTexImage2D

  				}

  			} else {

  				if ( texture.type === FloatType ) {

  					console.error( 'WebGLRenderer: Floating point depth texture requires WebGL2.' );

  				}

  			}

  			// validation checks for WebGL 1

  			if ( texture.format === DepthFormat && glInternalFormat === 6402 ) {

  				// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
  				// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
  				// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
  				if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) {

  					console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' );

  					texture.type = UnsignedShortType;
  					glType = utils.convert( texture.type );

  				}

  			}

  			if ( texture.format === DepthStencilFormat && glInternalFormat === 6402 ) {

  				// Depth stencil textures need the DEPTH_STENCIL internal format
  				// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
  				glInternalFormat = 34041;

  				// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
  				// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
  				// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
  				if ( texture.type !== UnsignedInt248Type ) {

  					console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' );

  					texture.type = UnsignedInt248Type;
  					glType = utils.convert( texture.type );

  				}

  			}

  			//

  			state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null );

  		} else if ( texture.isDataTexture ) {

  			// use manually created mipmaps if available
  			// if there are no manual mipmaps
  			// set 0 level mipmap and then use GL to generate other mipmap levels

  			if ( mipmaps.length > 0 && supportsMips ) {

  				for ( let i = 0, il = mipmaps.length; i < il; i ++ ) {

  					mipmap = mipmaps[ i ];
  					state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

  				}

  				texture.generateMipmaps = false;
  				textureProperties.__maxMipLevel = mipmaps.length - 1;

  			} else {

  				state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data );
  				textureProperties.__maxMipLevel = 0;

  			}

  		} else if ( texture.isCompressedTexture ) {

  			for ( let i = 0, il = mipmaps.length; i < il; i ++ ) {

  				mipmap = mipmaps[ i ];

  				if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

  					if ( glFormat !== null ) {

  						state.compressedTexImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );

  					} else {

  						console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' );

  					}

  				} else {

  					state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

  				}

  			}

  			textureProperties.__maxMipLevel = mipmaps.length - 1;

  		} else if ( texture.isDataTexture2DArray ) {

  			state.texImage3D( 35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data );
  			textureProperties.__maxMipLevel = 0;

  		} else if ( texture.isDataTexture3D ) {

  			state.texImage3D( 32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data );
  			textureProperties.__maxMipLevel = 0;

  		} else {

  			// regular Texture (image, video, canvas)

  			// use manually created mipmaps if available
  			// if there are no manual mipmaps
  			// set 0 level mipmap and then use GL to generate other mipmap levels

  			if ( mipmaps.length > 0 && supportsMips ) {

  				for ( let i = 0, il = mipmaps.length; i < il; i ++ ) {

  					mipmap = mipmaps[ i ];
  					state.texImage2D( 3553, i, glInternalFormat, glFormat, glType, mipmap );

  				}

  				texture.generateMipmaps = false;
  				textureProperties.__maxMipLevel = mipmaps.length - 1;

  			} else {

  				state.texImage2D( 3553, 0, glInternalFormat, glFormat, glType, image );
  				textureProperties.__maxMipLevel = 0;

  			}

  		}

  		if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {

  			generateMipmap( textureType, texture, image.width, image.height );

  		}

  		textureProperties.__version = texture.version;

  		if ( texture.onUpdate ) texture.onUpdate( texture );

  	}

  	// Render targets

  	// Setup storage for target texture and bind it to correct framebuffer
  	function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) {

  		const glFormat = utils.convert( renderTarget.texture.format );
  		const glType = utils.convert( renderTarget.texture.type );
  		const glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
  		state.texImage2D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
  		_gl.bindFramebuffer( 36160, framebuffer );
  		_gl.framebufferTexture2D( 36160, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 );
  		_gl.bindFramebuffer( 36160, null );

  	}

  	// Setup storage for internal depth/stencil buffers and bind to correct framebuffer
  	function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) {

  		_gl.bindRenderbuffer( 36161, renderbuffer );

  		if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {

  			let glInternalFormat = 33189;

  			if ( isMultisample ) {

  				const depthTexture = renderTarget.depthTexture;

  				if ( depthTexture && depthTexture.isDepthTexture ) {

  					if ( depthTexture.type === FloatType ) {

  						glInternalFormat = 36012;

  					} else if ( depthTexture.type === UnsignedIntType ) {

  						glInternalFormat = 33190;

  					}

  				}

  				const samples = getRenderTargetSamples( renderTarget );

  				_gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );

  			} else {

  				_gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height );

  			}

  			_gl.framebufferRenderbuffer( 36160, 36096, 36161, renderbuffer );

  		} else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {

  			if ( isMultisample ) {

  				const samples = getRenderTargetSamples( renderTarget );

  				_gl.renderbufferStorageMultisample( 36161, samples, 35056, renderTarget.width, renderTarget.height );

  			} else {

  				_gl.renderbufferStorage( 36161, 34041, renderTarget.width, renderTarget.height );

  			}


  			_gl.framebufferRenderbuffer( 36160, 33306, 36161, renderbuffer );

  		} else {

  			const glFormat = utils.convert( renderTarget.texture.format );
  			const glType = utils.convert( renderTarget.texture.type );
  			const glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );

  			if ( isMultisample ) {

  				const samples = getRenderTargetSamples( renderTarget );

  				_gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );

  			} else {

  				_gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height );

  			}

  		}

  		_gl.bindRenderbuffer( 36161, null );

  	}

  	// Setup resources for a Depth Texture for a FBO (needs an extension)
  	function setupDepthTexture( framebuffer, renderTarget ) {

  		const isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget );
  		if ( isCube ) throw new Error( 'Depth Texture with cube render targets is not supported' );

  		_gl.bindFramebuffer( 36160, framebuffer );

  		if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) {

  			throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' );

  		}

  		// upload an empty depth texture with framebuffer size
  		if ( ! properties.get( renderTarget.depthTexture ).__webglTexture ||
  				renderTarget.depthTexture.image.width !== renderTarget.width ||
  				renderTarget.depthTexture.image.height !== renderTarget.height ) {

  			renderTarget.depthTexture.image.width = renderTarget.width;
  			renderTarget.depthTexture.image.height = renderTarget.height;
  			renderTarget.depthTexture.needsUpdate = true;

  		}

  		setTexture2D( renderTarget.depthTexture, 0 );

  		const webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;

  		if ( renderTarget.depthTexture.format === DepthFormat ) {

  			_gl.framebufferTexture2D( 36160, 36096, 3553, webglDepthTexture, 0 );

  		} else if ( renderTarget.depthTexture.format === DepthStencilFormat ) {

  			_gl.framebufferTexture2D( 36160, 33306, 3553, webglDepthTexture, 0 );

  		} else {

  			throw new Error( 'Unknown depthTexture format' );

  		}

  	}

  	// Setup GL resources for a non-texture depth buffer
  	function setupDepthRenderbuffer( renderTarget ) {

  		const renderTargetProperties = properties.get( renderTarget );

  		const isCube = ( renderTarget.isWebGLCubeRenderTarget === true );

  		if ( renderTarget.depthTexture ) {

  			if ( isCube ) throw new Error( 'target.depthTexture not supported in Cube render targets' );

  			setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );

  		} else {

  			if ( isCube ) {

  				renderTargetProperties.__webglDepthbuffer = [];

  				for ( let i = 0; i < 6; i ++ ) {

  					_gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer[ i ] );
  					renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer();
  					setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false );

  				}

  			} else {

  				_gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer );
  				renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
  				setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false );

  			}

  		}

  		_gl.bindFramebuffer( 36160, null );

  	}

  	// Set up GL resources for the render target
  	function setupRenderTarget( renderTarget ) {

  		const renderTargetProperties = properties.get( renderTarget );
  		const textureProperties = properties.get( renderTarget.texture );

  		renderTarget.addEventListener( 'dispose', onRenderTargetDispose );

  		textureProperties.__webglTexture = _gl.createTexture();

  		info.memory.textures ++;

  		const isCube = ( renderTarget.isWebGLCubeRenderTarget === true );
  		const isMultisample = ( renderTarget.isWebGLMultisampleRenderTarget === true );
  		const supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2;

  		// Handles WebGL2 RGBFormat fallback - #18858

  		if ( isWebGL2 && renderTarget.texture.format === RGBFormat && ( renderTarget.texture.type === FloatType || renderTarget.texture.type === HalfFloatType ) ) {

  			renderTarget.texture.format = RGBAFormat;

  			console.warn( 'THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.' );

  		}

  		// Setup framebuffer

  		if ( isCube ) {

  			renderTargetProperties.__webglFramebuffer = [];

  			for ( let i = 0; i < 6; i ++ ) {

  				renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();

  			}

  		} else {

  			renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();

  			if ( isMultisample ) {

  				if ( isWebGL2 ) {

  					renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
  					renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();

  					_gl.bindRenderbuffer( 36161, renderTargetProperties.__webglColorRenderbuffer );

  					const glFormat = utils.convert( renderTarget.texture.format );
  					const glType = utils.convert( renderTarget.texture.type );
  					const glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType );
  					const samples = getRenderTargetSamples( renderTarget );
  					_gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height );

  					_gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer );
  					_gl.framebufferRenderbuffer( 36160, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer );
  					_gl.bindRenderbuffer( 36161, null );

  					if ( renderTarget.depthBuffer ) {

  						renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
  						setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true );

  					}

  					_gl.bindFramebuffer( 36160, null );


  				} else {

  					console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' );

  				}

  			}

  		}

  		// Setup color buffer

  		if ( isCube ) {

  			state.bindTexture( 34067, textureProperties.__webglTexture );
  			setTextureParameters( 34067, renderTarget.texture, supportsMips );

  			for ( let i = 0; i < 6; i ++ ) {

  				setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, 36064, 34069 + i );

  			}

  			if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) {

  				generateMipmap( 34067, renderTarget.texture, renderTarget.width, renderTarget.height );

  			}

  			state.bindTexture( 34067, null );

  		} else {

  			state.bindTexture( 3553, textureProperties.__webglTexture );
  			setTextureParameters( 3553, renderTarget.texture, supportsMips );
  			setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, 36064, 3553 );

  			if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) {

  				generateMipmap( 3553, renderTarget.texture, renderTarget.width, renderTarget.height );

  			}

  			state.bindTexture( 3553, null );

  		}

  		// Setup depth and stencil buffers

  		if ( renderTarget.depthBuffer ) {

  			setupDepthRenderbuffer( renderTarget );

  		}

  	}

  	function updateRenderTargetMipmap( renderTarget ) {

  		const texture = renderTarget.texture;
  		const supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2;

  		if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) {

  			const target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553;
  			const webglTexture = properties.get( texture ).__webglTexture;

  			state.bindTexture( target, webglTexture );
  			generateMipmap( target, texture, renderTarget.width, renderTarget.height );
  			state.bindTexture( target, null );

  		}

  	}

  	function updateMultisampleRenderTarget( renderTarget ) {

  		if ( renderTarget.isWebGLMultisampleRenderTarget ) {

  			if ( isWebGL2 ) {

  				const renderTargetProperties = properties.get( renderTarget );

  				_gl.bindFramebuffer( 36008, renderTargetProperties.__webglMultisampledFramebuffer );
  				_gl.bindFramebuffer( 36009, renderTargetProperties.__webglFramebuffer );

  				const width = renderTarget.width;
  				const height = renderTarget.height;
  				let mask = 16384;

  				if ( renderTarget.depthBuffer ) mask |= 256;
  				if ( renderTarget.stencilBuffer ) mask |= 1024;

  				_gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, 9728 );

  				_gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); // see #18905

  			} else {

  				console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' );

  			}

  		}

  	}

  	function getRenderTargetSamples( renderTarget ) {

  		return ( isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ) ?
  			Math.min( maxSamples, renderTarget.samples ) : 0;

  	}

  	function updateVideoTexture( texture ) {

  		const frame = info.render.frame;

  		// Check the last frame we updated the VideoTexture

  		if ( _videoTextures.get( texture ) !== frame ) {

  			_videoTextures.set( texture, frame );
  			texture.update();

  		}

  	}

  	// backwards compatibility

  	let warnedTexture2D = false;
  	let warnedTextureCube = false;

  	function safeSetTexture2D( texture, slot ) {

  		if ( texture && texture.isWebGLRenderTarget ) {

  			if ( warnedTexture2D === false ) {

  				console.warn( "THREE.WebGLTextures.safeSetTexture2D: don't use render targets as textures. Use their .texture property instead." );
  				warnedTexture2D = true;

  			}

  			texture = texture.texture;

  		}

  		setTexture2D( texture, slot );

  	}

  	function safeSetTextureCube( texture, slot ) {

  		if ( texture && texture.isWebGLCubeRenderTarget ) {

  			if ( warnedTextureCube === false ) {

  				console.warn( "THREE.WebGLTextures.safeSetTextureCube: don't use cube render targets as textures. Use their .texture property instead." );
  				warnedTextureCube = true;

  			}

  			texture = texture.texture;

  		}

  		// currently relying on the fact that WebGLCubeRenderTarget.texture is a Texture and NOT a CubeTexture
  		// TODO: unify these code paths
  		if ( ( texture && texture.isCubeTexture ) ||
  			( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {

  			// CompressedTexture can have Array in image :/

  			// this function alone should take care of cube textures
  			setTextureCube( texture, slot );

  		} else {

  			// assumed: texture property of THREE.WebGLCubeRenderTarget
  			setTextureCubeDynamic( texture, slot );

  		}

  	}

  	//

  	this.allocateTextureUnit = allocateTextureUnit;
  	this.resetTextureUnits = resetTextureUnits;

  	this.setTexture2D = setTexture2D;
  	this.setTexture2DArray = setTexture2DArray;
  	this.setTexture3D = setTexture3D;
  	this.setTextureCube = setTextureCube;
  	this.setTextureCubeDynamic = setTextureCubeDynamic;
  	this.setupRenderTarget = setupRenderTarget;
  	this.updateRenderTargetMipmap = updateRenderTargetMipmap;
  	this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;

  	this.safeSetTexture2D = safeSetTexture2D;
  	this.safeSetTextureCube = safeSetTextureCube;

  }

  /**
   * @author thespite / http://www.twitter.com/thespite
   */

  function WebGLUtils( gl, extensions, capabilities ) {

  	const isWebGL2 = capabilities.isWebGL2;

  	function convert( p ) {

  		let extension;

  		if ( p === UnsignedByteType ) return 5121;
  		if ( p === UnsignedShort4444Type ) return 32819;
  		if ( p === UnsignedShort5551Type ) return 32820;
  		if ( p === UnsignedShort565Type ) return 33635;

  		if ( p === ByteType ) return 5120;
  		if ( p === ShortType ) return 5122;
  		if ( p === UnsignedShortType ) return 5123;
  		if ( p === IntType ) return 5124;
  		if ( p === UnsignedIntType ) return 5125;
  		if ( p === FloatType ) return 5126;

  		if ( p === HalfFloatType ) {

  			if ( isWebGL2 ) return 5131;

  			extension = extensions.get( 'OES_texture_half_float' );

  			if ( extension !== null ) {

  				return extension.HALF_FLOAT_OES;

  			} else {

  				return null;

  			}

  		}

  		if ( p === AlphaFormat ) return 6406;
  		if ( p === RGBFormat ) return 6407;
  		if ( p === RGBAFormat ) return 6408;
  		if ( p === LuminanceFormat ) return 6409;
  		if ( p === LuminanceAlphaFormat ) return 6410;
  		if ( p === DepthFormat ) return 6402;
  		if ( p === DepthStencilFormat ) return 34041;
  		if ( p === RedFormat ) return 6403;

  		// WebGL2 formats.

  		if ( p === RedIntegerFormat ) return 36244;
  		if ( p === RGFormat ) return 33319;
  		if ( p === RGIntegerFormat ) return 33320;
  		if ( p === RGBIntegerFormat ) return 36248;
  		if ( p === RGBAIntegerFormat ) return 36249;

  		if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format ||
  			p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) {

  			extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );

  			if ( extension !== null ) {

  				if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
  				if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
  				if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
  				if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;

  			} else {

  				return null;

  			}

  		}

  		if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format ||
  			p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) {

  			extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );

  			if ( extension !== null ) {

  				if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
  				if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
  				if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
  				if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;

  			} else {

  				return null;

  			}

  		}

  		if ( p === RGB_ETC1_Format ) {

  			extension = extensions.get( 'WEBGL_compressed_texture_etc1' );

  			if ( extension !== null ) {

  				return extension.COMPRESSED_RGB_ETC1_WEBGL;

  			} else {

  				return null;

  			}

  		}

  		if ( p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) {

  			extension = extensions.get( 'WEBGL_compressed_texture_etc' );

  			if ( extension !== null ) {

  				if ( p === RGB_ETC2_Format ) return extension.COMPRESSED_RGB8_ETC2;
  				if ( p === RGBA_ETC2_EAC_Format ) return extension.COMPRESSED_RGBA8_ETC2_EAC;

  			}

  		}

  		if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format ||
  			p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format ||
  			p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format ||
  			p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format ||
  			p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ||
  			p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format ||
  			p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format ||
  			p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format ||
  			p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format ||
  			p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format ) {

  			extension = extensions.get( 'WEBGL_compressed_texture_astc' );

  			if ( extension !== null ) {

  				// TODO Complete?

  				return p;

  			} else {

  				return null;

  			}

  		}

  		if ( p === RGBA_BPTC_Format ) {

  			extension = extensions.get( 'EXT_texture_compression_bptc' );

  			if ( extension !== null ) {

  				// TODO Complete?

  				return p;

  			} else {

  				return null;

  			}

  		}

  		if ( p === UnsignedInt248Type ) {

  			if ( isWebGL2 ) return 34042;

  			extension = extensions.get( 'WEBGL_depth_texture' );

  			if ( extension !== null ) {

  				return extension.UNSIGNED_INT_24_8_WEBGL;

  			} else {

  				return null;

  			}

  		}

  	}

  	return { convert: convert };

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function ArrayCamera( array ) {

  	PerspectiveCamera.call( this );

  	this.cameras = array || [];

  }

  ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {

  	constructor: ArrayCamera,

  	isArrayCamera: true

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function Group() {

  	Object3D.call( this );

  	this.type = 'Group';

  }

  Group.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Group,

  	isGroup: true

  } );

  /**
   * @author Mugen87 / https://github.com/Mugen87
   */

  function WebXRController() {

  	this._targetRay = null;
  	this._grip = null;

  }

  Object.assign( WebXRController.prototype, {

  	constructor: WebXRController,

  	getTargetRaySpace: function () {

  		if ( this._targetRay === null ) {

  			this._targetRay = new Group();
  			this._targetRay.matrixAutoUpdate = false;
  			this._targetRay.visible = false;

  		}

  		return this._targetRay;

  	},

  	getGripSpace: function () {

  		if ( this._grip === null ) {

  			this._grip = new Group();
  			this._grip.matrixAutoUpdate = false;
  			this._grip.visible = false;

  		}

  		return this._grip;

  	},

  	dispatchEvent: function ( event ) {

  		if ( this._targetRay !== null ) {

  			this._targetRay.dispatchEvent( event );

  		}

  		if ( this._grip !== null ) {

  			this._grip.dispatchEvent( event );

  		}

  		return this;

  	},

  	disconnect: function ( inputSource ) {

  		this.dispatchEvent( { type: 'disconnected', data: inputSource } );

  		if ( this._targetRay !== null ) {

  			this._targetRay.visible = false;

  		}

  		if ( this._grip !== null ) {

  			this._grip.visible = false;

  		}

  		return this;

  	},

  	update: function ( inputSource, frame, referenceSpace ) {

  		let inputPose = null;
  		let gripPose = null;

  		const targetRay = this._targetRay;
  		const grip = this._grip;

  		if ( inputSource ) {

  			if ( targetRay !== null ) {

  				inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace );

  				if ( inputPose !== null ) {

  					targetRay.matrix.fromArray( inputPose.transform.matrix );
  					targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale );

  				}

  			}

  			if ( grip !== null && inputSource.gripSpace ) {

  				gripPose = frame.getPose( inputSource.gripSpace, referenceSpace );

  				if ( gripPose !== null ) {

  					grip.matrix.fromArray( gripPose.transform.matrix );
  					grip.matrix.decompose( grip.position, grip.rotation, grip.scale );

  				}

  			}

  		}

  		if ( targetRay !== null ) {

  			targetRay.visible = ( inputPose !== null );

  		}

  		if ( grip !== null ) {

  			grip.visible = ( gripPose !== null );

  		}

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebXRManager( renderer, gl ) {

  	const scope = this;

  	let session = null;

  	let framebufferScaleFactor = 1.0;

  	let referenceSpace = null;
  	let referenceSpaceType = 'local-floor';

  	let pose = null;

  	const controllers = [];
  	const inputSourcesMap = new Map();

  	//

  	const cameraL = new PerspectiveCamera();
  	cameraL.layers.enable( 1 );
  	cameraL.viewport = new Vector4();

  	const cameraR = new PerspectiveCamera();
  	cameraR.layers.enable( 2 );
  	cameraR.viewport = new Vector4();

  	const cameras = [ cameraL, cameraR ];

  	const cameraVR = new ArrayCamera();
  	cameraVR.layers.enable( 1 );
  	cameraVR.layers.enable( 2 );

  	let _currentDepthNear = null;
  	let _currentDepthFar = null;

  	//

  	this.enabled = false;

  	this.isPresenting = false;

  	this.getController = function ( index ) {

  		let controller = controllers[ index ];

  		if ( controller === undefined ) {

  			controller = new WebXRController();
  			controllers[ index ] = controller;

  		}

  		return controller.getTargetRaySpace();

  	};

  	this.getControllerGrip = function ( index ) {

  		let controller = controllers[ index ];

  		if ( controller === undefined ) {

  			controller = new WebXRController();
  			controllers[ index ] = controller;

  		}

  		return controller.getGripSpace();

  	};

  	//

  	function onSessionEvent( event ) {

  		const controller = inputSourcesMap.get( event.inputSource );

  		if ( controller ) {

  			controller.dispatchEvent( { type: event.type } );

  		}

  	}

  	function onSessionEnd() {

  		inputSourcesMap.forEach( function ( controller, inputSource ) {

  			controller.disconnect( inputSource );

  		} );

  		inputSourcesMap.clear();

  		//

  		renderer.setFramebuffer( null );
  		renderer.setRenderTarget( renderer.getRenderTarget() ); // Hack #15830
  		animation.stop();

  		scope.isPresenting = false;

  		scope.dispatchEvent( { type: 'sessionend' } );

  	}

  	function onRequestReferenceSpace( value ) {

  		referenceSpace = value;

  		animation.setContext( session );
  		animation.start();

  		scope.isPresenting = true;

  		scope.dispatchEvent( { type: 'sessionstart' } );

  	}

  	this.setFramebufferScaleFactor = function ( value ) {

  		framebufferScaleFactor = value;

  		if ( scope.isPresenting === true ) {

  			console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' );

  		}

  	};

  	this.setReferenceSpaceType = function ( value ) {

  		referenceSpaceType = value;

  		if ( scope.isPresenting === true ) {

  			console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' );

  		}

  	};

  	this.getReferenceSpace = function () {

  		return referenceSpace;

  	};

  	this.getSession = function () {

  		return session;

  	};

  	this.setSession = function ( value ) {

  		session = value;

  		if ( session !== null ) {

  			session.addEventListener( 'select', onSessionEvent );
  			session.addEventListener( 'selectstart', onSessionEvent );
  			session.addEventListener( 'selectend', onSessionEvent );
  			session.addEventListener( 'squeeze', onSessionEvent );
  			session.addEventListener( 'squeezestart', onSessionEvent );
  			session.addEventListener( 'squeezeend', onSessionEvent );
  			session.addEventListener( 'end', onSessionEnd );

  			const attributes = gl.getContextAttributes();

  			if ( attributes.xrCompatible !== true ) {

  				gl.makeXRCompatible();

  			}

  			const layerInit = {
  				antialias: attributes.antialias,
  				alpha: attributes.alpha,
  				depth: attributes.depth,
  				stencil: attributes.stencil,
  				framebufferScaleFactor: framebufferScaleFactor
  			};

  			// eslint-disable-next-line no-undef
  			const baseLayer = new XRWebGLLayer( session, gl, layerInit );

  			session.updateRenderState( { baseLayer: baseLayer } );

  			session.requestReferenceSpace( referenceSpaceType ).then( onRequestReferenceSpace );

  			//

  			session.addEventListener( 'inputsourceschange', updateInputSources );

  		}

  	};

  	function updateInputSources( event ) {

  		const inputSources = session.inputSources;

  		// Assign inputSources to available controllers

  		for ( let i = 0; i < controllers.length; i ++ ) {

  			inputSourcesMap.set( inputSources[ i ], controllers[ i ] );

  		}

  		// Notify disconnected

  		for ( let i = 0; i < event.removed.length; i ++ ) {

  			const inputSource = event.removed[ i ];
  			const controller = inputSourcesMap.get( inputSource );

  			if ( controller ) {

  				controller.dispatchEvent( { type: 'disconnected', data: inputSource } );
  				inputSourcesMap.delete( inputSource );

  			}

  		}

  		// Notify connected

  		for ( let i = 0; i < event.added.length; i ++ ) {

  			const inputSource = event.added[ i ];
  			const controller = inputSourcesMap.get( inputSource );

  			if ( controller ) {

  				controller.dispatchEvent( { type: 'connected', data: inputSource } );

  			}

  		}

  	}

  	//

  	const cameraLPos = new Vector3();
  	const cameraRPos = new Vector3();

  	/**
  	 * @author jsantell / https://www.jsantell.com/
  	 *
  	 * Assumes 2 cameras that are parallel and share an X-axis, and that
  	 * the cameras' projection and world matrices have already been set.
  	 * And that near and far planes are identical for both cameras.
  	 * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
  	 */
  	function setProjectionFromUnion( camera, cameraL, cameraR ) {

  		cameraLPos.setFromMatrixPosition( cameraL.matrixWorld );
  		cameraRPos.setFromMatrixPosition( cameraR.matrixWorld );

  		const ipd = cameraLPos.distanceTo( cameraRPos );

  		const projL = cameraL.projectionMatrix.elements;
  		const projR = cameraR.projectionMatrix.elements;

  		// VR systems will have identical far and near planes, and
  		// most likely identical top and bottom frustum extents.
  		// Use the left camera for these values.
  		const near = projL[ 14 ] / ( projL[ 10 ] - 1 );
  		const far = projL[ 14 ] / ( projL[ 10 ] + 1 );
  		const topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ];
  		const bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ];

  		const leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ];
  		const rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ];
  		const left = near * leftFov;
  		const right = near * rightFov;

  		// Calculate the new camera's position offset from the
  		// left camera. xOffset should be roughly half `ipd`.
  		const zOffset = ipd / ( - leftFov + rightFov );
  		const xOffset = zOffset * - leftFov;

  		// TODO: Better way to apply this offset?
  		cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale );
  		camera.translateX( xOffset );
  		camera.translateZ( zOffset );
  		camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale );
  		camera.matrixWorldInverse.getInverse( camera.matrixWorld );

  		// Find the union of the frustum values of the cameras and scale
  		// the values so that the near plane's position does not change in world space,
  		// although must now be relative to the new union camera.
  		const near2 = near + zOffset;
  		const far2 = far + zOffset;
  		const left2 = left - xOffset;
  		const right2 = right + ( ipd - xOffset );
  		const top2 = topFov * far / far2 * near2;
  		const bottom2 = bottomFov * far / far2 * near2;

  		camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 );

  	}

  	function updateCamera( camera, parent ) {

  		if ( parent === null ) {

  			camera.matrixWorld.copy( camera.matrix );

  		} else {

  			camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix );

  		}

  		camera.matrixWorldInverse.getInverse( camera.matrixWorld );

  	}

  	this.getCamera = function ( camera ) {

  		cameraVR.near = cameraR.near = cameraL.near = camera.near;
  		cameraVR.far = cameraR.far = cameraL.far = camera.far;

  		if ( _currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far ) {

  			// Note that the new renderState won't apply until the next frame. See #18320

  			session.updateRenderState( {
  				depthNear: cameraVR.near,
  				depthFar: cameraVR.far
  			} );

  			_currentDepthNear = cameraVR.near;
  			_currentDepthFar = cameraVR.far;

  		}

  		const parent = camera.parent;
  		const cameras = cameraVR.cameras;

  		updateCamera( cameraVR, parent );

  		for ( let i = 0; i < cameras.length; i ++ ) {

  			updateCamera( cameras[ i ], parent );

  		}

  		// update camera and its children

  		camera.matrixWorld.copy( cameraVR.matrixWorld );

  		const children = camera.children;

  		for ( let i = 0, l = children.length; i < l; i ++ ) {

  			children[ i ].updateMatrixWorld( true );

  		}

  		// update projection matrix for proper view frustum culling

  		if ( cameras.length === 2 ) {

  			setProjectionFromUnion( cameraVR, cameraL, cameraR );

  		} else {

  			// assume single camera setup (AR)

  			cameraVR.projectionMatrix.copy( cameraL.projectionMatrix );

  		}

  		return cameraVR;

  	};

  	// Animation Loop

  	let onAnimationFrameCallback = null;

  	function onAnimationFrame( time, frame ) {

  		pose = frame.getViewerPose( referenceSpace );

  		if ( pose !== null ) {

  			const views = pose.views;
  			const baseLayer = session.renderState.baseLayer;

  			renderer.setFramebuffer( baseLayer.framebuffer );

  			let cameraVRNeedsUpdate = false;

  			// check if it's necessary to rebuild cameraVR's camera list

  			if ( views.length !== cameraVR.cameras.length ) {

  				cameraVR.cameras.length = 0;
  				cameraVRNeedsUpdate = true;

  			}

  			for ( let i = 0; i < views.length; i ++ ) {

  				const view = views[ i ];
  				const viewport = baseLayer.getViewport( view );

  				const camera = cameras[ i ];
  				camera.matrix.fromArray( view.transform.matrix );
  				camera.projectionMatrix.fromArray( view.projectionMatrix );
  				camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height );

  				if ( i === 0 ) {

  					cameraVR.matrix.copy( camera.matrix );

  				}

  				if ( cameraVRNeedsUpdate === true ) {

  					cameraVR.cameras.push( camera );

  				}

  			}

  		}

  		//

  		const inputSources = session.inputSources;

  		for ( let i = 0; i < controllers.length; i ++ ) {

  			const controller = controllers[ i ];
  			const inputSource = inputSources[ i ];

  			controller.update( inputSource, frame, referenceSpace );

  		}

  		if ( onAnimationFrameCallback ) onAnimationFrameCallback( time, frame );

  	}

  	const animation = new WebGLAnimation();
  	animation.setAnimationLoop( onAnimationFrame );

  	this.setAnimationLoop = function ( callback ) {

  		onAnimationFrameCallback = callback;

  	};

  	this.dispose = function () {};

  }

  Object.assign( WebXRManager.prototype, EventDispatcher.prototype );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLMaterials( properties ) {

  	function refreshFogUniforms( uniforms, fog ) {

  		uniforms.fogColor.value.copy( fog.color );

  		if ( fog.isFog ) {

  			uniforms.fogNear.value = fog.near;
  			uniforms.fogFar.value = fog.far;

  		} else if ( fog.isFogExp2 ) {

  			uniforms.fogDensity.value = fog.density;

  		}

  	}

  	function refreshMaterialUniforms( uniforms, material, environment, pixelRatio, height ) {

  		if ( material.isMeshBasicMaterial ) {

  			refreshUniformsCommon( uniforms, material );

  		} else if ( material.isMeshLambertMaterial ) {

  			refreshUniformsCommon( uniforms, material );
  			refreshUniformsLambert( uniforms, material );

  		} else if ( material.isMeshToonMaterial ) {

  			refreshUniformsCommon( uniforms, material );
  			refreshUniformsToon( uniforms, material );

  		} else if ( material.isMeshPhongMaterial ) {

  			refreshUniformsCommon( uniforms, material );
  			refreshUniformsPhong( uniforms, material );

  		} else if ( material.isMeshStandardMaterial ) {

  			refreshUniformsCommon( uniforms, material, environment );

  			if ( material.isMeshPhysicalMaterial ) {

  				refreshUniformsPhysical( uniforms, material, environment );

  			} else {

  				refreshUniformsStandard( uniforms, material, environment );

  			}

  		} else if ( material.isMeshMatcapMaterial ) {

  			refreshUniformsCommon( uniforms, material );
  			refreshUniformsMatcap( uniforms, material );

  		} else if ( material.isMeshDepthMaterial ) {

  			refreshUniformsCommon( uniforms, material );
  			refreshUniformsDepth( uniforms, material );

  		} else if ( material.isMeshDistanceMaterial ) {

  			refreshUniformsCommon( uniforms, material );
  			refreshUniformsDistance( uniforms, material );

  		} else if ( material.isMeshNormalMaterial ) {

  			refreshUniformsCommon( uniforms, material );
  			refreshUniformsNormal( uniforms, material );

  		} else if ( material.isLineBasicMaterial ) {

  			refreshUniformsLine( uniforms, material );

  			if ( material.isLineDashedMaterial ) {

  				refreshUniformsDash( uniforms, material );

  			}

  		} else if ( material.isPointsMaterial ) {

  			refreshUniformsPoints( uniforms, material, pixelRatio, height );

  		} else if ( material.isSpriteMaterial ) {

  			refreshUniformsSprites( uniforms, material );

  		} else if ( material.isShadowMaterial ) {

  			uniforms.color.value.copy( material.color );
  			uniforms.opacity.value = material.opacity;

  		} else if ( material.isShaderMaterial ) {

  			material.uniformsNeedUpdate = false; // #15581

  		}

  	}

  	function refreshUniformsCommon( uniforms, material, environment ) {

  		uniforms.opacity.value = material.opacity;

  		if ( material.color ) {

  			uniforms.diffuse.value.copy( material.color );

  		}

  		if ( material.emissive ) {

  			uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );

  		}

  		if ( material.map ) {

  			uniforms.map.value = material.map;

  		}

  		if ( material.alphaMap ) {

  			uniforms.alphaMap.value = material.alphaMap;

  		}

  		if ( material.specularMap ) {

  			uniforms.specularMap.value = material.specularMap;

  		}

  		const envMap = material.envMap || environment;

  		if ( envMap ) {

  			uniforms.envMap.value = envMap;

  			uniforms.flipEnvMap.value = envMap.isCubeTexture ? - 1 : 1;

  			uniforms.reflectivity.value = material.reflectivity;
  			uniforms.refractionRatio.value = material.refractionRatio;

  			uniforms.maxMipLevel.value = properties.get( envMap ).__maxMipLevel;

  		}

  		if ( material.lightMap ) {

  			uniforms.lightMap.value = material.lightMap;
  			uniforms.lightMapIntensity.value = material.lightMapIntensity;

  		}

  		if ( material.aoMap ) {

  			uniforms.aoMap.value = material.aoMap;
  			uniforms.aoMapIntensity.value = material.aoMapIntensity;

  		}

  		// uv repeat and offset setting priorities
  		// 1. color map
  		// 2. specular map
  		// 3. normal map
  		// 4. bump map
  		// 5. alpha map
  		// 6. emissive map

  		let uvScaleMap;

  		if ( material.map ) {

  			uvScaleMap = material.map;

  		} else if ( material.specularMap ) {

  			uvScaleMap = material.specularMap;

  		} else if ( material.displacementMap ) {

  			uvScaleMap = material.displacementMap;

  		} else if ( material.normalMap ) {

  			uvScaleMap = material.normalMap;

  		} else if ( material.bumpMap ) {

  			uvScaleMap = material.bumpMap;

  		} else if ( material.roughnessMap ) {

  			uvScaleMap = material.roughnessMap;

  		} else if ( material.metalnessMap ) {

  			uvScaleMap = material.metalnessMap;

  		} else if ( material.alphaMap ) {

  			uvScaleMap = material.alphaMap;

  		} else if ( material.emissiveMap ) {

  			uvScaleMap = material.emissiveMap;

  		}

  		if ( uvScaleMap !== undefined ) {

  			// backwards compatibility
  			if ( uvScaleMap.isWebGLRenderTarget ) {

  				uvScaleMap = uvScaleMap.texture;

  			}

  			if ( uvScaleMap.matrixAutoUpdate === true ) {

  				uvScaleMap.updateMatrix();

  			}

  			uniforms.uvTransform.value.copy( uvScaleMap.matrix );

  		}

  		// uv repeat and offset setting priorities for uv2
  		// 1. ao map
  		// 2. light map

  		let uv2ScaleMap;

  		if ( material.aoMap ) {

  			uv2ScaleMap = material.aoMap;

  		} else if ( material.lightMap ) {

  			uv2ScaleMap = material.lightMap;

  		}

  		if ( uv2ScaleMap !== undefined ) {

  			// backwards compatibility
  			if ( uv2ScaleMap.isWebGLRenderTarget ) {

  				uv2ScaleMap = uv2ScaleMap.texture;

  			}

  			if ( uv2ScaleMap.matrixAutoUpdate === true ) {

  				uv2ScaleMap.updateMatrix();

  			}

  			uniforms.uv2Transform.value.copy( uv2ScaleMap.matrix );

  		}

  	}

  	function refreshUniformsLine( uniforms, material ) {

  		uniforms.diffuse.value.copy( material.color );
  		uniforms.opacity.value = material.opacity;

  	}

  	function refreshUniformsDash( uniforms, material ) {

  		uniforms.dashSize.value = material.dashSize;
  		uniforms.totalSize.value = material.dashSize + material.gapSize;
  		uniforms.scale.value = material.scale;

  	}

  	function refreshUniformsPoints( uniforms, material, pixelRatio, height ) {

  		uniforms.diffuse.value.copy( material.color );
  		uniforms.opacity.value = material.opacity;
  		uniforms.size.value = material.size * pixelRatio;
  		uniforms.scale.value = height * 0.5;

  		if ( material.map ) {

  			uniforms.map.value = material.map;

  		}

  		if ( material.alphaMap ) {

  			uniforms.alphaMap.value = material.alphaMap;

  		}

  		// uv repeat and offset setting priorities
  		// 1. color map
  		// 2. alpha map

  		let uvScaleMap;

  		if ( material.map ) {

  			uvScaleMap = material.map;

  		} else if ( material.alphaMap ) {

  			uvScaleMap = material.alphaMap;

  		}

  		if ( uvScaleMap !== undefined ) {

  			if ( uvScaleMap.matrixAutoUpdate === true ) {

  				uvScaleMap.updateMatrix();

  			}

  			uniforms.uvTransform.value.copy( uvScaleMap.matrix );

  		}

  	}

  	function refreshUniformsSprites( uniforms, material ) {

  		uniforms.diffuse.value.copy( material.color );
  		uniforms.opacity.value = material.opacity;
  		uniforms.rotation.value = material.rotation;

  		if ( material.map ) {

  			uniforms.map.value = material.map;

  		}

  		if ( material.alphaMap ) {

  			uniforms.alphaMap.value = material.alphaMap;

  		}

  		// uv repeat and offset setting priorities
  		// 1. color map
  		// 2. alpha map

  		let uvScaleMap;

  		if ( material.map ) {

  			uvScaleMap = material.map;

  		} else if ( material.alphaMap ) {

  			uvScaleMap = material.alphaMap;

  		}

  		if ( uvScaleMap !== undefined ) {

  			if ( uvScaleMap.matrixAutoUpdate === true ) {

  				uvScaleMap.updateMatrix();

  			}

  			uniforms.uvTransform.value.copy( uvScaleMap.matrix );

  		}

  	}

  	function refreshUniformsLambert( uniforms, material ) {

  		if ( material.emissiveMap ) {

  			uniforms.emissiveMap.value = material.emissiveMap;

  		}

  	}

  	function refreshUniformsPhong( uniforms, material ) {

  		uniforms.specular.value.copy( material.specular );
  		uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )

  		if ( material.emissiveMap ) {

  			uniforms.emissiveMap.value = material.emissiveMap;

  		}

  		if ( material.bumpMap ) {

  			uniforms.bumpMap.value = material.bumpMap;
  			uniforms.bumpScale.value = material.bumpScale;
  			if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

  		}

  		if ( material.normalMap ) {

  			uniforms.normalMap.value = material.normalMap;
  			uniforms.normalScale.value.copy( material.normalScale );
  			if ( material.side === BackSide ) uniforms.normalScale.value.negate();

  		}

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  	}

  	function refreshUniformsToon( uniforms, material ) {

  		if ( material.gradientMap ) {

  			uniforms.gradientMap.value = material.gradientMap;

  		}

  		if ( material.emissiveMap ) {

  			uniforms.emissiveMap.value = material.emissiveMap;

  		}

  		if ( material.bumpMap ) {

  			uniforms.bumpMap.value = material.bumpMap;
  			uniforms.bumpScale.value = material.bumpScale;
  			if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

  		}

  		if ( material.normalMap ) {

  			uniforms.normalMap.value = material.normalMap;
  			uniforms.normalScale.value.copy( material.normalScale );
  			if ( material.side === BackSide ) uniforms.normalScale.value.negate();

  		}

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  	}

  	function refreshUniformsStandard( uniforms, material, environment ) {

  		uniforms.roughness.value = material.roughness;
  		uniforms.metalness.value = material.metalness;

  		if ( material.roughnessMap ) {

  			uniforms.roughnessMap.value = material.roughnessMap;

  		}

  		if ( material.metalnessMap ) {

  			uniforms.metalnessMap.value = material.metalnessMap;

  		}

  		if ( material.emissiveMap ) {

  			uniforms.emissiveMap.value = material.emissiveMap;

  		}

  		if ( material.bumpMap ) {

  			uniforms.bumpMap.value = material.bumpMap;
  			uniforms.bumpScale.value = material.bumpScale;
  			if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

  		}

  		if ( material.normalMap ) {

  			uniforms.normalMap.value = material.normalMap;
  			uniforms.normalScale.value.copy( material.normalScale );
  			if ( material.side === BackSide ) uniforms.normalScale.value.negate();

  		}

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  		if ( material.envMap || environment ) {

  			//uniforms.envMap.value = material.envMap; // part of uniforms common
  			uniforms.envMapIntensity.value = material.envMapIntensity;

  		}

  	}

  	function refreshUniformsPhysical( uniforms, material, environment ) {

  		refreshUniformsStandard( uniforms, material, environment );

  		uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common

  		uniforms.clearcoat.value = material.clearcoat;
  		uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
  		if ( material.sheen ) uniforms.sheen.value.copy( material.sheen );

  		if ( material.clearcoatMap ) {

  			uniforms.clearcoatMap.value = material.clearcoatMap;

  		}

  		if ( material.clearcoatRoughnessMap ) {

  			uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;

  		}

  		if ( material.clearcoatNormalMap ) {

  			uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale );
  			uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;

  			if ( material.side === BackSide ) {

  				uniforms.clearcoatNormalScale.value.negate();

  			}

  		}

  		uniforms.transparency.value = material.transparency;

  	}

  	function refreshUniformsMatcap( uniforms, material ) {

  		if ( material.matcap ) {

  			uniforms.matcap.value = material.matcap;

  		}

  		if ( material.bumpMap ) {

  			uniforms.bumpMap.value = material.bumpMap;
  			uniforms.bumpScale.value = material.bumpScale;
  			if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

  		}

  		if ( material.normalMap ) {

  			uniforms.normalMap.value = material.normalMap;
  			uniforms.normalScale.value.copy( material.normalScale );
  			if ( material.side === BackSide ) uniforms.normalScale.value.negate();

  		}

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  	}

  	function refreshUniformsDepth( uniforms, material ) {

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  	}

  	function refreshUniformsDistance( uniforms, material ) {

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  		uniforms.referencePosition.value.copy( material.referencePosition );
  		uniforms.nearDistance.value = material.nearDistance;
  		uniforms.farDistance.value = material.farDistance;

  	}

  	function refreshUniformsNormal( uniforms, material ) {

  		if ( material.bumpMap ) {

  			uniforms.bumpMap.value = material.bumpMap;
  			uniforms.bumpScale.value = material.bumpScale;
  			if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

  		}

  		if ( material.normalMap ) {

  			uniforms.normalMap.value = material.normalMap;
  			uniforms.normalScale.value.copy( material.normalScale );
  			if ( material.side === BackSide ) uniforms.normalScale.value.negate();

  		}

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  	}

  	return {
  		refreshFogUniforms: refreshFogUniforms,
  		refreshMaterialUniforms: refreshMaterialUniforms
  	};

  }

  /**
   * @author supereggbert / http://www.paulbrunt.co.uk/
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author szimek / https://github.com/szimek/
   * @author tschw
   */

  function WebGLRenderer( parameters ) {

  	parameters = parameters || {};

  	const _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ),
  		_context = parameters.context !== undefined ? parameters.context : null,

  		_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
  		_depth = parameters.depth !== undefined ? parameters.depth : true,
  		_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
  		_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
  		_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
  		_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
  		_powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
  		_failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;

  	let currentRenderList = null;
  	let currentRenderState = null;

  	// public properties

  	this.domElement = _canvas;

  	// Debug configuration container
  	this.debug = {

  		/**
  		 * Enables error checking and reporting when shader programs are being compiled
  		 * @type {boolean}
  		 */
  		checkShaderErrors: true
  	};

  	// clearing

  	this.autoClear = true;
  	this.autoClearColor = true;
  	this.autoClearDepth = true;
  	this.autoClearStencil = true;

  	// scene graph

  	this.sortObjects = true;

  	// user-defined clipping

  	this.clippingPlanes = [];
  	this.localClippingEnabled = false;

  	// physically based shading

  	this.gammaFactor = 2.0;	// for backwards compatibility
  	this.outputEncoding = LinearEncoding;

  	// physical lights

  	this.physicallyCorrectLights = false;

  	// tone mapping

  	this.toneMapping = NoToneMapping;
  	this.toneMappingExposure = 1.0;

  	// morphs

  	this.maxMorphTargets = 8;
  	this.maxMorphNormals = 4;

  	// internal properties

  	const _this = this;

  	let _isContextLost = false;

  	// internal state cache

  	let _framebuffer = null;

  	let _currentActiveCubeFace = 0;
  	let _currentActiveMipmapLevel = 0;
  	let _currentRenderTarget = null;
  	let _currentFramebuffer = null;
  	let _currentMaterialId = - 1;

  	let _currentCamera = null;
  	let _currentArrayCamera = null;

  	const _currentViewport = new Vector4();
  	const _currentScissor = new Vector4();
  	let _currentScissorTest = null;

  	//

  	let _width = _canvas.width;
  	let _height = _canvas.height;

  	let _pixelRatio = 1;
  	let _opaqueSort = null;
  	let _transparentSort = null;

  	const _viewport = new Vector4( 0, 0, _width, _height );
  	const _scissor = new Vector4( 0, 0, _width, _height );
  	let _scissorTest = false;

  	// frustum

  	const _frustum = new Frustum();

  	// clipping

  	const _clipping = new WebGLClipping();
  	let _clippingEnabled = false;
  	let _localClippingEnabled = false;

  	// camera matrices cache

  	const _projScreenMatrix = new Matrix4();

  	const _vector3 = new Vector3();

  	const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true };

  	function getTargetPixelRatio() {

  		return _currentRenderTarget === null ? _pixelRatio : 1;

  	}

  	// initialize

  	let _gl = _context;

  	function getContext( contextNames, contextAttributes ) {

  		for ( let i = 0; i < contextNames.length; i ++ ) {

  			const contextName = contextNames[ i ];
  			const context = _canvas.getContext( contextName, contextAttributes );
  			if ( context !== null ) return context;

  		}

  		return null;

  	}

  	try {

  		const contextAttributes = {
  			alpha: _alpha,
  			depth: _depth,
  			stencil: _stencil,
  			antialias: _antialias,
  			premultipliedAlpha: _premultipliedAlpha,
  			preserveDrawingBuffer: _preserveDrawingBuffer,
  			powerPreference: _powerPreference,
  			failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat
  		};

  		// event listeners must be registered before WebGL context is created, see #12753

  		_canvas.addEventListener( 'webglcontextlost', onContextLost, false );
  		_canvas.addEventListener( 'webglcontextrestored', onContextRestore, false );

  		if ( _gl === null ) {

  			const contextNames = [ 'webgl2', 'webgl', 'experimental-webgl' ];

  			if ( _this.isWebGL1Renderer === true ) {

  				contextNames.shift();

  			}

  			_gl = getContext( contextNames, contextAttributes );

  			if ( _gl === null ) {

  				if ( getContext( contextNames ) ) {

  					throw new Error( 'Error creating WebGL context with your selected attributes.' );

  				} else {

  					throw new Error( 'Error creating WebGL context.' );

  				}

  			}

  		}

  		// Some experimental-webgl implementations do not have getShaderPrecisionFormat

  		if ( _gl.getShaderPrecisionFormat === undefined ) {

  			_gl.getShaderPrecisionFormat = function () {

  				return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };

  			};

  		}

  	} catch ( error ) {

  		console.error( 'THREE.WebGLRenderer: ' + error.message );
  		throw error;

  	}

  	let extensions, capabilities, state, info;
  	let properties, textures, attributes, geometries, objects;
  	let programCache, materials, renderLists, renderStates;

  	let background, morphtargets, bufferRenderer, indexedBufferRenderer;

  	let utils, bindingStates;

  	function initGLContext() {

  		extensions = new WebGLExtensions( _gl );

  		capabilities = new WebGLCapabilities( _gl, extensions, parameters );

  		if ( capabilities.isWebGL2 === false ) {

  			extensions.get( 'WEBGL_depth_texture' );
  			extensions.get( 'OES_texture_float' );
  			extensions.get( 'OES_texture_half_float' );
  			extensions.get( 'OES_texture_half_float_linear' );
  			extensions.get( 'OES_standard_derivatives' );
  			extensions.get( 'OES_element_index_uint' );
  			extensions.get( 'OES_vertex_array_object' );
  			extensions.get( 'ANGLE_instanced_arrays' );

  		}

  		extensions.get( 'OES_texture_float_linear' );

  		utils = new WebGLUtils( _gl, extensions, capabilities );

  		state = new WebGLState( _gl, extensions, capabilities );
  		state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() );
  		state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() );

  		info = new WebGLInfo( _gl );
  		properties = new WebGLProperties();
  		textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info );
  		attributes = new WebGLAttributes( _gl, capabilities );
  		bindingStates = new WebGLBindingStates( _gl, extensions, attributes, capabilities );
  		geometries = new WebGLGeometries( _gl, attributes, info, bindingStates );
  		objects = new WebGLObjects( _gl, geometries, attributes, info );
  		morphtargets = new WebGLMorphtargets( _gl );
  		programCache = new WebGLPrograms( _this, extensions, capabilities, bindingStates );
  		materials = new WebGLMaterials( properties );
  		renderLists = new WebGLRenderLists();
  		renderStates = new WebGLRenderStates();

  		background = new WebGLBackground( _this, state, objects, _premultipliedAlpha );

  		bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities );
  		indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities );

  		info.programs = programCache.programs;

  		_this.capabilities = capabilities;
  		_this.extensions = extensions;
  		_this.properties = properties;
  		_this.renderLists = renderLists;
  		_this.state = state;
  		_this.info = info;

  	}

  	initGLContext();

  	// xr

  	const xr = new WebXRManager( _this, _gl );

  	this.xr = xr;

  	// shadow map

  	const shadowMap = new WebGLShadowMap( _this, objects, capabilities.maxTextureSize );

  	this.shadowMap = shadowMap;

  	// API

  	this.getContext = function () {

  		return _gl;

  	};

  	this.getContextAttributes = function () {

  		return _gl.getContextAttributes();

  	};

  	this.forceContextLoss = function () {

  		const extension = extensions.get( 'WEBGL_lose_context' );
  		if ( extension ) extension.loseContext();

  	};

  	this.forceContextRestore = function () {

  		const extension = extensions.get( 'WEBGL_lose_context' );
  		if ( extension ) extension.restoreContext();

  	};

  	this.getPixelRatio = function () {

  		return _pixelRatio;

  	};

  	this.setPixelRatio = function ( value ) {

  		if ( value === undefined ) return;

  		_pixelRatio = value;

  		this.setSize( _width, _height, false );

  	};

  	this.getSize = function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'WebGLRenderer: .getsize() now requires a Vector2 as an argument' );

  			target = new Vector2();

  		}

  		return target.set( _width, _height );

  	};

  	this.setSize = function ( width, height, updateStyle ) {

  		if ( xr.isPresenting ) {

  			console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' );
  			return;

  		}

  		_width = width;
  		_height = height;

  		_canvas.width = Math.floor( width * _pixelRatio );
  		_canvas.height = Math.floor( height * _pixelRatio );

  		if ( updateStyle !== false ) {

  			_canvas.style.width = width + 'px';
  			_canvas.style.height = height + 'px';

  		}

  		this.setViewport( 0, 0, width, height );

  	};

  	this.getDrawingBufferSize = function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'WebGLRenderer: .getdrawingBufferSize() now requires a Vector2 as an argument' );

  			target = new Vector2();

  		}

  		return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor();

  	};

  	this.setDrawingBufferSize = function ( width, height, pixelRatio ) {

  		_width = width;
  		_height = height;

  		_pixelRatio = pixelRatio;

  		_canvas.width = Math.floor( width * pixelRatio );
  		_canvas.height = Math.floor( height * pixelRatio );

  		this.setViewport( 0, 0, width, height );

  	};

  	this.getCurrentViewport = function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'WebGLRenderer: .getCurrentViewport() now requires a Vector4 as an argument' );

  			target = new Vector4();

  		}

  		return target.copy( _currentViewport );

  	};

  	this.getViewport = function ( target ) {

  		return target.copy( _viewport );

  	};

  	this.setViewport = function ( x, y, width, height ) {

  		if ( x.isVector4 ) {

  			_viewport.set( x.x, x.y, x.z, x.w );

  		} else {

  			_viewport.set( x, y, width, height );

  		}

  		state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() );

  	};

  	this.getScissor = function ( target ) {

  		return target.copy( _scissor );

  	};

  	this.setScissor = function ( x, y, width, height ) {

  		if ( x.isVector4 ) {

  			_scissor.set( x.x, x.y, x.z, x.w );

  		} else {

  			_scissor.set( x, y, width, height );

  		}

  		state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() );

  	};

  	this.getScissorTest = function () {

  		return _scissorTest;

  	};

  	this.setScissorTest = function ( boolean ) {

  		state.setScissorTest( _scissorTest = boolean );

  	};

  	this.setOpaqueSort = function ( method ) {

  		_opaqueSort = method;

  	};

  	this.setTransparentSort = function ( method ) {

  		_transparentSort = method;

  	};

  	// Clearing

  	this.getClearColor = function () {

  		return background.getClearColor();

  	};

  	this.setClearColor = function () {

  		background.setClearColor.apply( background, arguments );

  	};

  	this.getClearAlpha = function () {

  		return background.getClearAlpha();

  	};

  	this.setClearAlpha = function () {

  		background.setClearAlpha.apply( background, arguments );

  	};

  	this.clear = function ( color, depth, stencil ) {

  		let bits = 0;

  		if ( color === undefined || color ) bits |= 16384;
  		if ( depth === undefined || depth ) bits |= 256;
  		if ( stencil === undefined || stencil ) bits |= 1024;

  		_gl.clear( bits );

  	};

  	this.clearColor = function () {

  		this.clear( true, false, false );

  	};

  	this.clearDepth = function () {

  		this.clear( false, true, false );

  	};

  	this.clearStencil = function () {

  		this.clear( false, false, true );

  	};

  	//

  	this.dispose = function () {

  		_canvas.removeEventListener( 'webglcontextlost', onContextLost, false );
  		_canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false );

  		renderLists.dispose();
  		renderStates.dispose();
  		properties.dispose();
  		objects.dispose();
  		bindingStates.dispose();

  		xr.dispose();

  		animation.stop();

  	};

  	// Events

  	function onContextLost( event ) {

  		event.preventDefault();

  		console.log( 'THREE.WebGLRenderer: Context Lost.' );

  		_isContextLost = true;

  	}

  	function onContextRestore( /* event */ ) {

  		console.log( 'THREE.WebGLRenderer: Context Restored.' );

  		_isContextLost = false;

  		initGLContext();

  	}

  	function onMaterialDispose( event ) {

  		const material = event.target;

  		material.removeEventListener( 'dispose', onMaterialDispose );

  		deallocateMaterial( material );

  	}

  	// Buffer deallocation

  	function deallocateMaterial( material ) {

  		releaseMaterialProgramReference( material );

  		properties.remove( material );

  	}


  	function releaseMaterialProgramReference( material ) {

  		const programInfo = properties.get( material ).program;

  		material.program = undefined;

  		if ( programInfo !== undefined ) {

  			programCache.releaseProgram( programInfo );

  		}

  	}

  	// Buffer rendering

  	function renderObjectImmediate( object, program ) {

  		object.render( function ( object ) {

  			_this.renderBufferImmediate( object, program );

  		} );

  	}

  	this.renderBufferImmediate = function ( object, program ) {

  		bindingStates.initAttributes();

  		const buffers = properties.get( object );

  		if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer();
  		if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer();
  		if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer();
  		if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer();

  		const programAttributes = program.getAttributes();

  		if ( object.hasPositions ) {

  			_gl.bindBuffer( 34962, buffers.position );
  			_gl.bufferData( 34962, object.positionArray, 35048 );

  			bindingStates.enableAttribute( programAttributes.position );
  			_gl.vertexAttribPointer( programAttributes.position, 3, 5126, false, 0, 0 );

  		}

  		if ( object.hasNormals ) {

  			_gl.bindBuffer( 34962, buffers.normal );
  			_gl.bufferData( 34962, object.normalArray, 35048 );

  			bindingStates.enableAttribute( programAttributes.normal );
  			_gl.vertexAttribPointer( programAttributes.normal, 3, 5126, false, 0, 0 );

  		}

  		if ( object.hasUvs ) {

  			_gl.bindBuffer( 34962, buffers.uv );
  			_gl.bufferData( 34962, object.uvArray, 35048 );

  			bindingStates.enableAttribute( programAttributes.uv );
  			_gl.vertexAttribPointer( programAttributes.uv, 2, 5126, false, 0, 0 );

  		}

  		if ( object.hasColors ) {

  			_gl.bindBuffer( 34962, buffers.color );
  			_gl.bufferData( 34962, object.colorArray, 35048 );

  			bindingStates.enableAttribute( programAttributes.color );
  			_gl.vertexAttribPointer( programAttributes.color, 3, 5126, false, 0, 0 );

  		}

  		bindingStates.disableUnusedAttributes();

  		_gl.drawArrays( 4, 0, object.count );

  		object.count = 0;

  	};

  	this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) {

  		if ( scene === null ) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)

  		const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 );

  		const program = setProgram( camera, scene, material, object );

  		state.setMaterial( material, frontFaceCW );

  		//

  		let index = geometry.index;
  		const position = geometry.attributes.position;

  		//

  		if ( index === null ) {

  			if ( position === undefined || position.count === 0 ) return;

  		} else if ( index.count === 0 ) {

  			return;

  		}

  		//

  		let rangeFactor = 1;

  		if ( material.wireframe === true ) {

  			index = geometries.getWireframeAttribute( geometry );
  			rangeFactor = 2;

  		}

  		if ( material.morphTargets || material.morphNormals ) {

  			morphtargets.update( object, geometry, material, program );

  		}

  		bindingStates.setup( object, material, program, geometry, index );

  		let attribute;
  		let renderer = bufferRenderer;

  		if ( index !== null ) {

  			attribute = attributes.get( index );

  			renderer = indexedBufferRenderer;
  			renderer.setIndex( attribute );

  		}

  		//

  		const dataCount = ( index !== null ) ? index.count : position.count;

  		const rangeStart = geometry.drawRange.start * rangeFactor;
  		const rangeCount = geometry.drawRange.count * rangeFactor;

  		const groupStart = group !== null ? group.start * rangeFactor : 0;
  		const groupCount = group !== null ? group.count * rangeFactor : Infinity;

  		const drawStart = Math.max( rangeStart, groupStart );
  		const drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;

  		const drawCount = Math.max( 0, drawEnd - drawStart + 1 );

  		if ( drawCount === 0 ) return;

  		//

  		if ( object.isMesh ) {

  			if ( material.wireframe === true ) {

  				state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
  				renderer.setMode( 1 );

  			} else {

  				renderer.setMode( 4 );

  			}

  		} else if ( object.isLine ) {

  			let lineWidth = material.linewidth;

  			if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material

  			state.setLineWidth( lineWidth * getTargetPixelRatio() );

  			if ( object.isLineSegments ) {

  				renderer.setMode( 1 );

  			} else if ( object.isLineLoop ) {

  				renderer.setMode( 2 );

  			} else {

  				renderer.setMode( 3 );

  			}

  		} else if ( object.isPoints ) {

  			renderer.setMode( 0 );

  		} else if ( object.isSprite ) {

  			renderer.setMode( 4 );

  		}

  		if ( object.isInstancedMesh ) {

  			renderer.renderInstances( geometry, drawStart, drawCount, object.count );

  		} else if ( geometry.isInstancedBufferGeometry ) {

  			const instanceCount = Math.min( geometry.instanceCount, geometry._maxInstanceCount );

  			renderer.renderInstances( geometry, drawStart, drawCount, instanceCount );

  		} else {

  			renderer.render( drawStart, drawCount );

  		}

  	};

  	// Compile

  	this.compile = function ( scene, camera ) {

  		currentRenderState = renderStates.get( scene, camera );
  		currentRenderState.init();

  		scene.traverse( function ( object ) {

  			if ( object.isLight ) {

  				currentRenderState.pushLight( object );

  				if ( object.castShadow ) {

  					currentRenderState.pushShadow( object );

  				}

  			}

  		} );

  		currentRenderState.setupLights( camera );

  		const compiled = new WeakMap();

  		scene.traverse( function ( object ) {

  			let material = object.material;

  			if ( material ) {

  				if ( Array.isArray( material ) ) {

  					for ( let i = 0; i < material.length; i ++ ) {

  						let material2 = material[ i ];

  						if ( compiled.has( material2 ) === false ) {

  							initMaterial( material2, scene, object );
  							compiled.set( material2 );

  						}

  					}

  				} else if ( compiled.has( material ) === false ) {

  					initMaterial( material, scene, object );
  					compiled.set( material );

  				}

  			}

  		} );

  	};

  	// Animation Loop

  	let onAnimationFrameCallback = null;

  	function onAnimationFrame( time ) {

  		if ( xr.isPresenting ) return;
  		if ( onAnimationFrameCallback ) onAnimationFrameCallback( time );

  	}

  	const animation = new WebGLAnimation();
  	animation.setAnimationLoop( onAnimationFrame );

  	if ( typeof window !== 'undefined' ) animation.setContext( window );

  	this.setAnimationLoop = function ( callback ) {

  		onAnimationFrameCallback = callback;
  		xr.setAnimationLoop( callback );

  		( callback === null ) ? animation.stop() : animation.start();

  	};

  	// Rendering

  	this.render = function ( scene, camera ) {

  		let renderTarget, forceClear;

  		if ( arguments[ 2 ] !== undefined ) {

  			console.warn( 'THREE.WebGLRenderer.render(): the renderTarget argument has been removed. Use .setRenderTarget() instead.' );
  			renderTarget = arguments[ 2 ];

  		}

  		if ( arguments[ 3 ] !== undefined ) {

  			console.warn( 'THREE.WebGLRenderer.render(): the forceClear argument has been removed. Use .clear() instead.' );
  			forceClear = arguments[ 3 ];

  		}

  		if ( camera !== undefined && camera.isCamera !== true ) {

  			console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
  			return;

  		}

  		if ( _isContextLost === true ) return;

  		// reset caching for this frame

  		bindingStates.resetDefaultState();
  		_currentMaterialId = - 1;
  		_currentCamera = null;

  		// update scene graph

  		if ( scene.autoUpdate === true ) scene.updateMatrixWorld();

  		// update camera matrices and frustum

  		if ( camera.parent === null ) camera.updateMatrixWorld();

  		if ( xr.enabled === true && xr.isPresenting === true ) {

  			camera = xr.getCamera( camera );

  		}

  		//
  		if ( scene.isScene === true ) scene.onBeforeRender( _this, scene, camera, renderTarget || _currentRenderTarget );

  		currentRenderState = renderStates.get( scene, camera );
  		currentRenderState.init();

  		_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
  		_frustum.setFromProjectionMatrix( _projScreenMatrix );

  		_localClippingEnabled = this.localClippingEnabled;
  		_clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera );

  		currentRenderList = renderLists.get( scene, camera );
  		currentRenderList.init();

  		projectObject( scene, camera, 0, _this.sortObjects );

  		currentRenderList.finish();

  		if ( _this.sortObjects === true ) {

  			currentRenderList.sort( _opaqueSort, _transparentSort );

  		}

  		//

  		if ( _clippingEnabled === true ) _clipping.beginShadows();

  		const shadowsArray = currentRenderState.state.shadowsArray;

  		shadowMap.render( shadowsArray, scene, camera );

  		currentRenderState.setupLights( camera );

  		if ( _clippingEnabled === true ) _clipping.endShadows();

  		//

  		if ( this.info.autoReset === true ) this.info.reset();

  		if ( renderTarget !== undefined ) {

  			this.setRenderTarget( renderTarget );

  		}

  		//

  		background.render( currentRenderList, scene, camera, forceClear );

  		// render scene

  		const opaqueObjects = currentRenderList.opaque;
  		const transparentObjects = currentRenderList.transparent;

  		if ( opaqueObjects.length > 0 ) renderObjects( opaqueObjects, scene, camera );
  		if ( transparentObjects.length > 0 ) renderObjects( transparentObjects, scene, camera );

  		//

  		if ( scene.isScene === true ) scene.onAfterRender( _this, scene, camera );

  		//

  		if ( _currentRenderTarget !== null ) {

  			// Generate mipmap if we're using any kind of mipmap filtering

  			textures.updateRenderTargetMipmap( _currentRenderTarget );

  			// resolve multisample renderbuffers to a single-sample texture if necessary

  			textures.updateMultisampleRenderTarget( _currentRenderTarget );

  		}

  		// Ensure depth buffer writing is enabled so it can be cleared on next render

  		state.buffers.depth.setTest( true );
  		state.buffers.depth.setMask( true );
  		state.buffers.color.setMask( true );

  		state.setPolygonOffset( false );

  		// _gl.finish();

  		currentRenderList = null;
  		currentRenderState = null;

  	};

  	function projectObject( object, camera, groupOrder, sortObjects ) {

  		if ( object.visible === false ) return;

  		const visible = object.layers.test( camera.layers );

  		if ( visible ) {

  			if ( object.isGroup ) {

  				groupOrder = object.renderOrder;

  			} else if ( object.isLOD ) {

  				if ( object.autoUpdate === true ) object.update( camera );

  			} else if ( object.isLight ) {

  				currentRenderState.pushLight( object );

  				if ( object.castShadow ) {

  					currentRenderState.pushShadow( object );

  				}

  			} else if ( object.isSprite ) {

  				if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {

  					if ( sortObjects ) {

  						_vector3.setFromMatrixPosition( object.matrixWorld )
  							.applyMatrix4( _projScreenMatrix );

  					}

  					const geometry = objects.update( object );
  					const material = object.material;

  					if ( material.visible ) {

  						currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null );

  					}

  				}

  			} else if ( object.isImmediateRenderObject ) {

  				if ( sortObjects ) {

  					_vector3.setFromMatrixPosition( object.matrixWorld )
  						.applyMatrix4( _projScreenMatrix );

  				}

  				currentRenderList.push( object, null, object.material, groupOrder, _vector3.z, null );

  			} else if ( object.isMesh || object.isLine || object.isPoints ) {

  				if ( object.isSkinnedMesh ) {

  					// update skeleton only once in a frame

  					if ( object.skeleton.frame !== info.render.frame ) {

  						object.skeleton.update();
  						object.skeleton.frame = info.render.frame;

  					}

  				}

  				if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {

  					if ( sortObjects ) {

  						_vector3.setFromMatrixPosition( object.matrixWorld )
  							.applyMatrix4( _projScreenMatrix );

  					}

  					const geometry = objects.update( object );
  					const material = object.material;

  					if ( Array.isArray( material ) ) {

  						const groups = geometry.groups;

  						for ( let i = 0, l = groups.length; i < l; i ++ ) {

  							const group = groups[ i ];
  							const groupMaterial = material[ group.materialIndex ];

  							if ( groupMaterial && groupMaterial.visible ) {

  								currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector3.z, group );

  							}

  						}

  					} else if ( material.visible ) {

  						currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null );

  					}

  				}

  			}

  		}

  		const children = object.children;

  		for ( let i = 0, l = children.length; i < l; i ++ ) {

  			projectObject( children[ i ], camera, groupOrder, sortObjects );

  		}

  	}

  	function renderObjects( renderList, scene, camera ) {

  		const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;

  		for ( let i = 0, l = renderList.length; i < l; i ++ ) {

  			const renderItem = renderList[ i ];

  			const object = renderItem.object;
  			const geometry = renderItem.geometry;
  			const material = overrideMaterial === null ? renderItem.material : overrideMaterial;
  			const group = renderItem.group;

  			if ( camera.isArrayCamera ) {

  				_currentArrayCamera = camera;

  				const cameras = camera.cameras;

  				for ( let j = 0, jl = cameras.length; j < jl; j ++ ) {

  					const camera2 = cameras[ j ];

  					if ( object.layers.test( camera2.layers ) ) {

  						state.viewport( _currentViewport.copy( camera2.viewport ) );

  						currentRenderState.setupLights( camera2 );

  						renderObject( object, scene, camera2, geometry, material, group );

  					}

  				}

  			} else {

  				_currentArrayCamera = null;

  				renderObject( object, scene, camera, geometry, material, group );

  			}

  		}

  	}

  	function renderObject( object, scene, camera, geometry, material, group ) {

  		object.onBeforeRender( _this, scene, camera, geometry, material, group );
  		currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );

  		object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
  		object.normalMatrix.getNormalMatrix( object.modelViewMatrix );

  		if ( object.isImmediateRenderObject ) {

  			const program = setProgram( camera, scene, material, object );

  			state.setMaterial( material );

  			bindingStates.reset();

  			renderObjectImmediate( object, program );

  		} else {

  			_this.renderBufferDirect( camera, scene, geometry, material, object, group );

  		}

  		object.onAfterRender( _this, scene, camera, geometry, material, group );
  		currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );

  	}

  	function initMaterial( material, scene, object ) {

  		if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...

  		const materialProperties = properties.get( material );

  		const lights = currentRenderState.state.lights;
  		const shadowsArray = currentRenderState.state.shadowsArray;

  		const lightsStateVersion = lights.state.version;

  		const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, _clipping.numPlanes, _clipping.numIntersection, object );
  		const programCacheKey = programCache.getProgramCacheKey( parameters );

  		let program = materialProperties.program;
  		let programChange = true;

  		if ( program === undefined ) {

  			// new material
  			material.addEventListener( 'dispose', onMaterialDispose );

  		} else if ( program.cacheKey !== programCacheKey ) {

  			// changed glsl or parameters
  			releaseMaterialProgramReference( material );

  		} else if ( materialProperties.lightsStateVersion !== lightsStateVersion ) {

  			materialProperties.lightsStateVersion = lightsStateVersion;

  			programChange = false;

  		} else if ( parameters.shaderID !== undefined ) {

  			// same glsl and uniform list
  			return;

  		} else {

  			// only rebuild uniform list
  			programChange = false;

  		}

  		if ( programChange ) {

  			program = programCache.acquireProgram( parameters, programCacheKey );

  			materialProperties.program = program;
  			materialProperties.uniforms = parameters.uniforms;
  			materialProperties.outputEncoding = parameters.outputEncoding;
  			material.program = program;

  		}

  		const programAttributes = program.getAttributes();

  		if ( material.morphTargets ) {

  			material.numSupportedMorphTargets = 0;

  			for ( let i = 0; i < _this.maxMorphTargets; i ++ ) {

  				if ( programAttributes[ 'morphTarget' + i ] >= 0 ) {

  					material.numSupportedMorphTargets ++;

  				}

  			}

  		}

  		if ( material.morphNormals ) {

  			material.numSupportedMorphNormals = 0;

  			for ( let i = 0; i < _this.maxMorphNormals; i ++ ) {

  				if ( programAttributes[ 'morphNormal' + i ] >= 0 ) {

  					material.numSupportedMorphNormals ++;

  				}

  			}

  		}

  		const uniforms = materialProperties.uniforms;

  		if ( ! material.isShaderMaterial &&
  			! material.isRawShaderMaterial ||
  			material.clipping === true ) {

  			materialProperties.numClippingPlanes = _clipping.numPlanes;
  			materialProperties.numIntersection = _clipping.numIntersection;
  			uniforms.clippingPlanes = _clipping.uniform;

  		}

  		materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
  		materialProperties.fog = scene.fog;

  		// store the light setup it was created for

  		materialProperties.needsLights = materialNeedsLights( material );
  		materialProperties.lightsStateVersion = lightsStateVersion;

  		if ( materialProperties.needsLights ) {

  			// wire up the material to this renderer's lighting state

  			uniforms.ambientLightColor.value = lights.state.ambient;
  			uniforms.lightProbe.value = lights.state.probe;
  			uniforms.directionalLights.value = lights.state.directional;
  			uniforms.directionalLightShadows.value = lights.state.directionalShadow;
  			uniforms.spotLights.value = lights.state.spot;
  			uniforms.spotLightShadows.value = lights.state.spotShadow;
  			uniforms.rectAreaLights.value = lights.state.rectArea;
  			uniforms.pointLights.value = lights.state.point;
  			uniforms.pointLightShadows.value = lights.state.pointShadow;
  			uniforms.hemisphereLights.value = lights.state.hemi;

  			uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
  			uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
  			uniforms.spotShadowMap.value = lights.state.spotShadowMap;
  			uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
  			uniforms.pointShadowMap.value = lights.state.pointShadowMap;
  			uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix;
  			// TODO (abelnation): add area lights shadow info to uniforms

  		}

  		const progUniforms = materialProperties.program.getUniforms(),
  			uniformsList =
  				WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );

  		materialProperties.uniformsList = uniformsList;

  	}

  	function setProgram( camera, scene, material, object ) {

  		if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...

  		textures.resetTextureUnits();

  		const fog = scene.fog;
  		const environment = material.isMeshStandardMaterial ? scene.environment : null;
  		const encoding = ( _currentRenderTarget === null ) ? _this.outputEncoding : _currentRenderTarget.texture.encoding;

  		const materialProperties = properties.get( material );
  		const lights = currentRenderState.state.lights;

  		if ( _clippingEnabled === true ) {

  			if ( _localClippingEnabled === true || camera !== _currentCamera ) {

  				const useCache =
  					camera === _currentCamera &&
  					material.id === _currentMaterialId;

  				// we might want to call this function with some ClippingGroup
  				// object instead of the material, once it becomes feasible
  				// (#8465, #8379)
  				_clipping.setState(
  					material.clippingPlanes, material.clipIntersection, material.clipShadows,
  					camera, materialProperties, useCache );

  			}

  		}

  		if ( material.version === materialProperties.__version ) {

  			if ( materialProperties.program === undefined ) {

  				initMaterial( material, scene, object );

  			} else if ( material.fog && materialProperties.fog !== fog ) {

  				initMaterial( material, scene, object );

  			} else if ( materialProperties.environment !== environment ) {

  				initMaterial( material, scene, object );

  			} else if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) {

  				initMaterial( material, scene, object );

  			} else if ( materialProperties.numClippingPlanes !== undefined &&
  				( materialProperties.numClippingPlanes !== _clipping.numPlanes ||
  				materialProperties.numIntersection !== _clipping.numIntersection ) ) {

  				initMaterial( material, scene, object );

  			} else if ( materialProperties.outputEncoding !== encoding ) {

  				initMaterial( material, scene, object );

  			}

  		} else {

  			initMaterial( material, scene, object );
  			materialProperties.__version = material.version;

  		}

  		let refreshProgram = false;
  		let refreshMaterial = false;
  		let refreshLights = false;

  		const program = materialProperties.program,
  			p_uniforms = program.getUniforms(),
  			m_uniforms = materialProperties.uniforms;

  		if ( state.useProgram( program.program ) ) {

  			refreshProgram = true;
  			refreshMaterial = true;
  			refreshLights = true;

  		}

  		if ( material.id !== _currentMaterialId ) {

  			_currentMaterialId = material.id;

  			refreshMaterial = true;

  		}

  		if ( refreshProgram || _currentCamera !== camera ) {

  			p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );

  			if ( capabilities.logarithmicDepthBuffer ) {

  				p_uniforms.setValue( _gl, 'logDepthBufFC',
  					2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );

  			}

  			if ( _currentCamera !== camera ) {

  				_currentCamera = camera;

  				// lighting uniforms depend on the camera so enforce an update
  				// now, in case this material supports lights - or later, when
  				// the next material that does gets activated:

  				refreshMaterial = true;		// set to true on material change
  				refreshLights = true;		// remains set until update done

  			}

  			// load material specific uniforms
  			// (shader material also gets them for the sake of genericity)

  			if ( material.isShaderMaterial ||
  				material.isMeshPhongMaterial ||
  				material.isMeshToonMaterial ||
  				material.isMeshStandardMaterial ||
  				material.envMap ) {

  				const uCamPos = p_uniforms.map.cameraPosition;

  				if ( uCamPos !== undefined ) {

  					uCamPos.setValue( _gl,
  						_vector3.setFromMatrixPosition( camera.matrixWorld ) );

  				}

  			}

  			if ( material.isMeshPhongMaterial ||
  				material.isMeshToonMaterial ||
  				material.isMeshLambertMaterial ||
  				material.isMeshBasicMaterial ||
  				material.isMeshStandardMaterial ||
  				material.isShaderMaterial ) {

  				p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true );

  			}

  			if ( material.isMeshPhongMaterial ||
  				material.isMeshToonMaterial ||
  				material.isMeshLambertMaterial ||
  				material.isMeshBasicMaterial ||
  				material.isMeshStandardMaterial ||
  				material.isShaderMaterial ||
  				material.isShadowMaterial ||
  				material.skinning ) {

  				p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );

  			}

  		}

  		// skinning uniforms must be set even if material didn't change
  		// auto-setting of texture unit for bone texture must go before other textures
  		// otherwise textures used for skinning can take over texture units reserved for other material textures

  		if ( material.skinning ) {

  			p_uniforms.setOptional( _gl, object, 'bindMatrix' );
  			p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );

  			const skeleton = object.skeleton;

  			if ( skeleton ) {

  				const bones = skeleton.bones;

  				if ( capabilities.floatVertexTextures ) {

  					if ( skeleton.boneTexture === undefined ) {

  						// layout (1 matrix = 4 pixels)
  						//      RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
  						//  with  8x8  pixel texture max   16 bones * 4 pixels =  (8 * 8)
  						//       16x16 pixel texture max   64 bones * 4 pixels = (16 * 16)
  						//       32x32 pixel texture max  256 bones * 4 pixels = (32 * 32)
  						//       64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)


  						let size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix
  						size = MathUtils.ceilPowerOfTwo( size );
  						size = Math.max( size, 4 );

  						const boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel
  						boneMatrices.set( skeleton.boneMatrices ); // copy current values

  						const boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType );

  						skeleton.boneMatrices = boneMatrices;
  						skeleton.boneTexture = boneTexture;
  						skeleton.boneTextureSize = size;

  					}

  					p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures );
  					p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize );

  				} else {

  					p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );

  				}

  			}

  		}

  		if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) {

  			materialProperties.receiveShadow = object.receiveShadow;
  			p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow );

  		}

  		if ( refreshMaterial ) {

  			p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure );

  			if ( materialProperties.needsLights ) {

  				// the current material requires lighting info

  				// note: all lighting uniforms are always set correctly
  				// they simply reference the renderer's state for their
  				// values
  				//
  				// use the current material's .needsUpdate flags to set
  				// the GL state when required

  				markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );

  			}

  			// refresh uniforms common to several materials

  			if ( fog && material.fog ) {

  				materials.refreshFogUniforms( m_uniforms, fog );

  			}

  			materials.refreshMaterialUniforms( m_uniforms, material, environment, _pixelRatio, _height );

  			// RectAreaLight Texture
  			// TODO (mrdoob): Find a nicer implementation

  			if ( m_uniforms.ltc_1 !== undefined ) m_uniforms.ltc_1.value = UniformsLib.LTC_1;
  			if ( m_uniforms.ltc_2 !== undefined ) m_uniforms.ltc_2.value = UniformsLib.LTC_2;

  			WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures );

  		}

  		if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) {

  			WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures );
  			material.uniformsNeedUpdate = false;

  		}

  		if ( material.isSpriteMaterial ) {

  			p_uniforms.setValue( _gl, 'center', object.center );

  		}

  		// common matrices

  		p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix );
  		p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix );
  		p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );

  		return program;

  	}

  	// If uniforms are marked as clean, they don't need to be loaded to the GPU.

  	function markUniformsLightsNeedsUpdate( uniforms, value ) {

  		uniforms.ambientLightColor.needsUpdate = value;
  		uniforms.lightProbe.needsUpdate = value;

  		uniforms.directionalLights.needsUpdate = value;
  		uniforms.directionalLightShadows.needsUpdate = value;
  		uniforms.pointLights.needsUpdate = value;
  		uniforms.pointLightShadows.needsUpdate = value;
  		uniforms.spotLights.needsUpdate = value;
  		uniforms.spotLightShadows.needsUpdate = value;
  		uniforms.rectAreaLights.needsUpdate = value;
  		uniforms.hemisphereLights.needsUpdate = value;

  	}

  	function materialNeedsLights( material ) {

  		return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial ||
  			material.isMeshStandardMaterial || material.isShadowMaterial ||
  			( material.isShaderMaterial && material.lights === true );

  	}

  	//
  	this.setFramebuffer = function ( value ) {

  		if ( _framebuffer !== value && _currentRenderTarget === null ) _gl.bindFramebuffer( 36160, value );

  		_framebuffer = value;

  	};

  	this.getActiveCubeFace = function () {

  		return _currentActiveCubeFace;

  	};

  	this.getActiveMipmapLevel = function () {

  		return _currentActiveMipmapLevel;

  	};

  	this.getRenderTarget = function () {

  		return _currentRenderTarget;

  	};

  	this.setRenderTarget = function ( renderTarget, activeCubeFace, activeMipmapLevel ) {

  		_currentRenderTarget = renderTarget;
  		_currentActiveCubeFace = activeCubeFace;
  		_currentActiveMipmapLevel = activeMipmapLevel;

  		if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {

  			textures.setupRenderTarget( renderTarget );

  		}

  		let framebuffer = _framebuffer;
  		let isCube = false;

  		if ( renderTarget ) {

  			const __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer;

  			if ( renderTarget.isWebGLCubeRenderTarget ) {

  				framebuffer = __webglFramebuffer[ activeCubeFace || 0 ];
  				isCube = true;

  			} else if ( renderTarget.isWebGLMultisampleRenderTarget ) {

  				framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer;

  			} else {

  				framebuffer = __webglFramebuffer;

  			}

  			_currentViewport.copy( renderTarget.viewport );
  			_currentScissor.copy( renderTarget.scissor );
  			_currentScissorTest = renderTarget.scissorTest;

  		} else {

  			_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor();
  			_currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor();
  			_currentScissorTest = _scissorTest;

  		}

  		if ( _currentFramebuffer !== framebuffer ) {

  			_gl.bindFramebuffer( 36160, framebuffer );
  			_currentFramebuffer = framebuffer;

  		}

  		state.viewport( _currentViewport );
  		state.scissor( _currentScissor );
  		state.setScissorTest( _currentScissorTest );

  		if ( isCube ) {

  			const textureProperties = properties.get( renderTarget.texture );
  			_gl.framebufferTexture2D( 36160, 36064, 34069 + ( activeCubeFace || 0 ), textureProperties.__webglTexture, activeMipmapLevel || 0 );

  		}

  	};

  	this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) {

  		if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) {

  			console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
  			return;

  		}

  		let framebuffer = properties.get( renderTarget ).__webglFramebuffer;

  		if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) {

  			framebuffer = framebuffer[ activeCubeFaceIndex ];

  		}

  		if ( framebuffer ) {

  			let restore = false;

  			if ( framebuffer !== _currentFramebuffer ) {

  				_gl.bindFramebuffer( 36160, framebuffer );

  				restore = true;

  			}

  			try {

  				const texture = renderTarget.texture;
  				const textureFormat = texture.format;
  				const textureType = texture.type;

  				if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( 35739 ) ) {

  					console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
  					return;

  				}

  				if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( 35738 ) && // IE11, Edge and Chrome Mac < 52 (#9513)
  					! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox
  					! ( textureType === HalfFloatType && ( capabilities.isWebGL2 ? extensions.get( 'EXT_color_buffer_float' ) : extensions.get( 'EXT_color_buffer_half_float' ) ) ) ) {

  					console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
  					return;

  				}

  				if ( _gl.checkFramebufferStatus( 36160 ) === 36053 ) {

  					// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)

  					if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {

  						_gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer );

  					}

  				} else {

  					console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );

  				}

  			} finally {

  				if ( restore ) {

  					_gl.bindFramebuffer( 36160, _currentFramebuffer );

  				}

  			}

  		}

  	};

  	this.copyFramebufferToTexture = function ( position, texture, level ) {

  		if ( level === undefined ) level = 0;

  		const levelScale = Math.pow( 2, - level );
  		const width = Math.floor( texture.image.width * levelScale );
  		const height = Math.floor( texture.image.height * levelScale );
  		const glFormat = utils.convert( texture.format );

  		textures.setTexture2D( texture, 0 );

  		_gl.copyTexImage2D( 3553, level, glFormat, position.x, position.y, width, height, 0 );

  		state.unbindTexture();

  	};

  	this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level ) {

  		if ( level === undefined ) level = 0;

  		const width = srcTexture.image.width;
  		const height = srcTexture.image.height;
  		const glFormat = utils.convert( dstTexture.format );
  		const glType = utils.convert( dstTexture.type );

  		textures.setTexture2D( dstTexture, 0 );

  		// As another texture upload may have changed pixelStorei
  		// parameters, make sure they are correct for the dstTexture
  		_gl.pixelStorei( 37440, dstTexture.flipY );
  		_gl.pixelStorei( 37441, dstTexture.premultiplyAlpha );
  		_gl.pixelStorei( 3317, dstTexture.unpackAlignment );

  		if ( srcTexture.isDataTexture ) {

  			_gl.texSubImage2D( 3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data );

  		} else {

  			if ( srcTexture.isCompressedTexture ) {

  				_gl.compressedTexSubImage2D( 3553, level, position.x, position.y, srcTexture.mipmaps[ 0 ].width, srcTexture.mipmaps[ 0 ].height, glFormat, srcTexture.mipmaps[ 0 ].data );

  			} else {

  				_gl.texSubImage2D( 3553, level, position.x, position.y, glFormat, glType, srcTexture.image );

  			}

  		}

  		// Generate mipmaps only when copying level 0
  		if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( 3553 );

  		state.unbindTexture();

  	};

  	this.initTexture = function ( texture ) {

  		textures.setTexture2D( texture, 0 );

  		state.unbindTexture();

  	};

  	if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {

  		__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef

  	}

  }

  /**
   * @author Mugen87 / https://github.com/Mugen87
   */

  function WebGL1Renderer( parameters ) {

  	WebGLRenderer.call( this, parameters );

  }

  WebGL1Renderer.prototype = Object.assign( Object.create( WebGLRenderer.prototype ), {

  	constructor: WebGL1Renderer,

  	isWebGL1Renderer: true

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function FogExp2( color, density ) {

  	this.name = '';

  	this.color = new Color( color );
  	this.density = ( density !== undefined ) ? density : 0.00025;

  }

  Object.assign( FogExp2.prototype, {

  	isFogExp2: true,

  	clone: function () {

  		return new FogExp2( this.color, this.density );

  	},

  	toJSON: function ( /* meta */ ) {

  		return {
  			type: 'FogExp2',
  			color: this.color.getHex(),
  			density: this.density
  		};

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function Fog( color, near, far ) {

  	this.name = '';

  	this.color = new Color( color );

  	this.near = ( near !== undefined ) ? near : 1;
  	this.far = ( far !== undefined ) ? far : 1000;

  }

  Object.assign( Fog.prototype, {

  	isFog: true,

  	clone: function () {

  		return new Fog( this.color, this.near, this.far );

  	},

  	toJSON: function ( /* meta */ ) {

  		return {
  			type: 'Fog',
  			color: this.color.getHex(),
  			near: this.near,
  			far: this.far
  		};

  	}

  } );

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  function InterleavedBuffer( array, stride ) {

  	this.array = array;
  	this.stride = stride;
  	this.count = array !== undefined ? array.length / stride : 0;

  	this.usage = StaticDrawUsage;
  	this.updateRange = { offset: 0, count: - 1 };

  	this.version = 0;

  	this.uuid = MathUtils.generateUUID();

  }

  Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', {

  	set: function ( value ) {

  		if ( value === true ) this.version ++;

  	}

  } );

  Object.assign( InterleavedBuffer.prototype, {

  	isInterleavedBuffer: true,

  	onUploadCallback: function () {},

  	setUsage: function ( value ) {

  		this.usage = value;

  		return this;

  	},

  	copy: function ( source ) {

  		this.array = new source.array.constructor( source.array );
  		this.count = source.count;
  		this.stride = source.stride;
  		this.usage = source.usage;

  		return this;

  	},

  	copyAt: function ( index1, attribute, index2 ) {

  		index1 *= this.stride;
  		index2 *= attribute.stride;

  		for ( let i = 0, l = this.stride; i < l; i ++ ) {

  			this.array[ index1 + i ] = attribute.array[ index2 + i ];

  		}

  		return this;

  	},

  	set: function ( value, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.array.set( value, offset );

  		return this;

  	},

  	clone: function ( data ) {

  		if ( data.arrayBuffers === undefined ) {

  			data.arrayBuffers = {};

  		}

  		if ( this.array.buffer._uuid === undefined ) {

  			this.array.buffer._uuid = MathUtils.generateUUID();

  		}

  		if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) {

  			data.arrayBuffers[ this.array.buffer._uuid ] = this.array.slice( 0 ).buffer;

  		}

  		const array = new this.array.constructor( data.arrayBuffers[ this.array.buffer._uuid ] );

  		const ib = new InterleavedBuffer( array, this.stride );
  		ib.setUsage( this.usage );

  		return ib;

  	},

  	onUpload: function ( callback ) {

  		this.onUploadCallback = callback;

  		return this;

  	},

  	toJSON: function ( data ) {

  		if ( data.arrayBuffers === undefined ) {

  			data.arrayBuffers = {};

  		}

  		// generate UUID for array buffer if necessary

  		if ( this.array.buffer._uuid === undefined ) {

  			this.array.buffer._uuid = MathUtils.generateUUID();

  		}

  		if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) {

  			data.arrayBuffers[ this.array.buffer._uuid ] = Array.prototype.slice.call( new Uint32Array( this.array.buffer ) );

  		}

  		//

  		return {
  			uuid: this.uuid,
  			buffer: this.array.buffer._uuid,
  			type: this.array.constructor.name,
  			stride: this.stride
  		};

  	}

  } );

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  const _vector$6 = new Vector3();

  function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) {

  	this.name = '';

  	this.data = interleavedBuffer;
  	this.itemSize = itemSize;
  	this.offset = offset;

  	this.normalized = normalized === true;

  }

  Object.defineProperties( InterleavedBufferAttribute.prototype, {

  	count: {

  		get: function () {

  			return this.data.count;

  		}

  	},

  	array: {

  		get: function () {

  			return this.data.array;

  		}

  	}

  } );

  Object.assign( InterleavedBufferAttribute.prototype, {

  	isInterleavedBufferAttribute: true,

  	applyMatrix4: function ( m ) {

  		for ( let i = 0, l = this.data.count; i < l; i ++ ) {

  			_vector$6.x = this.getX( i );
  			_vector$6.y = this.getY( i );
  			_vector$6.z = this.getZ( i );

  			_vector$6.applyMatrix4( m );

  			this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z );

  		}

  		return this;

  	},

  	setX: function ( index, x ) {

  		this.data.array[ index * this.data.stride + this.offset ] = x;

  		return this;

  	},

  	setY: function ( index, y ) {

  		this.data.array[ index * this.data.stride + this.offset + 1 ] = y;

  		return this;

  	},

  	setZ: function ( index, z ) {

  		this.data.array[ index * this.data.stride + this.offset + 2 ] = z;

  		return this;

  	},

  	setW: function ( index, w ) {

  		this.data.array[ index * this.data.stride + this.offset + 3 ] = w;

  		return this;

  	},

  	getX: function ( index ) {

  		return this.data.array[ index * this.data.stride + this.offset ];

  	},

  	getY: function ( index ) {

  		return this.data.array[ index * this.data.stride + this.offset + 1 ];

  	},

  	getZ: function ( index ) {

  		return this.data.array[ index * this.data.stride + this.offset + 2 ];

  	},

  	getW: function ( index ) {

  		return this.data.array[ index * this.data.stride + this.offset + 3 ];

  	},

  	setXY: function ( index, x, y ) {

  		index = index * this.data.stride + this.offset;

  		this.data.array[ index + 0 ] = x;
  		this.data.array[ index + 1 ] = y;

  		return this;

  	},

  	setXYZ: function ( index, x, y, z ) {

  		index = index * this.data.stride + this.offset;

  		this.data.array[ index + 0 ] = x;
  		this.data.array[ index + 1 ] = y;
  		this.data.array[ index + 2 ] = z;

  		return this;

  	},

  	setXYZW: function ( index, x, y, z, w ) {

  		index = index * this.data.stride + this.offset;

  		this.data.array[ index + 0 ] = x;
  		this.data.array[ index + 1 ] = y;
  		this.data.array[ index + 2 ] = z;
  		this.data.array[ index + 3 ] = w;

  		return this;

  	},

  	clone: function ( data ) {

  		if ( data === undefined ) {

  			console.log( 'THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.' );

  			const array = [];

  			for ( let i = 0; i < this.count; i ++ ) {

  				const index = i * this.data.stride + this.offset;

  				for ( let j = 0; j < this.itemSize; j ++ ) {

  					array.push( this.data.array[ index + j ] );

  				}

  			}

  			return new BufferAttribute( new this.array.constructor( array ), this.itemSize, this.normalized );

  		} else {

  			if ( data.interleavedBuffers === undefined ) {

  				data.interleavedBuffers = {};

  			}

  			if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) {

  				data.interleavedBuffers[ this.data.uuid ] = this.data.clone( data );

  			}

  			return new InterleavedBufferAttribute( data.interleavedBuffers[ this.data.uuid ], this.itemSize, this.offset, this.normalized );

  		}

  	},

  	toJSON: function ( data ) {

  		if ( data === undefined ) {

  			console.log( 'THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.' );

  			const array = [];

  			for ( let i = 0; i < this.count; i ++ ) {

  				const index = i * this.data.stride + this.offset;

  				for ( let j = 0; j < this.itemSize; j ++ ) {

  					array.push( this.data.array[ index + j ] );

  				}

  			}

  			// deinterleave data and save it as an ordinary buffer attribute for now

  			return {
  				itemSize: this.itemSize,
  				type: this.array.constructor.name,
  				array: array,
  				normalized: this.normalized
  			};

  		} else {

  			// save as true interlaved attribtue

  			if ( data.interleavedBuffers === undefined ) {

  				data.interleavedBuffers = {};

  			}

  			if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) {

  				data.interleavedBuffers[ this.data.uuid ] = this.data.toJSON( data );

  			}

  			return {
  				isInterleavedBufferAttribute: true,
  				itemSize: this.itemSize,
  				data: this.data.uuid,
  				offset: this.offset,
  				normalized: this.normalized
  			};

  		}

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  map: new THREE.Texture( <Image> ),
   *  alphaMap: new THREE.Texture( <Image> ),
   *  rotation: <float>,
   *  sizeAttenuation: <bool>
   * }
   */

  function SpriteMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'SpriteMaterial';

  	this.color = new Color( 0xffffff );

  	this.map = null;

  	this.alphaMap = null;

  	this.rotation = 0;

  	this.sizeAttenuation = true;

  	this.transparent = true;

  	this.setValues( parameters );

  }

  SpriteMaterial.prototype = Object.create( Material.prototype );
  SpriteMaterial.prototype.constructor = SpriteMaterial;
  SpriteMaterial.prototype.isSpriteMaterial = true;

  SpriteMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.map = source.map;

  	this.alphaMap = source.alphaMap;

  	this.rotation = source.rotation;

  	this.sizeAttenuation = source.sizeAttenuation;

  	return this;

  };

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   */

  let _geometry;

  const _intersectPoint = new Vector3();
  const _worldScale = new Vector3();
  const _mvPosition = new Vector3();

  const _alignedPosition = new Vector2();
  const _rotatedPosition = new Vector2();
  const _viewWorldMatrix = new Matrix4();

  const _vA$1 = new Vector3();
  const _vB$1 = new Vector3();
  const _vC$1 = new Vector3();

  const _uvA$1 = new Vector2();
  const _uvB$1 = new Vector2();
  const _uvC$1 = new Vector2();

  function Sprite( material ) {

  	Object3D.call( this );

  	this.type = 'Sprite';

  	if ( _geometry === undefined ) {

  		_geometry = new BufferGeometry();

  		const float32Array = new Float32Array( [
  			- 0.5, - 0.5, 0, 0, 0,
  			0.5, - 0.5, 0, 1, 0,
  			0.5, 0.5, 0, 1, 1,
  			- 0.5, 0.5, 0, 0, 1
  		] );

  		const interleavedBuffer = new InterleavedBuffer( float32Array, 5 );

  		_geometry.setIndex( [ 0, 1, 2,	0, 2, 3 ] );
  		_geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
  		_geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );

  	}

  	this.geometry = _geometry;
  	this.material = ( material !== undefined ) ? material : new SpriteMaterial();

  	this.center = new Vector2( 0.5, 0.5 );

  }

  Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Sprite,

  	isSprite: true,

  	raycast: function ( raycaster, intersects ) {

  		if ( raycaster.camera === null ) {

  			console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' );

  		}

  		_worldScale.setFromMatrixScale( this.matrixWorld );

  		_viewWorldMatrix.copy( raycaster.camera.matrixWorld );
  		this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld );

  		_mvPosition.setFromMatrixPosition( this.modelViewMatrix );

  		if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) {

  			_worldScale.multiplyScalar( - _mvPosition.z );

  		}

  		const rotation = this.material.rotation;
  		let sin, cos;

  		if ( rotation !== 0 ) {

  			cos = Math.cos( rotation );
  			sin = Math.sin( rotation );

  		}

  		const center = this.center;

  		transformVertex( _vA$1.set( - 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
  		transformVertex( _vB$1.set( 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
  		transformVertex( _vC$1.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );

  		_uvA$1.set( 0, 0 );
  		_uvB$1.set( 1, 0 );
  		_uvC$1.set( 1, 1 );

  		// check first triangle
  		let intersect = raycaster.ray.intersectTriangle( _vA$1, _vB$1, _vC$1, false, _intersectPoint );

  		if ( intersect === null ) {

  			// check second triangle
  			transformVertex( _vB$1.set( - 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
  			_uvB$1.set( 0, 1 );

  			intersect = raycaster.ray.intersectTriangle( _vA$1, _vC$1, _vB$1, false, _intersectPoint );
  			if ( intersect === null ) {

  				return;

  			}

  		}

  		const distance = raycaster.ray.origin.distanceTo( _intersectPoint );

  		if ( distance < raycaster.near || distance > raycaster.far ) return;

  		intersects.push( {

  			distance: distance,
  			point: _intersectPoint.clone(),
  			uv: Triangle.getUV( _intersectPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ),
  			face: null,
  			object: this

  		} );

  	},

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source );

  		if ( source.center !== undefined ) this.center.copy( source.center );

  		this.material = source.material;

  		return this;

  	}

  } );

  function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) {

  	// compute position in camera space
  	_alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale );

  	// to check if rotation is not zero
  	if ( sin !== undefined ) {

  		_rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y );
  		_rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y );

  	} else {

  		_rotatedPosition.copy( _alignedPosition );

  	}


  	vertexPosition.copy( mvPosition );
  	vertexPosition.x += _rotatedPosition.x;
  	vertexPosition.y += _rotatedPosition.y;

  	// transform to world space
  	vertexPosition.applyMatrix4( _viewWorldMatrix );

  }

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   */

  const _v1$4 = new Vector3();
  const _v2$2 = new Vector3();

  function LOD() {

  	Object3D.call( this );

  	this._currentLevel = 0;

  	this.type = 'LOD';

  	Object.defineProperties( this, {
  		levels: {
  			enumerable: true,
  			value: []
  		}
  	} );

  	this.autoUpdate = true;

  }

  LOD.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: LOD,

  	isLOD: true,

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source, false );

  		const levels = source.levels;

  		for ( let i = 0, l = levels.length; i < l; i ++ ) {

  			const level = levels[ i ];

  			this.addLevel( level.object.clone(), level.distance );

  		}

  		this.autoUpdate = source.autoUpdate;

  		return this;

  	},

  	addLevel: function ( object, distance ) {

  		if ( distance === undefined ) distance = 0;

  		distance = Math.abs( distance );

  		const levels = this.levels;

  		let l;

  		for ( l = 0; l < levels.length; l ++ ) {

  			if ( distance < levels[ l ].distance ) {

  				break;

  			}

  		}

  		levels.splice( l, 0, { distance: distance, object: object } );

  		this.add( object );

  		return this;

  	},

  	getCurrentLevel: function () {

  		return this._currentLevel;

  	},

  	getObjectForDistance: function ( distance ) {

  		const levels = this.levels;

  		if ( levels.length > 0 ) {

  			let i, l;

  			for ( i = 1, l = levels.length; i < l; i ++ ) {

  				if ( distance < levels[ i ].distance ) {

  					break;

  				}

  			}

  			return levels[ i - 1 ].object;

  		}

  		return null;

  	},

  	raycast: function ( raycaster, intersects ) {

  		const levels = this.levels;

  		if ( levels.length > 0 ) {

  			_v1$4.setFromMatrixPosition( this.matrixWorld );

  			const distance = raycaster.ray.origin.distanceTo( _v1$4 );

  			this.getObjectForDistance( distance ).raycast( raycaster, intersects );

  		}

  	},

  	update: function ( camera ) {

  		const levels = this.levels;

  		if ( levels.length > 1 ) {

  			_v1$4.setFromMatrixPosition( camera.matrixWorld );
  			_v2$2.setFromMatrixPosition( this.matrixWorld );

  			const distance = _v1$4.distanceTo( _v2$2 ) / camera.zoom;

  			levels[ 0 ].object.visible = true;

  			let i, l;

  			for ( i = 1, l = levels.length; i < l; i ++ ) {

  				if ( distance >= levels[ i ].distance ) {

  					levels[ i - 1 ].object.visible = false;
  					levels[ i ].object.visible = true;

  				} else {

  					break;

  				}

  			}

  			this._currentLevel = i - 1;

  			for ( ; i < l; i ++ ) {

  				levels[ i ].object.visible = false;

  			}

  		}

  	},

  	toJSON: function ( meta ) {

  		const data = Object3D.prototype.toJSON.call( this, meta );

  		if ( this.autoUpdate === false ) data.object.autoUpdate = false;

  		data.object.levels = [];

  		const levels = this.levels;

  		for ( let i = 0, l = levels.length; i < l; i ++ ) {

  			const level = levels[ i ];

  			data.object.levels.push( {
  				object: level.object.uuid,
  				distance: level.distance
  			} );

  		}

  		return data;

  	}

  } );

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author ikerr / http://verold.com
   */

  function SkinnedMesh( geometry, material ) {

  	if ( geometry && geometry.isGeometry ) {

  		console.error( 'THREE.SkinnedMesh no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );

  	}

  	Mesh.call( this, geometry, material );

  	this.type = 'SkinnedMesh';

  	this.bindMode = 'attached';
  	this.bindMatrix = new Matrix4();
  	this.bindMatrixInverse = new Matrix4();

  }

  SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {

  	constructor: SkinnedMesh,

  	isSkinnedMesh: true,

  	copy: function ( source ) {

  		Mesh.prototype.copy.call( this, source );

  		this.bindMode = source.bindMode;
  		this.bindMatrix.copy( source.bindMatrix );
  		this.bindMatrixInverse.copy( source.bindMatrixInverse );

  		this.skeleton = source.skeleton;

  		return this;

  	},

  	bind: function ( skeleton, bindMatrix ) {

  		this.skeleton = skeleton;

  		if ( bindMatrix === undefined ) {

  			this.updateMatrixWorld( true );

  			this.skeleton.calculateInverses();

  			bindMatrix = this.matrixWorld;

  		}

  		this.bindMatrix.copy( bindMatrix );
  		this.bindMatrixInverse.getInverse( bindMatrix );

  	},

  	pose: function () {

  		this.skeleton.pose();

  	},

  	normalizeSkinWeights: function () {

  		const vector = new Vector4();

  		const skinWeight = this.geometry.attributes.skinWeight;

  		for ( let i = 0, l = skinWeight.count; i < l; i ++ ) {

  			vector.x = skinWeight.getX( i );
  			vector.y = skinWeight.getY( i );
  			vector.z = skinWeight.getZ( i );
  			vector.w = skinWeight.getW( i );

  			const scale = 1.0 / vector.manhattanLength();

  			if ( scale !== Infinity ) {

  				vector.multiplyScalar( scale );

  			} else {

  				vector.set( 1, 0, 0, 0 ); // do something reasonable

  			}

  			skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w );

  		}

  	},

  	updateMatrixWorld: function ( force ) {

  		Mesh.prototype.updateMatrixWorld.call( this, force );

  		if ( this.bindMode === 'attached' ) {

  			this.bindMatrixInverse.getInverse( this.matrixWorld );

  		} else if ( this.bindMode === 'detached' ) {

  			this.bindMatrixInverse.getInverse( this.bindMatrix );

  		} else {

  			console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode );

  		}

  	},

  	boneTransform: ( function () {

  		const basePosition = new Vector3();

  		const skinIndex = new Vector4();
  		const skinWeight = new Vector4();

  		const vector = new Vector3();
  		const matrix = new Matrix4();

  		return function ( index, target ) {

  			const skeleton = this.skeleton;
  			const geometry = this.geometry;

  			skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index );
  			skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index );

  			basePosition.fromBufferAttribute( geometry.attributes.position, index ).applyMatrix4( this.bindMatrix );

  			target.set( 0, 0, 0 );

  			for ( let i = 0; i < 4; i ++ ) {

  				const weight = skinWeight.getComponent( i );

  				if ( weight !== 0 ) {

  					const boneIndex = skinIndex.getComponent( i );

  					matrix.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] );

  					target.addScaledVector( vector.copy( basePosition ).applyMatrix4( matrix ), weight );

  				}

  			}

  			return target.applyMatrix4( this.bindMatrixInverse );

  		};

  	}() )

  } );

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author michael guerrero / http://realitymeltdown.com
   * @author ikerr / http://verold.com
   */

  const _offsetMatrix = new Matrix4();
  const _identityMatrix = new Matrix4();

  function Skeleton( bones, boneInverses ) {

  	// copy the bone array

  	bones = bones || [];

  	this.bones = bones.slice( 0 );
  	this.boneMatrices = new Float32Array( this.bones.length * 16 );

  	this.frame = - 1;

  	// use the supplied bone inverses or calculate the inverses

  	if ( boneInverses === undefined ) {

  		this.calculateInverses();

  	} else {

  		if ( this.bones.length === boneInverses.length ) {

  			this.boneInverses = boneInverses.slice( 0 );

  		} else {

  			console.warn( 'THREE.Skeleton boneInverses is the wrong length.' );

  			this.boneInverses = [];

  			for ( let i = 0, il = this.bones.length; i < il; i ++ ) {

  				this.boneInverses.push( new Matrix4() );

  			}

  		}

  	}

  }

  Object.assign( Skeleton.prototype, {

  	calculateInverses: function () {

  		this.boneInverses = [];

  		for ( let i = 0, il = this.bones.length; i < il; i ++ ) {

  			const inverse = new Matrix4();

  			if ( this.bones[ i ] ) {

  				inverse.getInverse( this.bones[ i ].matrixWorld );

  			}

  			this.boneInverses.push( inverse );

  		}

  	},

  	pose: function () {

  		// recover the bind-time world matrices

  		for ( let i = 0, il = this.bones.length; i < il; i ++ ) {

  			const bone = this.bones[ i ];

  			if ( bone ) {

  				bone.matrixWorld.getInverse( this.boneInverses[ i ] );

  			}

  		}

  		// compute the local matrices, positions, rotations and scales

  		for ( let i = 0, il = this.bones.length; i < il; i ++ ) {

  			const bone = this.bones[ i ];

  			if ( bone ) {

  				if ( bone.parent && bone.parent.isBone ) {

  					bone.matrix.getInverse( bone.parent.matrixWorld );
  					bone.matrix.multiply( bone.matrixWorld );

  				} else {

  					bone.matrix.copy( bone.matrixWorld );

  				}

  				bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );

  			}

  		}

  	},

  	update: function () {

  		const bones = this.bones;
  		const boneInverses = this.boneInverses;
  		const boneMatrices = this.boneMatrices;
  		const boneTexture = this.boneTexture;

  		// flatten bone matrices to array

  		for ( let i = 0, il = bones.length; i < il; i ++ ) {

  			// compute the offset between the current and the original transform

  			const matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix;

  			_offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] );
  			_offsetMatrix.toArray( boneMatrices, i * 16 );

  		}

  		if ( boneTexture !== undefined ) {

  			boneTexture.needsUpdate = true;

  		}

  	},

  	clone: function () {

  		return new Skeleton( this.bones, this.boneInverses );

  	},

  	getBoneByName: function ( name ) {

  		for ( let i = 0, il = this.bones.length; i < il; i ++ ) {

  			const bone = this.bones[ i ];

  			if ( bone.name === name ) {

  				return bone;

  			}

  		}

  		return undefined;

  	},

  	dispose: function ( ) {

  		if ( this.boneTexture ) {

  			this.boneTexture.dispose();

  			this.boneTexture = undefined;

  		}

  	}

  } );

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author ikerr / http://verold.com
   */

  function Bone() {

  	Object3D.call( this );

  	this.type = 'Bone';

  }

  Bone.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Bone,

  	isBone: true

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  const _instanceLocalMatrix = new Matrix4();
  const _instanceWorldMatrix = new Matrix4();

  const _instanceIntersects = [];

  const _mesh = new Mesh();

  function InstancedMesh( geometry, material, count ) {

  	Mesh.call( this, geometry, material );

  	this.instanceMatrix = new BufferAttribute( new Float32Array( count * 16 ), 16 );

  	this.count = count;

  	this.frustumCulled = false;

  }

  InstancedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {

  	constructor: InstancedMesh,

  	isInstancedMesh: true,

  	copy: function ( source ) {

  		Mesh.prototype.copy.call( this, source );

  		this.instanceMatrix.copy( source.instanceMatrix );
  		this.count = source.count;

  		return this;

  	},

  	getMatrixAt: function ( index, matrix ) {

  		matrix.fromArray( this.instanceMatrix.array, index * 16 );

  	},

  	raycast: function ( raycaster, intersects ) {

  		const matrixWorld = this.matrixWorld;
  		const raycastTimes = this.count;

  		_mesh.geometry = this.geometry;
  		_mesh.material = this.material;

  		if ( _mesh.material === undefined ) return;

  		for ( let instanceId = 0; instanceId < raycastTimes; instanceId ++ ) {

  			// calculate the world matrix for each instance

  			this.getMatrixAt( instanceId, _instanceLocalMatrix );

  			_instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix );

  			// the mesh represents this single instance

  			_mesh.matrixWorld = _instanceWorldMatrix;

  			_mesh.raycast( raycaster, _instanceIntersects );

  			// process the result of raycast

  			for ( let i = 0, l = _instanceIntersects.length; i < l; i ++ ) {

  				const intersect = _instanceIntersects[ i ];
  				intersect.instanceId = instanceId;
  				intersect.object = this;
  				intersects.push( intersect );

  			}

  			_instanceIntersects.length = 0;

  		}

  	},

  	setMatrixAt: function ( index, matrix ) {

  		matrix.toArray( this.instanceMatrix.array, index * 16 );

  	},

  	updateMorphTargets: function () {

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *
   *  linewidth: <float>,
   *  linecap: "round",
   *  linejoin: "round"
   * }
   */

  function LineBasicMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'LineBasicMaterial';

  	this.color = new Color( 0xffffff );

  	this.linewidth = 1;
  	this.linecap = 'round';
  	this.linejoin = 'round';

  	this.morphTargets = false;

  	this.setValues( parameters );

  }

  LineBasicMaterial.prototype = Object.create( Material.prototype );
  LineBasicMaterial.prototype.constructor = LineBasicMaterial;

  LineBasicMaterial.prototype.isLineBasicMaterial = true;

  LineBasicMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.linewidth = source.linewidth;
  	this.linecap = source.linecap;
  	this.linejoin = source.linejoin;

  	this.morphTargets = source.morphTargets;

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  const _start = new Vector3();
  const _end = new Vector3();
  const _inverseMatrix$1 = new Matrix4();
  const _ray$1 = new Ray();
  const _sphere$2 = new Sphere();

  function Line( geometry, material, mode ) {

  	if ( mode === 1 ) {

  		console.error( 'THREE.Line: parameter THREE.LinePieces no longer supported. Use THREE.LineSegments instead.' );

  	}

  	Object3D.call( this );

  	this.type = 'Line';

  	this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
  	this.material = material !== undefined ? material : new LineBasicMaterial();

  	this.updateMorphTargets();

  }

  Line.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Line,

  	isLine: true,

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source );

  		this.material = source.material;
  		this.geometry = source.geometry;

  		return this;

  	},

  	computeLineDistances: function () {

  		const geometry = this.geometry;

  		if ( geometry.isBufferGeometry ) {

  			// we assume non-indexed geometry

  			if ( geometry.index === null ) {

  				const positionAttribute = geometry.attributes.position;
  				const lineDistances = [ 0 ];

  				for ( let i = 1, l = positionAttribute.count; i < l; i ++ ) {

  					_start.fromBufferAttribute( positionAttribute, i - 1 );
  					_end.fromBufferAttribute( positionAttribute, i );

  					lineDistances[ i ] = lineDistances[ i - 1 ];
  					lineDistances[ i ] += _start.distanceTo( _end );

  				}

  				geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );

  			} else {

  				console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );

  			}

  		} else if ( geometry.isGeometry ) {

  			const vertices = geometry.vertices;
  			const lineDistances = geometry.lineDistances;

  			lineDistances[ 0 ] = 0;

  			for ( let i = 1, l = vertices.length; i < l; i ++ ) {

  				lineDistances[ i ] = lineDistances[ i - 1 ];
  				lineDistances[ i ] += vertices[ i - 1 ].distanceTo( vertices[ i ] );

  			}

  		}

  		return this;

  	},

  	raycast: function ( raycaster, intersects ) {

  		const geometry = this.geometry;
  		const matrixWorld = this.matrixWorld;
  		const threshold = raycaster.params.Line.threshold;

  		// Checking boundingSphere distance to ray

  		if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

  		_sphere$2.copy( geometry.boundingSphere );
  		_sphere$2.applyMatrix4( matrixWorld );
  		_sphere$2.radius += threshold;

  		if ( raycaster.ray.intersectsSphere( _sphere$2 ) === false ) return;

  		//

  		_inverseMatrix$1.getInverse( matrixWorld );
  		_ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 );

  		const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
  		const localThresholdSq = localThreshold * localThreshold;

  		const vStart = new Vector3();
  		const vEnd = new Vector3();
  		const interSegment = new Vector3();
  		const interRay = new Vector3();
  		const step = ( this && this.isLineSegments ) ? 2 : 1;

  		if ( geometry.isBufferGeometry ) {

  			const index = geometry.index;
  			const attributes = geometry.attributes;
  			const positions = attributes.position.array;

  			if ( index !== null ) {

  				const indices = index.array;

  				for ( let i = 0, l = indices.length - 1; i < l; i += step ) {

  					const a = indices[ i ];
  					const b = indices[ i + 1 ];

  					vStart.fromArray( positions, a * 3 );
  					vEnd.fromArray( positions, b * 3 );

  					const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

  					if ( distSq > localThresholdSq ) continue;

  					interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

  					const distance = raycaster.ray.origin.distanceTo( interRay );

  					if ( distance < raycaster.near || distance > raycaster.far ) continue;

  					intersects.push( {

  						distance: distance,
  						// What do we want? intersection point on the ray or on the segment??
  						// point: raycaster.ray.at( distance ),
  						point: interSegment.clone().applyMatrix4( this.matrixWorld ),
  						index: i,
  						face: null,
  						faceIndex: null,
  						object: this

  					} );

  				}

  			} else {

  				for ( let i = 0, l = positions.length / 3 - 1; i < l; i += step ) {

  					vStart.fromArray( positions, 3 * i );
  					vEnd.fromArray( positions, 3 * i + 3 );

  					const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

  					if ( distSq > localThresholdSq ) continue;

  					interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

  					const distance = raycaster.ray.origin.distanceTo( interRay );

  					if ( distance < raycaster.near || distance > raycaster.far ) continue;

  					intersects.push( {

  						distance: distance,
  						// What do we want? intersection point on the ray or on the segment??
  						// point: raycaster.ray.at( distance ),
  						point: interSegment.clone().applyMatrix4( this.matrixWorld ),
  						index: i,
  						face: null,
  						faceIndex: null,
  						object: this

  					} );

  				}

  			}

  		} else if ( geometry.isGeometry ) {

  			const vertices = geometry.vertices;
  			const nbVertices = vertices.length;

  			for ( let i = 0; i < nbVertices - 1; i += step ) {

  				const distSq = _ray$1.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );

  				if ( distSq > localThresholdSq ) continue;

  				interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

  				const distance = raycaster.ray.origin.distanceTo( interRay );

  				if ( distance < raycaster.near || distance > raycaster.far ) continue;

  				intersects.push( {

  					distance: distance,
  					// What do we want? intersection point on the ray or on the segment??
  					// point: raycaster.ray.at( distance ),
  					point: interSegment.clone().applyMatrix4( this.matrixWorld ),
  					index: i,
  					face: null,
  					faceIndex: null,
  					object: this

  				} );

  			}

  		}

  	},

  	updateMorphTargets: function () {

  		const geometry = this.geometry;

  		if ( geometry.isBufferGeometry ) {

  			const morphAttributes = geometry.morphAttributes;
  			const keys = Object.keys( morphAttributes );

  			if ( keys.length > 0 ) {

  				const morphAttribute = morphAttributes[ keys[ 0 ] ];

  				if ( morphAttribute !== undefined ) {

  					this.morphTargetInfluences = [];
  					this.morphTargetDictionary = {};

  					for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {

  						const name = morphAttribute[ m ].name || String( m );

  						this.morphTargetInfluences.push( 0 );
  						this.morphTargetDictionary[ name ] = m;

  					}

  				}

  			}

  		} else {

  			const morphTargets = geometry.morphTargets;

  			if ( morphTargets !== undefined && morphTargets.length > 0 ) {

  				console.error( 'THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' );

  			}

  		}

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  const _start$1 = new Vector3();
  const _end$1 = new Vector3();

  function LineSegments( geometry, material ) {

  	Line.call( this, geometry, material );

  	this.type = 'LineSegments';

  }

  LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {

  	constructor: LineSegments,

  	isLineSegments: true,

  	computeLineDistances: function () {

  		const geometry = this.geometry;

  		if ( geometry.isBufferGeometry ) {

  			// we assume non-indexed geometry

  			if ( geometry.index === null ) {

  				const positionAttribute = geometry.attributes.position;
  				const lineDistances = [];

  				for ( let i = 0, l = positionAttribute.count; i < l; i += 2 ) {

  					_start$1.fromBufferAttribute( positionAttribute, i );
  					_end$1.fromBufferAttribute( positionAttribute, i + 1 );

  					lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
  					lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 );

  				}

  				geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );

  			} else {

  				console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );

  			}

  		} else if ( geometry.isGeometry ) {

  			const vertices = geometry.vertices;
  			const lineDistances = geometry.lineDistances;

  			for ( let i = 0, l = vertices.length; i < l; i += 2 ) {

  				_start$1.copy( vertices[ i ] );
  				_end$1.copy( vertices[ i + 1 ] );

  				lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
  				lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 );

  			}

  		}

  		return this;

  	}

  } );

  /**
   * @author mgreter / http://github.com/mgreter
   */

  function LineLoop( geometry, material ) {

  	Line.call( this, geometry, material );

  	this.type = 'LineLoop';

  }

  LineLoop.prototype = Object.assign( Object.create( Line.prototype ), {

  	constructor: LineLoop,

  	isLineLoop: true,

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *  map: new THREE.Texture( <Image> ),
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  size: <float>,
   *  sizeAttenuation: <bool>
   *
   *  morphTargets: <bool>
   * }
   */

  function PointsMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'PointsMaterial';

  	this.color = new Color( 0xffffff );

  	this.map = null;

  	this.alphaMap = null;

  	this.size = 1;
  	this.sizeAttenuation = true;

  	this.morphTargets = false;

  	this.setValues( parameters );

  }

  PointsMaterial.prototype = Object.create( Material.prototype );
  PointsMaterial.prototype.constructor = PointsMaterial;

  PointsMaterial.prototype.isPointsMaterial = true;

  PointsMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.map = source.map;

  	this.alphaMap = source.alphaMap;

  	this.size = source.size;
  	this.sizeAttenuation = source.sizeAttenuation;

  	this.morphTargets = source.morphTargets;

  	return this;

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  const _inverseMatrix$2 = new Matrix4();
  const _ray$2 = new Ray();
  const _sphere$3 = new Sphere();
  const _position$1 = new Vector3();

  function Points( geometry, material ) {

  	Object3D.call( this );

  	this.type = 'Points';

  	this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
  	this.material = material !== undefined ? material : new PointsMaterial();

  	this.updateMorphTargets();

  }

  Points.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Points,

  	isPoints: true,

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source );

  		this.material = source.material;
  		this.geometry = source.geometry;

  		return this;

  	},

  	raycast: function ( raycaster, intersects ) {

  		const geometry = this.geometry;
  		const matrixWorld = this.matrixWorld;
  		const threshold = raycaster.params.Points.threshold;

  		// Checking boundingSphere distance to ray

  		if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

  		_sphere$3.copy( geometry.boundingSphere );
  		_sphere$3.applyMatrix4( matrixWorld );
  		_sphere$3.radius += threshold;

  		if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) return;

  		//

  		_inverseMatrix$2.getInverse( matrixWorld );
  		_ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 );

  		const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
  		const localThresholdSq = localThreshold * localThreshold;

  		if ( geometry.isBufferGeometry ) {

  			const index = geometry.index;
  			const attributes = geometry.attributes;
  			const positions = attributes.position.array;

  			if ( index !== null ) {

  				const indices = index.array;

  				for ( let i = 0, il = indices.length; i < il; i ++ ) {

  					const a = indices[ i ];

  					_position$1.fromArray( positions, a * 3 );

  					testPoint( _position$1, a, localThresholdSq, matrixWorld, raycaster, intersects, this );

  				}

  			} else {

  				for ( let i = 0, l = positions.length / 3; i < l; i ++ ) {

  					_position$1.fromArray( positions, i * 3 );

  					testPoint( _position$1, i, localThresholdSq, matrixWorld, raycaster, intersects, this );

  				}

  			}

  		} else {

  			const vertices = geometry.vertices;

  			for ( let i = 0, l = vertices.length; i < l; i ++ ) {

  				testPoint( vertices[ i ], i, localThresholdSq, matrixWorld, raycaster, intersects, this );

  			}

  		}

  	},

  	updateMorphTargets: function () {

  		const geometry = this.geometry;

  		if ( geometry.isBufferGeometry ) {

  			const morphAttributes = geometry.morphAttributes;
  			const keys = Object.keys( morphAttributes );

  			if ( keys.length > 0 ) {

  				const morphAttribute = morphAttributes[ keys[ 0 ] ];

  				if ( morphAttribute !== undefined ) {

  					this.morphTargetInfluences = [];
  					this.morphTargetDictionary = {};

  					for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {

  						const name = morphAttribute[ m ].name || String( m );

  						this.morphTargetInfluences.push( 0 );
  						this.morphTargetDictionary[ name ] = m;

  					}

  				}

  			}

  		} else {

  			const morphTargets = geometry.morphTargets;

  			if ( morphTargets !== undefined && morphTargets.length > 0 ) {

  				console.error( 'THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' );

  			}

  		}

  	}

  } );

  function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) {

  	const rayPointDistanceSq = _ray$2.distanceSqToPoint( point );

  	if ( rayPointDistanceSq < localThresholdSq ) {

  		const intersectPoint = new Vector3();

  		_ray$2.closestPointToPoint( point, intersectPoint );
  		intersectPoint.applyMatrix4( matrixWorld );

  		const distance = raycaster.ray.origin.distanceTo( intersectPoint );

  		if ( distance < raycaster.near || distance > raycaster.far ) return;

  		intersects.push( {

  			distance: distance,
  			distanceToRay: Math.sqrt( rayPointDistanceSq ),
  			point: intersectPoint,
  			index: index,
  			face: null,
  			object: object

  		} );

  	}

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {

  	Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

  	this.format = format !== undefined ? format : RGBFormat;

  	this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
  	this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;

  	this.generateMipmaps = false;

  }

  VideoTexture.prototype = Object.assign( Object.create( Texture.prototype ), {

  	constructor: VideoTexture,

  	isVideoTexture: true,

  	update: function () {

  		const video = this.image;

  		if ( video.readyState >= video.HAVE_CURRENT_DATA ) {

  			this.needsUpdate = true;

  		}

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

  	Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

  	this.image = { width: width, height: height };
  	this.mipmaps = mipmaps;

  	// no flipping for cube textures
  	// (also flipping doesn't work for compressed textures )

  	this.flipY = false;

  	// can't generate mipmaps for compressed textures
  	// mips must be embedded in DDS files

  	this.generateMipmaps = false;

  }

  CompressedTexture.prototype = Object.create( Texture.prototype );
  CompressedTexture.prototype.constructor = CompressedTexture;

  CompressedTexture.prototype.isCompressedTexture = true;

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {

  	Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

  	this.needsUpdate = true;

  }

  CanvasTexture.prototype = Object.create( Texture.prototype );
  CanvasTexture.prototype.constructor = CanvasTexture;
  CanvasTexture.prototype.isCanvasTexture = true;

  /**
   * @author Matt DesLauriers / @mattdesl
   * @author atix / arthursilber.de
   */

  function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) {

  	format = format !== undefined ? format : DepthFormat;

  	if ( format !== DepthFormat && format !== DepthStencilFormat ) {

  		throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' );

  	}

  	if ( type === undefined && format === DepthFormat ) type = UnsignedShortType;
  	if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type;

  	Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

  	this.image = { width: width, height: height };

  	this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
  	this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;

  	this.flipY = false;
  	this.generateMipmaps	= false;

  }

  DepthTexture.prototype = Object.create( Texture.prototype );
  DepthTexture.prototype.constructor = DepthTexture;
  DepthTexture.prototype.isDepthTexture = true;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  function WireframeGeometry( geometry ) {

  	BufferGeometry.call( this );

  	this.type = 'WireframeGeometry';

  	// buffer

  	const vertices = [];

  	// helper variables

  	const edge = [ 0, 0 ], edges = {};
  	const keys = [ 'a', 'b', 'c' ];

  	// different logic for Geometry and BufferGeometry

  	if ( geometry && geometry.isGeometry ) {

  		// create a data structure that contains all edges without duplicates

  		const faces = geometry.faces;

  		for ( let i = 0, l = faces.length; i < l; i ++ ) {

  			const face = faces[ i ];

  			for ( let j = 0; j < 3; j ++ ) {

  				const edge1 = face[ keys[ j ] ];
  				const edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
  				edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
  				edge[ 1 ] = Math.max( edge1, edge2 );

  				const key = edge[ 0 ] + ',' + edge[ 1 ];

  				if ( edges[ key ] === undefined ) {

  					edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

  				}

  			}

  		}

  		// generate vertices

  		for ( const key in edges ) {

  			const e = edges[ key ];

  			let vertex = geometry.vertices[ e.index1 ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  			vertex = geometry.vertices[ e.index2 ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  		}

  	} else if ( geometry && geometry.isBufferGeometry ) {

  		let vertex = new Vector3();

  		if ( geometry.index !== null ) {

  			// indexed BufferGeometry

  			const position = geometry.attributes.position;
  			const indices = geometry.index;
  			let groups = geometry.groups;

  			if ( groups.length === 0 ) {

  				groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];

  			}

  			// create a data structure that contains all eges without duplicates

  			for ( let o = 0, ol = groups.length; o < ol; ++ o ) {

  				const group = groups[ o ];

  				const start = group.start;
  				const count = group.count;

  				for ( let i = start, l = ( start + count ); i < l; i += 3 ) {

  					for ( let j = 0; j < 3; j ++ ) {

  						const edge1 = indices.getX( i + j );
  						const edge2 = indices.getX( i + ( j + 1 ) % 3 );
  						edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
  						edge[ 1 ] = Math.max( edge1, edge2 );

  						const key = edge[ 0 ] + ',' + edge[ 1 ];

  						if ( edges[ key ] === undefined ) {

  							edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

  						}

  					}

  				}

  			}

  			// generate vertices

  			for ( const key in edges ) {

  				const e = edges[ key ];

  				vertex.fromBufferAttribute( position, e.index1 );
  				vertices.push( vertex.x, vertex.y, vertex.z );

  				vertex.fromBufferAttribute( position, e.index2 );
  				vertices.push( vertex.x, vertex.y, vertex.z );

  			}

  		} else {

  			// non-indexed BufferGeometry

  			const position = geometry.attributes.position;

  			for ( let i = 0, l = ( position.count / 3 ); i < l; i ++ ) {

  				for ( let j = 0; j < 3; j ++ ) {

  					// three edges per triangle, an edge is represented as (index1, index2)
  					// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)

  					const index1 = 3 * i + j;
  					vertex.fromBufferAttribute( position, index1 );
  					vertices.push( vertex.x, vertex.y, vertex.z );

  					const index2 = 3 * i + ( ( j + 1 ) % 3 );
  					vertex.fromBufferAttribute( position, index2 );
  					vertices.push( vertex.x, vertex.y, vertex.z );

  				}

  			}

  		}

  	}

  	// build geometry

  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

  }

  WireframeGeometry.prototype = Object.create( BufferGeometry.prototype );
  WireframeGeometry.prototype.constructor = WireframeGeometry;

  /**
   * @author zz85 / https://github.com/zz85
   * @author Mugen87 / https://github.com/Mugen87
   *
   * Parametric Surfaces Geometry
   * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html
   */

  // ParametricGeometry

  function ParametricGeometry( func, slices, stacks ) {

  	Geometry.call( this );

  	this.type = 'ParametricGeometry';

  	this.parameters = {
  		func: func,
  		slices: slices,
  		stacks: stacks
  	};

  	this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) );
  	this.mergeVertices();

  }

  ParametricGeometry.prototype = Object.create( Geometry.prototype );
  ParametricGeometry.prototype.constructor = ParametricGeometry;

  // ParametricBufferGeometry

  function ParametricBufferGeometry( func, slices, stacks ) {

  	BufferGeometry.call( this );

  	this.type = 'ParametricBufferGeometry';

  	this.parameters = {
  		func: func,
  		slices: slices,
  		stacks: stacks
  	};

  	// buffers

  	const indices = [];
  	const vertices = [];
  	const normals = [];
  	const uvs = [];

  	const EPS = 0.00001;

  	const normal = new Vector3();

  	const p0 = new Vector3(), p1 = new Vector3();
  	const pu = new Vector3(), pv = new Vector3();

  	if ( func.length < 3 ) {

  		console.error( 'THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.' );

  	}

  	// generate vertices, normals and uvs

  	const sliceCount = slices + 1;

  	for ( let i = 0; i <= stacks; i ++ ) {

  		const v = i / stacks;

  		for ( let j = 0; j <= slices; j ++ ) {

  			const u = j / slices;

  			// vertex

  			func( u, v, p0 );
  			vertices.push( p0.x, p0.y, p0.z );

  			// normal

  			// approximate tangent vectors via finite differences

  			if ( u - EPS >= 0 ) {

  				func( u - EPS, v, p1 );
  				pu.subVectors( p0, p1 );

  			} else {

  				func( u + EPS, v, p1 );
  				pu.subVectors( p1, p0 );

  			}

  			if ( v - EPS >= 0 ) {

  				func( u, v - EPS, p1 );
  				pv.subVectors( p0, p1 );

  			} else {

  				func( u, v + EPS, p1 );
  				pv.subVectors( p1, p0 );

  			}

  			// cross product of tangent vectors returns surface normal

  			normal.crossVectors( pu, pv ).normalize();
  			normals.push( normal.x, normal.y, normal.z );

  			// uv

  			uvs.push( u, v );

  		}

  	}

  	// generate indices

  	for ( let i = 0; i < stacks; i ++ ) {

  		for ( let j = 0; j < slices; j ++ ) {

  			const a = i * sliceCount + j;
  			const b = i * sliceCount + j + 1;
  			const c = ( i + 1 ) * sliceCount + j + 1;
  			const d = ( i + 1 ) * sliceCount + j;

  			// faces one and two

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry;

  /**
   * @author clockworkgeek / https://github.com/clockworkgeek
   * @author timothypratley / https://github.com/timothypratley
   * @author WestLangley / http://github.com/WestLangley
   * @author Mugen87 / https://github.com/Mugen87
   */

  // PolyhedronGeometry

  function PolyhedronGeometry( vertices, indices, radius, detail ) {

  	Geometry.call( this );

  	this.type = 'PolyhedronGeometry';

  	this.parameters = {
  		vertices: vertices,
  		indices: indices,
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) );
  	this.mergeVertices();

  }

  PolyhedronGeometry.prototype = Object.create( Geometry.prototype );
  PolyhedronGeometry.prototype.constructor = PolyhedronGeometry;

  // PolyhedronBufferGeometry

  function PolyhedronBufferGeometry( vertices, indices, radius, detail ) {

  	BufferGeometry.call( this );

  	this.type = 'PolyhedronBufferGeometry';

  	this.parameters = {
  		vertices: vertices,
  		indices: indices,
  		radius: radius,
  		detail: detail
  	};

  	radius = radius || 1;
  	detail = detail || 0;

  	// default buffer data

  	const vertexBuffer = [];
  	const uvBuffer = [];

  	// the subdivision creates the vertex buffer data

  	subdivide( detail );

  	// all vertices should lie on a conceptual sphere with a given radius

  	applyRadius( radius );

  	// finally, create the uv data

  	generateUVs();

  	// build non-indexed geometry

  	this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );

  	if ( detail === 0 ) {

  		this.computeVertexNormals(); // flat normals

  	} else {

  		this.normalizeNormals(); // smooth normals

  	}

  	// helper functions

  	function subdivide( detail ) {

  		const a = new Vector3();
  		const b = new Vector3();
  		const c = new Vector3();

  		// iterate over all faces and apply a subdivison with the given detail value

  		for ( let i = 0; i < indices.length; i += 3 ) {

  			// get the vertices of the face

  			getVertexByIndex( indices[ i + 0 ], a );
  			getVertexByIndex( indices[ i + 1 ], b );
  			getVertexByIndex( indices[ i + 2 ], c );

  			// perform subdivision

  			subdivideFace( a, b, c, detail );

  		}

  	}

  	function subdivideFace( a, b, c, detail ) {

  		const cols = Math.pow( 2, detail );

  		// we use this multidimensional array as a data structure for creating the subdivision

  		const v = [];

  		// construct all of the vertices for this subdivision

  		for ( let i = 0; i <= cols; i ++ ) {

  			v[ i ] = [];

  			const aj = a.clone().lerp( c, i / cols );
  			const bj = b.clone().lerp( c, i / cols );

  			const rows = cols - i;

  			for ( let j = 0; j <= rows; j ++ ) {

  				if ( j === 0 && i === cols ) {

  					v[ i ][ j ] = aj;

  				} else {

  					v[ i ][ j ] = aj.clone().lerp( bj, j / rows );

  				}

  			}

  		}

  		// construct all of the faces

  		for ( let i = 0; i < cols; i ++ ) {

  			for ( let j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {

  				const k = Math.floor( j / 2 );

  				if ( j % 2 === 0 ) {

  					pushVertex( v[ i ][ k + 1 ] );
  					pushVertex( v[ i + 1 ][ k ] );
  					pushVertex( v[ i ][ k ] );

  				} else {

  					pushVertex( v[ i ][ k + 1 ] );
  					pushVertex( v[ i + 1 ][ k + 1 ] );
  					pushVertex( v[ i + 1 ][ k ] );

  				}

  			}

  		}

  	}

  	function applyRadius( radius ) {

  		const vertex = new Vector3();

  		// iterate over the entire buffer and apply the radius to each vertex

  		for ( let i = 0; i < vertexBuffer.length; i += 3 ) {

  			vertex.x = vertexBuffer[ i + 0 ];
  			vertex.y = vertexBuffer[ i + 1 ];
  			vertex.z = vertexBuffer[ i + 2 ];

  			vertex.normalize().multiplyScalar( radius );

  			vertexBuffer[ i + 0 ] = vertex.x;
  			vertexBuffer[ i + 1 ] = vertex.y;
  			vertexBuffer[ i + 2 ] = vertex.z;

  		}

  	}

  	function generateUVs() {

  		const vertex = new Vector3();

  		for ( let i = 0; i < vertexBuffer.length; i += 3 ) {

  			vertex.x = vertexBuffer[ i + 0 ];
  			vertex.y = vertexBuffer[ i + 1 ];
  			vertex.z = vertexBuffer[ i + 2 ];

  			const u = azimuth( vertex ) / 2 / Math.PI + 0.5;
  			const v = inclination( vertex ) / Math.PI + 0.5;
  			uvBuffer.push( u, 1 - v );

  		}

  		correctUVs();

  		correctSeam();

  	}

  	function correctSeam() {

  		// handle case when face straddles the seam, see #3269

  		for ( let i = 0; i < uvBuffer.length; i += 6 ) {

  			// uv data of a single face

  			const x0 = uvBuffer[ i + 0 ];
  			const x1 = uvBuffer[ i + 2 ];
  			const x2 = uvBuffer[ i + 4 ];

  			const max = Math.max( x0, x1, x2 );
  			const min = Math.min( x0, x1, x2 );

  			// 0.9 is somewhat arbitrary

  			if ( max > 0.9 && min < 0.1 ) {

  				if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1;
  				if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1;
  				if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1;

  			}

  		}

  	}

  	function pushVertex( vertex ) {

  		vertexBuffer.push( vertex.x, vertex.y, vertex.z );

  	}

  	function getVertexByIndex( index, vertex ) {

  		const stride = index * 3;

  		vertex.x = vertices[ stride + 0 ];
  		vertex.y = vertices[ stride + 1 ];
  		vertex.z = vertices[ stride + 2 ];

  	}

  	function correctUVs() {

  		const a = new Vector3();
  		const b = new Vector3();
  		const c = new Vector3();

  		const centroid = new Vector3();

  		const uvA = new Vector2();
  		const uvB = new Vector2();
  		const uvC = new Vector2();

  		for ( let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {

  			a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] );
  			b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] );
  			c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );

  			uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] );
  			uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] );
  			uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );

  			centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );

  			const azi = azimuth( centroid );

  			correctUV( uvA, j + 0, a, azi );
  			correctUV( uvB, j + 2, b, azi );
  			correctUV( uvC, j + 4, c, azi );

  		}

  	}

  	function correctUV( uv, stride, vector, azimuth ) {

  		if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {

  			uvBuffer[ stride ] = uv.x - 1;

  		}

  		if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {

  			uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;

  		}

  	}

  	// Angle around the Y axis, counter-clockwise when looking from above.

  	function azimuth( vector ) {

  		return Math.atan2( vector.z, - vector.x );

  	}


  	// Angle above the XZ plane.

  	function inclination( vector ) {

  		return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );

  	}

  }

  PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry;

  /**
   * @author timothypratley / https://github.com/timothypratley
   * @author Mugen87 / https://github.com/Mugen87
   */

  // TetrahedronGeometry

  function TetrahedronGeometry( radius, detail ) {

  	Geometry.call( this );

  	this.type = 'TetrahedronGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) );
  	this.mergeVertices();

  }

  TetrahedronGeometry.prototype = Object.create( Geometry.prototype );
  TetrahedronGeometry.prototype.constructor = TetrahedronGeometry;

  // TetrahedronBufferGeometry

  function TetrahedronBufferGeometry( radius, detail ) {

  	const vertices = [
  		1, 1, 1, 	- 1, - 1, 1, 	- 1, 1, - 1, 	1, - 1, - 1
  	];

  	const indices = [
  		2, 1, 0, 	0, 3, 2,	1, 3, 0,	2, 3, 1
  	];

  	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

  	this.type = 'TetrahedronBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  }

  TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
  TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry;

  /**
   * @author timothypratley / https://github.com/timothypratley
   * @author Mugen87 / https://github.com/Mugen87
   */

  // OctahedronGeometry

  function OctahedronGeometry( radius, detail ) {

  	Geometry.call( this );

  	this.type = 'OctahedronGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) );
  	this.mergeVertices();

  }

  OctahedronGeometry.prototype = Object.create( Geometry.prototype );
  OctahedronGeometry.prototype.constructor = OctahedronGeometry;

  // OctahedronBufferGeometry

  function OctahedronBufferGeometry( radius, detail ) {

  	const vertices = [
  		1, 0, 0, 	- 1, 0, 0,	0, 1, 0,
  		0, - 1, 0, 	0, 0, 1,	0, 0, - 1
  	];

  	const indices = [
  		0, 2, 4,	0, 4, 3,	0, 3, 5,
  		0, 5, 2,	1, 2, 5,	1, 5, 3,
  		1, 3, 4,	1, 4, 2
  	];

  	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

  	this.type = 'OctahedronBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  }

  OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
  OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry;

  /**
   * @author timothypratley / https://github.com/timothypratley
   * @author Mugen87 / https://github.com/Mugen87
   */

  // IcosahedronGeometry

  function IcosahedronGeometry( radius, detail ) {

  	Geometry.call( this );

  	this.type = 'IcosahedronGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) );
  	this.mergeVertices();

  }

  IcosahedronGeometry.prototype = Object.create( Geometry.prototype );
  IcosahedronGeometry.prototype.constructor = IcosahedronGeometry;

  // IcosahedronBufferGeometry

  function IcosahedronBufferGeometry( radius, detail ) {

  	const t = ( 1 + Math.sqrt( 5 ) ) / 2;

  	const vertices = [
  		- 1, t, 0, 	1, t, 0, 	- 1, - t, 0, 	1, - t, 0,
  		 0, - 1, t, 	0, 1, t,	0, - 1, - t, 	0, 1, - t,
  		 t, 0, - 1, 	t, 0, 1, 	- t, 0, - 1, 	- t, 0, 1
  	];

  	const indices = [
  		 0, 11, 5, 	0, 5, 1, 	0, 1, 7, 	0, 7, 10, 	0, 10, 11,
  		 1, 5, 9, 	5, 11, 4,	11, 10, 2,	10, 7, 6,	7, 1, 8,
  		 3, 9, 4, 	3, 4, 2,	3, 2, 6,	3, 6, 8,	3, 8, 9,
  		 4, 9, 5, 	2, 4, 11,	6, 2, 10,	8, 6, 7,	9, 8, 1
  	];

  	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

  	this.type = 'IcosahedronBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  }

  IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
  IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry;

  /**
   * @author Abe Pazos / https://hamoid.com
   * @author Mugen87 / https://github.com/Mugen87
   */

  // DodecahedronGeometry

  function DodecahedronGeometry( radius, detail ) {

  	Geometry.call( this );

  	this.type = 'DodecahedronGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) );
  	this.mergeVertices();

  }

  DodecahedronGeometry.prototype = Object.create( Geometry.prototype );
  DodecahedronGeometry.prototype.constructor = DodecahedronGeometry;

  // DodecahedronBufferGeometry

  function DodecahedronBufferGeometry( radius, detail ) {

  	const t = ( 1 + Math.sqrt( 5 ) ) / 2;
  	const r = 1 / t;

  	const vertices = [

  		// (±1, ±1, ±1)
  		- 1, - 1, - 1,	- 1, - 1, 1,
  		- 1, 1, - 1, - 1, 1, 1,
  		1, - 1, - 1, 1, - 1, 1,
  		1, 1, - 1, 1, 1, 1,

  		// (0, ±1/φ, ±φ)
  		 0, - r, - t, 0, - r, t,
  		 0, r, - t, 0, r, t,

  		// (±1/φ, ±φ, 0)
  		- r, - t, 0, - r, t, 0,
  		 r, - t, 0, r, t, 0,

  		// (±φ, 0, ±1/φ)
  		- t, 0, - r, t, 0, - r,
  		- t, 0, r, t, 0, r
  	];

  	const indices = [
  		3, 11, 7, 	3, 7, 15, 	3, 15, 13,
  		7, 19, 17, 	7, 17, 6, 	7, 6, 15,
  		17, 4, 8, 	17, 8, 10, 	17, 10, 6,
  		8, 0, 16, 	8, 16, 2, 	8, 2, 10,
  		0, 12, 1, 	0, 1, 18, 	0, 18, 16,
  		6, 10, 2, 	6, 2, 13, 	6, 13, 15,
  		2, 16, 18, 	2, 18, 3, 	2, 3, 13,
  		18, 1, 9, 	18, 9, 11, 	18, 11, 3,
  		4, 14, 12, 	4, 12, 0, 	4, 0, 8,
  		11, 9, 5, 	11, 5, 19, 	11, 19, 7,
  		19, 5, 14, 	19, 14, 4, 	19, 4, 17,
  		1, 12, 14, 	1, 14, 5, 	1, 5, 9
  	];

  	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

  	this.type = 'DodecahedronBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  }

  DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
  DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry;

  /**
   * @author oosmoxiecode / https://github.com/oosmoxiecode
   * @author WestLangley / https://github.com/WestLangley
   * @author zz85 / https://github.com/zz85
   * @author miningold / https://github.com/miningold
   * @author jonobr1 / https://github.com/jonobr1
   * @author Mugen87 / https://github.com/Mugen87
   *
   */

  // TubeGeometry

  function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) {

  	Geometry.call( this );

  	this.type = 'TubeGeometry';

  	this.parameters = {
  		path: path,
  		tubularSegments: tubularSegments,
  		radius: radius,
  		radialSegments: radialSegments,
  		closed: closed
  	};

  	if ( taper !== undefined ) console.warn( 'THREE.TubeGeometry: taper has been removed.' );

  	const bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed );

  	// expose internals

  	this.tangents = bufferGeometry.tangents;
  	this.normals = bufferGeometry.normals;
  	this.binormals = bufferGeometry.binormals;

  	// create geometry

  	this.fromBufferGeometry( bufferGeometry );
  	this.mergeVertices();

  }

  TubeGeometry.prototype = Object.create( Geometry.prototype );
  TubeGeometry.prototype.constructor = TubeGeometry;

  // TubeBufferGeometry

  function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) {

  	BufferGeometry.call( this );

  	this.type = 'TubeBufferGeometry';

  	this.parameters = {
  		path: path,
  		tubularSegments: tubularSegments,
  		radius: radius,
  		radialSegments: radialSegments,
  		closed: closed
  	};

  	tubularSegments = tubularSegments || 64;
  	radius = radius || 1;
  	radialSegments = radialSegments || 8;
  	closed = closed || false;

  	const frames = path.computeFrenetFrames( tubularSegments, closed );

  	// expose internals

  	this.tangents = frames.tangents;
  	this.normals = frames.normals;
  	this.binormals = frames.binormals;

  	// helper variables

  	const vertex = new Vector3();
  	const normal = new Vector3();
  	const uv = new Vector2();
  	let P = new Vector3();

  	// buffer

  	const vertices = [];
  	const normals = [];
  	const uvs = [];
  	const indices = [];

  	// create buffer data

  	generateBufferData();

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  	// functions

  	function generateBufferData() {

  		for ( let i = 0; i < tubularSegments; i ++ ) {

  			generateSegment( i );

  		}

  		// if the geometry is not closed, generate the last row of vertices and normals
  		// at the regular position on the given path
  		//
  		// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)

  		generateSegment( ( closed === false ) ? tubularSegments : 0 );

  		// uvs are generated in a separate function.
  		// this makes it easy compute correct values for closed geometries

  		generateUVs();

  		// finally create faces

  		generateIndices();

  	}

  	function generateSegment( i ) {

  		// we use getPointAt to sample evenly distributed points from the given path

  		P = path.getPointAt( i / tubularSegments, P );

  		// retrieve corresponding normal and binormal

  		const N = frames.normals[ i ];
  		const B = frames.binormals[ i ];

  		// generate normals and vertices for the current segment

  		for ( let j = 0; j <= radialSegments; j ++ ) {

  			const v = j / radialSegments * Math.PI * 2;

  			const sin = Math.sin( v );
  			const cos = - Math.cos( v );

  			// normal

  			normal.x = ( cos * N.x + sin * B.x );
  			normal.y = ( cos * N.y + sin * B.y );
  			normal.z = ( cos * N.z + sin * B.z );
  			normal.normalize();

  			normals.push( normal.x, normal.y, normal.z );

  			// vertex

  			vertex.x = P.x + radius * normal.x;
  			vertex.y = P.y + radius * normal.y;
  			vertex.z = P.z + radius * normal.z;

  			vertices.push( vertex.x, vertex.y, vertex.z );

  		}

  	}

  	function generateIndices() {

  		for ( let j = 1; j <= tubularSegments; j ++ ) {

  			for ( let i = 1; i <= radialSegments; i ++ ) {

  				const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
  				const b = ( radialSegments + 1 ) * j + ( i - 1 );
  				const c = ( radialSegments + 1 ) * j + i;
  				const d = ( radialSegments + 1 ) * ( j - 1 ) + i;

  				// faces

  				indices.push( a, b, d );
  				indices.push( b, c, d );

  			}

  		}

  	}

  	function generateUVs() {

  		for ( let i = 0; i <= tubularSegments; i ++ ) {

  			for ( let j = 0; j <= radialSegments; j ++ ) {

  				uv.x = i / tubularSegments;
  				uv.y = j / radialSegments;

  				uvs.push( uv.x, uv.y );

  			}

  		}

  	}

  }

  TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  TubeBufferGeometry.prototype.constructor = TubeBufferGeometry;

  TubeBufferGeometry.prototype.toJSON = function () {

  	const data = BufferGeometry.prototype.toJSON.call( this );

  	data.path = this.parameters.path.toJSON();

  	return data;

  };

  /**
   * @author oosmoxiecode
   * @author Mugen87 / https://github.com/Mugen87
   *
   * based on http://www.blackpawn.com/texts/pqtorus/
   */

  // TorusKnotGeometry

  function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {

  	Geometry.call( this );

  	this.type = 'TorusKnotGeometry';

  	this.parameters = {
  		radius: radius,
  		tube: tube,
  		tubularSegments: tubularSegments,
  		radialSegments: radialSegments,
  		p: p,
  		q: q
  	};

  	if ( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' );

  	this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
  	this.mergeVertices();

  }

  TorusKnotGeometry.prototype = Object.create( Geometry.prototype );
  TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;

  // TorusKnotBufferGeometry

  function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) {

  	BufferGeometry.call( this );

  	this.type = 'TorusKnotBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		tube: tube,
  		tubularSegments: tubularSegments,
  		radialSegments: radialSegments,
  		p: p,
  		q: q
  	};

  	radius = radius || 1;
  	tube = tube || 0.4;
  	tubularSegments = Math.floor( tubularSegments ) || 64;
  	radialSegments = Math.floor( radialSegments ) || 8;
  	p = p || 2;
  	q = q || 3;

  	// buffers

  	const indices = [];
  	const vertices = [];
  	const normals = [];
  	const uvs = [];

  	// helper variables

  	const vertex = new Vector3();
  	const normal = new Vector3();

  	const P1 = new Vector3();
  	const P2 = new Vector3();

  	const B = new Vector3();
  	const T = new Vector3();
  	const N = new Vector3();

  	// generate vertices, normals and uvs

  	for ( let i = 0; i <= tubularSegments; ++ i ) {

  		// the radian "u" is used to calculate the position on the torus curve of the current tubular segement

  		const u = i / tubularSegments * p * Math.PI * 2;

  		// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
  		// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions

  		calculatePositionOnCurve( u, p, q, radius, P1 );
  		calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );

  		// calculate orthonormal basis

  		T.subVectors( P2, P1 );
  		N.addVectors( P2, P1 );
  		B.crossVectors( T, N );
  		N.crossVectors( B, T );

  		// normalize B, N. T can be ignored, we don't use it

  		B.normalize();
  		N.normalize();

  		for ( let j = 0; j <= radialSegments; ++ j ) {

  			// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
  			// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.

  			const v = j / radialSegments * Math.PI * 2;
  			const cx = - tube * Math.cos( v );
  			const cy = tube * Math.sin( v );

  			// now calculate the final vertex position.
  			// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve

  			vertex.x = P1.x + ( cx * N.x + cy * B.x );
  			vertex.y = P1.y + ( cx * N.y + cy * B.y );
  			vertex.z = P1.z + ( cx * N.z + cy * B.z );

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)

  			normal.subVectors( vertex, P1 ).normalize();

  			normals.push( normal.x, normal.y, normal.z );

  			// uv

  			uvs.push( i / tubularSegments );
  			uvs.push( j / radialSegments );

  		}

  	}

  	// generate indices

  	for ( let j = 1; j <= tubularSegments; j ++ ) {

  		for ( let i = 1; i <= radialSegments; i ++ ) {

  			// indices

  			const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
  			const b = ( radialSegments + 1 ) * j + ( i - 1 );
  			const c = ( radialSegments + 1 ) * j + i;
  			const d = ( radialSegments + 1 ) * ( j - 1 ) + i;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  	// this function calculates the current position on the torus curve

  	function calculatePositionOnCurve( u, p, q, radius, position ) {

  		const cu = Math.cos( u );
  		const su = Math.sin( u );
  		const quOverP = q / p * u;
  		const cs = Math.cos( quOverP );

  		position.x = radius * ( 2 + cs ) * 0.5 * cu;
  		position.y = radius * ( 2 + cs ) * su * 0.5;
  		position.z = radius * Math.sin( quOverP ) * 0.5;

  	}

  }

  TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry;

  /**
   * @author oosmoxiecode
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  // TorusGeometry

  function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

  	Geometry.call( this );

  	this.type = 'TorusGeometry';

  	this.parameters = {
  		radius: radius,
  		tube: tube,
  		radialSegments: radialSegments,
  		tubularSegments: tubularSegments,
  		arc: arc
  	};

  	this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) );
  	this.mergeVertices();

  }

  TorusGeometry.prototype = Object.create( Geometry.prototype );
  TorusGeometry.prototype.constructor = TorusGeometry;

  // TorusBufferGeometry

  function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

  	BufferGeometry.call( this );

  	this.type = 'TorusBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		tube: tube,
  		radialSegments: radialSegments,
  		tubularSegments: tubularSegments,
  		arc: arc
  	};

  	radius = radius || 1;
  	tube = tube || 0.4;
  	radialSegments = Math.floor( radialSegments ) || 8;
  	tubularSegments = Math.floor( tubularSegments ) || 6;
  	arc = arc || Math.PI * 2;

  	// buffers

  	const indices = [];
  	const vertices = [];
  	const normals = [];
  	const uvs = [];

  	// helper variables

  	const center = new Vector3();
  	const vertex = new Vector3();
  	const normal = new Vector3();

  	// generate vertices, normals and uvs

  	for ( let j = 0; j <= radialSegments; j ++ ) {

  		for ( let i = 0; i <= tubularSegments; i ++ ) {

  			const u = i / tubularSegments * arc;
  			const v = j / radialSegments * Math.PI * 2;

  			// vertex

  			vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
  			vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
  			vertex.z = tube * Math.sin( v );

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal

  			center.x = radius * Math.cos( u );
  			center.y = radius * Math.sin( u );
  			normal.subVectors( vertex, center ).normalize();

  			normals.push( normal.x, normal.y, normal.z );

  			// uv

  			uvs.push( i / tubularSegments );
  			uvs.push( j / radialSegments );

  		}

  	}

  	// generate indices

  	for ( let j = 1; j <= radialSegments; j ++ ) {

  		for ( let i = 1; i <= tubularSegments; i ++ ) {

  			// indices

  			const a = ( tubularSegments + 1 ) * j + i - 1;
  			const b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
  			const c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
  			const d = ( tubularSegments + 1 ) * j + i;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  TorusBufferGeometry.prototype.constructor = TorusBufferGeometry;

  /**
   * @author Mugen87 / https://github.com/Mugen87
   * Port from https://github.com/mapbox/earcut (v2.2.2)
   */

  const Earcut = {

  	triangulate: function ( data, holeIndices, dim ) {

  		dim = dim || 2;

  		let hasHoles = holeIndices && holeIndices.length,
  			outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length,
  			outerNode = linkedList( data, 0, outerLen, dim, true ),
  			triangles = [];

  		if ( ! outerNode || outerNode.next === outerNode.prev ) return triangles;

  		let minX, minY, maxX, maxY, x, y, invSize;

  		if ( hasHoles ) outerNode = eliminateHoles( data, holeIndices, outerNode, dim );

  		// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
  		if ( data.length > 80 * dim ) {

  			minX = maxX = data[ 0 ];
  			minY = maxY = data[ 1 ];

  			for ( let i = dim; i < outerLen; i += dim ) {

  				x = data[ i ];
  				y = data[ i + 1 ];
  				if ( x < minX ) minX = x;
  				if ( y < minY ) minY = y;
  				if ( x > maxX ) maxX = x;
  				if ( y > maxY ) maxY = y;

  			}

  			// minX, minY and invSize are later used to transform coords into integers for z-order calculation
  			invSize = Math.max( maxX - minX, maxY - minY );
  			invSize = invSize !== 0 ? 1 / invSize : 0;

  		}

  		earcutLinked( outerNode, triangles, dim, minX, minY, invSize );

  		return triangles;

  	}

  };

  // create a circular doubly linked list from polygon points in the specified winding order
  function linkedList( data, start, end, dim, clockwise ) {

  	let i, last;

  	if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) {

  		for ( i = start; i < end; i += dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );

  	} else {

  		for ( i = end - dim; i >= start; i -= dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );

  	}

  	if ( last && equals( last, last.next ) ) {

  		removeNode( last );
  		last = last.next;

  	}

  	return last;

  }

  // eliminate colinear or duplicate points
  function filterPoints( start, end ) {

  	if ( ! start ) return start;
  	if ( ! end ) end = start;

  	let p = start,
  		again;
  	do {

  		again = false;

  		if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) {

  			removeNode( p );
  			p = end = p.prev;
  			if ( p === p.next ) break;
  			again = true;

  		} else {

  			p = p.next;

  		}

  	} while ( again || p !== end );

  	return end;

  }

  // main ear slicing loop which triangulates a polygon (given as a linked list)
  function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) {

  	if ( ! ear ) return;

  	// interlink polygon nodes in z-order
  	if ( ! pass && invSize ) indexCurve( ear, minX, minY, invSize );

  	let stop = ear,
  		prev, next;

  	// iterate through ears, slicing them one by one
  	while ( ear.prev !== ear.next ) {

  		prev = ear.prev;
  		next = ear.next;

  		if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) {

  			// cut off the triangle
  			triangles.push( prev.i / dim );
  			triangles.push( ear.i / dim );
  			triangles.push( next.i / dim );

  			removeNode( ear );

  			// skipping the next vertex leads to less sliver triangles
  			ear = next.next;
  			stop = next.next;

  			continue;

  		}

  		ear = next;

  		// if we looped through the whole remaining polygon and can't find any more ears
  		if ( ear === stop ) {

  			// try filtering points and slicing again
  			if ( ! pass ) {

  				earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 );

  				// if this didn't work, try curing all small self-intersections locally

  			} else if ( pass === 1 ) {

  				ear = cureLocalIntersections( filterPoints( ear ), triangles, dim );
  				earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 );

  				// as a last resort, try splitting the remaining polygon into two

  			} else if ( pass === 2 ) {

  				splitEarcut( ear, triangles, dim, minX, minY, invSize );

  			}

  			break;

  		}

  	}

  }

  // check whether a polygon node forms a valid ear with adjacent nodes
  function isEar( ear ) {

  	let a = ear.prev,
  		b = ear,
  		c = ear.next;

  	if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear

  	// now make sure we don't have other points inside the potential ear
  	let p = ear.next.next;

  	while ( p !== ear.prev ) {

  		if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
  			area( p.prev, p, p.next ) >= 0 ) return false;
  		p = p.next;

  	}

  	return true;

  }

  function isEarHashed( ear, minX, minY, invSize ) {

  	let a = ear.prev,
  		b = ear,
  		c = ear.next;

  	if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear

  	// triangle bbox; min & max are calculated like this for speed
  	let minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ),
  		minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ),
  		maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ),
  		maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y );

  	// z-order range for the current triangle bbox;
  	let minZ = zOrder( minTX, minTY, minX, minY, invSize ),
  		maxZ = zOrder( maxTX, maxTY, minX, minY, invSize );

  	let p = ear.prevZ,
  		n = ear.nextZ;

  	// look for points inside the triangle in both directions
  	while ( p && p.z >= minZ && n && n.z <= maxZ ) {

  		if ( p !== ear.prev && p !== ear.next &&
  			pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
  			area( p.prev, p, p.next ) >= 0 ) return false;
  		p = p.prevZ;

  		if ( n !== ear.prev && n !== ear.next &&
  			pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) &&
  			area( n.prev, n, n.next ) >= 0 ) return false;
  		n = n.nextZ;

  	}

  	// look for remaining points in decreasing z-order
  	while ( p && p.z >= minZ ) {

  		if ( p !== ear.prev && p !== ear.next &&
  			pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
  			area( p.prev, p, p.next ) >= 0 ) return false;
  		p = p.prevZ;

  	}

  	// look for remaining points in increasing z-order
  	while ( n && n.z <= maxZ ) {

  		if ( n !== ear.prev && n !== ear.next &&
  			pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) &&
  			area( n.prev, n, n.next ) >= 0 ) return false;
  		n = n.nextZ;

  	}

  	return true;

  }

  // go through all polygon nodes and cure small local self-intersections
  function cureLocalIntersections( start, triangles, dim ) {

  	let p = start;
  	do {

  		let a = p.prev,
  			b = p.next.next;

  		if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) {

  			triangles.push( a.i / dim );
  			triangles.push( p.i / dim );
  			triangles.push( b.i / dim );

  			// remove two nodes involved
  			removeNode( p );
  			removeNode( p.next );

  			p = start = b;

  		}

  		p = p.next;

  	} while ( p !== start );

  	return filterPoints( p );

  }

  // try splitting polygon into two and triangulate them independently
  function splitEarcut( start, triangles, dim, minX, minY, invSize ) {

  	// look for a valid diagonal that divides the polygon into two
  	let a = start;
  	do {

  		let b = a.next.next;
  		while ( b !== a.prev ) {

  			if ( a.i !== b.i && isValidDiagonal( a, b ) ) {

  				// split the polygon in two by the diagonal
  				let c = splitPolygon( a, b );

  				// filter colinear points around the cuts
  				a = filterPoints( a, a.next );
  				c = filterPoints( c, c.next );

  				// run earcut on each half
  				earcutLinked( a, triangles, dim, minX, minY, invSize );
  				earcutLinked( c, triangles, dim, minX, minY, invSize );
  				return;

  			}

  			b = b.next;

  		}

  		a = a.next;

  	} while ( a !== start );

  }

  // link every hole into the outer loop, producing a single-ring polygon without holes
  function eliminateHoles( data, holeIndices, outerNode, dim ) {

  	let queue = [],
  		i, len, start, end, list;

  	for ( i = 0, len = holeIndices.length; i < len; i ++ ) {

  		start = holeIndices[ i ] * dim;
  		end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length;
  		list = linkedList( data, start, end, dim, false );
  		if ( list === list.next ) list.steiner = true;
  		queue.push( getLeftmost( list ) );

  	}

  	queue.sort( compareX );

  	// process holes from left to right
  	for ( i = 0; i < queue.length; i ++ ) {

  		eliminateHole( queue[ i ], outerNode );
  		outerNode = filterPoints( outerNode, outerNode.next );

  	}

  	return outerNode;

  }

  function compareX( a, b ) {

  	return a.x - b.x;

  }

  // find a bridge between vertices that connects hole with an outer ring and and link it
  function eliminateHole( hole, outerNode ) {

  	outerNode = findHoleBridge( hole, outerNode );
  	if ( outerNode ) {

  		const b = splitPolygon( outerNode, hole );

  		// filter collinear points around the cuts
  		filterPoints( outerNode, outerNode.next );
  		filterPoints( b, b.next );

  	}

  }

  // David Eberly's algorithm for finding a bridge between hole and outer polygon
  function findHoleBridge( hole, outerNode ) {

  	let p = outerNode,
  		hx = hole.x,
  		hy = hole.y,
  		qx = - Infinity,
  		m;

  	// find a segment intersected by a ray from the hole's leftmost point to the left;
  	// segment's endpoint with lesser x will be potential connection point
  	do {

  		if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) {

  			let x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y );
  			if ( x <= hx && x > qx ) {

  				qx = x;
  				if ( x === hx ) {

  					if ( hy === p.y ) return p;
  					if ( hy === p.next.y ) return p.next;

  				}

  				m = p.x < p.next.x ? p : p.next;

  			}

  		}

  		p = p.next;

  	} while ( p !== outerNode );

  	if ( ! m ) return null;

  	if ( hx === qx ) return m; // hole touches outer segment; pick leftmost endpoint

  	// look for points inside the triangle of hole point, segment intersection and endpoint;
  	// if there are no points found, we have a valid connection;
  	// otherwise choose the point of the minimum angle with the ray as connection point

  	let stop = m,
  		mx = m.x,
  		my = m.y,
  		tanMin = Infinity,
  		tan;

  	p = m;

  	do {

  		if ( hx >= p.x && p.x >= mx && hx !== p.x &&
  				pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) {

  			tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential

  			if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) {

  				m = p;
  				tanMin = tan;

  			}

  		}

  		p = p.next;

  	} while ( p !== stop );

  	return m;

  }

  // whether sector in vertex m contains sector in vertex p in the same coordinates
  function sectorContainsSector( m, p ) {

  	return area( m.prev, m, p.prev ) < 0 && area( p.next, m, m.next ) < 0;

  }

  // interlink polygon nodes in z-order
  function indexCurve( start, minX, minY, invSize ) {

  	let p = start;
  	do {

  		if ( p.z === null ) p.z = zOrder( p.x, p.y, minX, minY, invSize );
  		p.prevZ = p.prev;
  		p.nextZ = p.next;
  		p = p.next;

  	} while ( p !== start );

  	p.prevZ.nextZ = null;
  	p.prevZ = null;

  	sortLinked( p );

  }

  // Simon Tatham's linked list merge sort algorithm
  // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
  function sortLinked( list ) {

  	let i, p, q, e, tail, numMerges, pSize, qSize,
  		inSize = 1;

  	do {

  		p = list;
  		list = null;
  		tail = null;
  		numMerges = 0;

  		while ( p ) {

  			numMerges ++;
  			q = p;
  			pSize = 0;
  			for ( i = 0; i < inSize; i ++ ) {

  				pSize ++;
  				q = q.nextZ;
  				if ( ! q ) break;

  			}

  			qSize = inSize;

  			while ( pSize > 0 || ( qSize > 0 && q ) ) {

  				if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) {

  					e = p;
  					p = p.nextZ;
  					pSize --;

  				} else {

  					e = q;
  					q = q.nextZ;
  					qSize --;

  				}

  				if ( tail ) tail.nextZ = e;
  				else list = e;

  				e.prevZ = tail;
  				tail = e;

  			}

  			p = q;

  		}

  		tail.nextZ = null;
  		inSize *= 2;

  	} while ( numMerges > 1 );

  	return list;

  }

  // z-order of a point given coords and inverse of the longer side of data bbox
  function zOrder( x, y, minX, minY, invSize ) {

  	// coords are transformed into non-negative 15-bit integer range
  	x = 32767 * ( x - minX ) * invSize;
  	y = 32767 * ( y - minY ) * invSize;

  	x = ( x | ( x << 8 ) ) & 0x00FF00FF;
  	x = ( x | ( x << 4 ) ) & 0x0F0F0F0F;
  	x = ( x | ( x << 2 ) ) & 0x33333333;
  	x = ( x | ( x << 1 ) ) & 0x55555555;

  	y = ( y | ( y << 8 ) ) & 0x00FF00FF;
  	y = ( y | ( y << 4 ) ) & 0x0F0F0F0F;
  	y = ( y | ( y << 2 ) ) & 0x33333333;
  	y = ( y | ( y << 1 ) ) & 0x55555555;

  	return x | ( y << 1 );

  }

  // find the leftmost node of a polygon ring
  function getLeftmost( start ) {

  	let p = start,
  		leftmost = start;
  	do {

  		if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) leftmost = p;
  		p = p.next;

  	} while ( p !== start );

  	return leftmost;

  }

  // check if a point lies within a convex triangle
  function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) {

  	return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 &&
  			( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 &&
  			( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0;

  }

  // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
  function isValidDiagonal( a, b ) {

  	return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // dones't intersect other edges
  		( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible
  		( area( a.prev, a, b.prev ) || area( a, b.prev, b ) ) || // does not create opposite-facing sectors
  		equals( a, b ) && area( a.prev, a, a.next ) > 0 && area( b.prev, b, b.next ) > 0 ); // special zero-length case

  }

  // signed area of a triangle
  function area( p, q, r ) {

  	return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y );

  }

  // check if two points are equal
  function equals( p1, p2 ) {

  	return p1.x === p2.x && p1.y === p2.y;

  }

  // check if two segments intersect
  function intersects( p1, q1, p2, q2 ) {

  	const o1 = sign( area( p1, q1, p2 ) );
  	const o2 = sign( area( p1, q1, q2 ) );
  	const o3 = sign( area( p2, q2, p1 ) );
  	const o4 = sign( area( p2, q2, q1 ) );

  	if ( o1 !== o2 && o3 !== o4 ) return true; // general case

  	if ( o1 === 0 && onSegment( p1, p2, q1 ) ) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
  	if ( o2 === 0 && onSegment( p1, q2, q1 ) ) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
  	if ( o3 === 0 && onSegment( p2, p1, q2 ) ) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
  	if ( o4 === 0 && onSegment( p2, q1, q2 ) ) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2

  	return false;

  }

  // for collinear points p, q, r, check if point q lies on segment pr
  function onSegment( p, q, r ) {

  	return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y );

  }

  function sign( num ) {

  	return num > 0 ? 1 : num < 0 ? - 1 : 0;

  }

  // check if a polygon diagonal intersects any polygon segments
  function intersectsPolygon( a, b ) {

  	let p = a;
  	do {

  		if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
  				intersects( p, p.next, a, b ) ) return true;
  		p = p.next;

  	} while ( p !== a );

  	return false;

  }

  // check if a polygon diagonal is locally inside the polygon
  function locallyInside( a, b ) {

  	return area( a.prev, a, a.next ) < 0 ?
  		area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 :
  		area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0;

  }

  // check if the middle point of a polygon diagonal is inside the polygon
  function middleInside( a, b ) {

  	let p = a,
  		inside = false,
  		px = ( a.x + b.x ) / 2,
  		py = ( a.y + b.y ) / 2;
  	do {

  		if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y &&
  				( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) )
  			inside = ! inside;
  		p = p.next;

  	} while ( p !== a );

  	return inside;

  }

  // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
  // if one belongs to the outer ring and another to a hole, it merges it into a single ring
  function splitPolygon( a, b ) {

  	let a2 = new Node( a.i, a.x, a.y ),
  		b2 = new Node( b.i, b.x, b.y ),
  		an = a.next,
  		bp = b.prev;

  	a.next = b;
  	b.prev = a;

  	a2.next = an;
  	an.prev = a2;

  	b2.next = a2;
  	a2.prev = b2;

  	bp.next = b2;
  	b2.prev = bp;

  	return b2;

  }

  // create a node and optionally link it with previous one (in a circular doubly linked list)
  function insertNode( i, x, y, last ) {

  	const p = new Node( i, x, y );

  	if ( ! last ) {

  		p.prev = p;
  		p.next = p;

  	} else {

  		p.next = last.next;
  		p.prev = last;
  		last.next.prev = p;
  		last.next = p;

  	}

  	return p;

  }

  function removeNode( p ) {

  	p.next.prev = p.prev;
  	p.prev.next = p.next;

  	if ( p.prevZ ) p.prevZ.nextZ = p.nextZ;
  	if ( p.nextZ ) p.nextZ.prevZ = p.prevZ;

  }

  function Node( i, x, y ) {

  	// vertex index in coordinates array
  	this.i = i;

  	// vertex coordinates
  	this.x = x;
  	this.y = y;

  	// previous and next vertex nodes in a polygon ring
  	this.prev = null;
  	this.next = null;

  	// z-order curve value
  	this.z = null;

  	// previous and next nodes in z-order
  	this.prevZ = null;
  	this.nextZ = null;

  	// indicates whether this is a steiner point
  	this.steiner = false;

  }

  function signedArea( data, start, end, dim ) {

  	let sum = 0;
  	for ( let i = start, j = end - dim; i < end; i += dim ) {

  		sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] );
  		j = i;

  	}

  	return sum;

  }

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   */

  const ShapeUtils = {

  	// calculate area of the contour polygon

  	area: function ( contour ) {

  		const n = contour.length;
  		let a = 0.0;

  		for ( let p = n - 1, q = 0; q < n; p = q ++ ) {

  			a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;

  		}

  		return a * 0.5;

  	},

  	isClockWise: function ( pts ) {

  		return ShapeUtils.area( pts ) < 0;

  	},

  	triangulateShape: function ( contour, holes ) {

  		const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
  		const holeIndices = []; // array of hole indices
  		const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]

  		removeDupEndPts( contour );
  		addContour( vertices, contour );

  		//

  		let holeIndex = contour.length;

  		holes.forEach( removeDupEndPts );

  		for ( let i = 0; i < holes.length; i ++ ) {

  			holeIndices.push( holeIndex );
  			holeIndex += holes[ i ].length;
  			addContour( vertices, holes[ i ] );

  		}

  		//

  		const triangles = Earcut.triangulate( vertices, holeIndices );

  		//

  		for ( let i = 0; i < triangles.length; i += 3 ) {

  			faces.push( triangles.slice( i, i + 3 ) );

  		}

  		return faces;

  	}

  };

  function removeDupEndPts( points ) {

  	const l = points.length;

  	if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {

  		points.pop();

  	}

  }

  function addContour( vertices, contour ) {

  	for ( let i = 0; i < contour.length; i ++ ) {

  		vertices.push( contour[ i ].x );
  		vertices.push( contour[ i ].y );

  	}

  }

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   *
   * Creates extruded geometry from a path shape.
   *
   * parameters = {
   *
   *  curveSegments: <int>, // number of points on the curves
   *  steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
   *  depth: <float>, // Depth to extrude the shape
   *
   *  bevelEnabled: <bool>, // turn on bevel
   *  bevelThickness: <float>, // how deep into the original shape bevel goes
   *  bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
   *  bevelOffset: <float>, // how far from shape outline does bevel start
   *  bevelSegments: <int>, // number of bevel layers
   *
   *  extrudePath: <THREE.Curve> // curve to extrude shape along
   *
   *  UVGenerator: <Object> // object that provides UV generator functions
   *
   * }
   */

  // ExtrudeGeometry

  function ExtrudeGeometry( shapes, options ) {

  	Geometry.call( this );

  	this.type = 'ExtrudeGeometry';

  	this.parameters = {
  		shapes: shapes,
  		options: options
  	};

  	this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) );
  	this.mergeVertices();

  }

  ExtrudeGeometry.prototype = Object.create( Geometry.prototype );
  ExtrudeGeometry.prototype.constructor = ExtrudeGeometry;

  ExtrudeGeometry.prototype.toJSON = function () {

  	const data = Geometry.prototype.toJSON.call( this );

  	const shapes = this.parameters.shapes;
  	const options = this.parameters.options;

  	return toJSON( shapes, options, data );

  };

  // ExtrudeBufferGeometry

  function ExtrudeBufferGeometry( shapes, options ) {

  	BufferGeometry.call( this );

  	this.type = 'ExtrudeBufferGeometry';

  	this.parameters = {
  		shapes: shapes,
  		options: options
  	};

  	shapes = Array.isArray( shapes ) ? shapes : [ shapes ];

  	const scope = this;

  	const verticesArray = [];
  	const uvArray = [];

  	for ( let i = 0, l = shapes.length; i < l; i ++ ) {

  		const shape = shapes[ i ];
  		addShape( shape );

  	}

  	// build geometry

  	this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) );

  	this.computeVertexNormals();

  	// functions

  	function addShape( shape ) {

  		const placeholder = [];

  		// options

  		const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
  		const steps = options.steps !== undefined ? options.steps : 1;
  		let depth = options.depth !== undefined ? options.depth : 100;

  		let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
  		let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6;
  		let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2;
  		let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
  		let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;

  		const extrudePath = options.extrudePath;

  		const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator;

  		// deprecated options

  		if ( options.amount !== undefined ) {

  			console.warn( 'THREE.ExtrudeBufferGeometry: amount has been renamed to depth.' );
  			depth = options.amount;

  		}

  		//

  		let extrudePts, extrudeByPath = false;
  		let splineTube, binormal, normal, position2;

  		if ( extrudePath ) {

  			extrudePts = extrudePath.getSpacedPoints( steps );

  			extrudeByPath = true;
  			bevelEnabled = false; // bevels not supported for path extrusion

  			// SETUP TNB variables

  			// TODO1 - have a .isClosed in spline?

  			splineTube = extrudePath.computeFrenetFrames( steps, false );

  			// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);

  			binormal = new Vector3();
  			normal = new Vector3();
  			position2 = new Vector3();

  		}

  		// Safeguards if bevels are not enabled

  		if ( ! bevelEnabled ) {

  			bevelSegments = 0;
  			bevelThickness = 0;
  			bevelSize = 0;
  			bevelOffset = 0;

  		}

  		// Variables initialization

  		const shapePoints = shape.extractPoints( curveSegments );

  		let vertices = shapePoints.shape;
  		const holes = shapePoints.holes;

  		const reverse = ! ShapeUtils.isClockWise( vertices );

  		if ( reverse ) {

  			vertices = vertices.reverse();

  			// Maybe we should also check if holes are in the opposite direction, just to be safe ...

  			for ( let h = 0, hl = holes.length; h < hl; h ++ ) {

  				const ahole = holes[ h ];

  				if ( ShapeUtils.isClockWise( ahole ) ) {

  					holes[ h ] = ahole.reverse();

  				}

  			}

  		}


  		const faces = ShapeUtils.triangulateShape( vertices, holes );

  		/* Vertices */

  		const contour = vertices; // vertices has all points but contour has only points of circumference

  		for ( let h = 0, hl = holes.length; h < hl; h ++ ) {

  			const ahole = holes[ h ];

  			vertices = vertices.concat( ahole );

  		}


  		function scalePt2( pt, vec, size ) {

  			if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" );

  			return vec.clone().multiplyScalar( size ).add( pt );

  		}

  		const vlen = vertices.length, flen = faces.length;


  		// Find directions for point movement


  		function getBevelVec( inPt, inPrev, inNext ) {

  			// computes for inPt the corresponding point inPt' on a new contour
  			//   shifted by 1 unit (length of normalized vector) to the left
  			// if we walk along contour clockwise, this new contour is outside the old one
  			//
  			// inPt' is the intersection of the two lines parallel to the two
  			//  adjacent edges of inPt at a distance of 1 unit on the left side.

  			let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt

  			// good reading for geometry algorithms (here: line-line intersection)
  			// http://geomalgorithms.com/a05-_intersect-1.html

  			const v_prev_x = inPt.x - inPrev.x,
  				v_prev_y = inPt.y - inPrev.y;
  			const v_next_x = inNext.x - inPt.x,
  				v_next_y = inNext.y - inPt.y;

  			const v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );

  			// check for collinear edges
  			const collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );

  			if ( Math.abs( collinear0 ) > Number.EPSILON ) {

  				// not collinear

  				// length of vectors for normalizing

  				const v_prev_len = Math.sqrt( v_prev_lensq );
  				const v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );

  				// shift adjacent points by unit vectors to the left

  				const ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
  				const ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );

  				const ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
  				const ptNextShift_y = ( inNext.y + v_next_x / v_next_len );

  				// scaling factor for v_prev to intersection point

  				const sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
  						( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
  					( v_prev_x * v_next_y - v_prev_y * v_next_x );

  				// vector from inPt to intersection point

  				v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
  				v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );

  				// Don't normalize!, otherwise sharp corners become ugly
  				//  but prevent crazy spikes
  				const v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
  				if ( v_trans_lensq <= 2 ) {

  					return new Vector2( v_trans_x, v_trans_y );

  				} else {

  					shrink_by = Math.sqrt( v_trans_lensq / 2 );

  				}

  			} else {

  				// handle special case of collinear edges

  				let direction_eq = false; // assumes: opposite

  				if ( v_prev_x > Number.EPSILON ) {

  					if ( v_next_x > Number.EPSILON ) {

  						direction_eq = true;

  					}

  				} else {

  					if ( v_prev_x < - Number.EPSILON ) {

  						if ( v_next_x < - Number.EPSILON ) {

  							direction_eq = true;

  						}

  					} else {

  						if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {

  							direction_eq = true;

  						}

  					}

  				}

  				if ( direction_eq ) {

  					// console.log("Warning: lines are a straight sequence");
  					v_trans_x = - v_prev_y;
  					v_trans_y = v_prev_x;
  					shrink_by = Math.sqrt( v_prev_lensq );

  				} else {

  					// console.log("Warning: lines are a straight spike");
  					v_trans_x = v_prev_x;
  					v_trans_y = v_prev_y;
  					shrink_by = Math.sqrt( v_prev_lensq / 2 );

  				}

  			}

  			return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );

  		}


  		const contourMovements = [];

  		for ( let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

  			if ( j === il ) j = 0;
  			if ( k === il ) k = 0;

  			//  (j)---(i)---(k)
  			// console.log('i,j,k', i, j , k)

  			contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );

  		}

  		const holesMovements = [];
  		let oneHoleMovements, verticesMovements = contourMovements.concat();

  		for ( let h = 0, hl = holes.length; h < hl; h ++ ) {

  			const ahole = holes[ h ];

  			oneHoleMovements = [];

  			for ( let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

  				if ( j === il ) j = 0;
  				if ( k === il ) k = 0;

  				//  (j)---(i)---(k)
  				oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );

  			}

  			holesMovements.push( oneHoleMovements );
  			verticesMovements = verticesMovements.concat( oneHoleMovements );

  		}


  		// Loop bevelSegments, 1 for the front, 1 for the back

  		for ( let b = 0; b < bevelSegments; b ++ ) {

  			//for ( b = bevelSegments; b > 0; b -- ) {

  			const t = b / bevelSegments;
  			const z = bevelThickness * Math.cos( t * Math.PI / 2 );
  			const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;

  			// contract shape

  			for ( let i = 0, il = contour.length; i < il; i ++ ) {

  				const vert = scalePt2( contour[ i ], contourMovements[ i ], bs );

  				v( vert.x, vert.y, - z );

  			}

  			// expand holes

  			for ( let h = 0, hl = holes.length; h < hl; h ++ ) {

  				const ahole = holes[ h ];
  				oneHoleMovements = holesMovements[ h ];

  				for ( let i = 0, il = ahole.length; i < il; i ++ ) {

  					const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

  					v( vert.x, vert.y, - z );

  				}

  			}

  		}

  		const bs = bevelSize + bevelOffset;

  		// Back facing vertices

  		for ( let i = 0; i < vlen; i ++ ) {

  			const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

  			if ( ! extrudeByPath ) {

  				v( vert.x, vert.y, 0 );

  			} else {

  				// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );

  				normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
  				binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );

  				position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );

  				v( position2.x, position2.y, position2.z );

  			}

  		}

  		// Add stepped vertices...
  		// Including front facing vertices

  		for ( let s = 1; s <= steps; s ++ ) {

  			for ( let i = 0; i < vlen; i ++ ) {

  				const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

  				if ( ! extrudeByPath ) {

  					v( vert.x, vert.y, depth / steps * s );

  				} else {

  					// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );

  					normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
  					binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );

  					position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );

  					v( position2.x, position2.y, position2.z );

  				}

  			}

  		}


  		// Add bevel segments planes

  		//for ( b = 1; b <= bevelSegments; b ++ ) {
  		for ( let b = bevelSegments - 1; b >= 0; b -- ) {

  			const t = b / bevelSegments;
  			const z = bevelThickness * Math.cos( t * Math.PI / 2 );
  			const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;

  			// contract shape

  			for ( let i = 0, il = contour.length; i < il; i ++ ) {

  				const vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
  				v( vert.x, vert.y, depth + z );

  			}

  			// expand holes

  			for ( let h = 0, hl = holes.length; h < hl; h ++ ) {

  				const ahole = holes[ h ];
  				oneHoleMovements = holesMovements[ h ];

  				for ( let i = 0, il = ahole.length; i < il; i ++ ) {

  					const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

  					if ( ! extrudeByPath ) {

  						v( vert.x, vert.y, depth + z );

  					} else {

  						v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );

  					}

  				}

  			}

  		}

  		/* Faces */

  		// Top and bottom faces

  		buildLidFaces();

  		// Sides faces

  		buildSideFaces();


  		/////  Internal functions

  		function buildLidFaces() {

  			const start = verticesArray.length / 3;

  			if ( bevelEnabled ) {

  				let layer = 0; // steps + 1
  				let offset = vlen * layer;

  				// Bottom faces

  				for ( let i = 0; i < flen; i ++ ) {

  					const face = faces[ i ];
  					f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );

  				}

  				layer = steps + bevelSegments * 2;
  				offset = vlen * layer;

  				// Top faces

  				for ( let i = 0; i < flen; i ++ ) {

  					const face = faces[ i ];
  					f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );

  				}

  			} else {

  				// Bottom faces

  				for ( let i = 0; i < flen; i ++ ) {

  					const face = faces[ i ];
  					f3( face[ 2 ], face[ 1 ], face[ 0 ] );

  				}

  				// Top faces

  				for ( let i = 0; i < flen; i ++ ) {

  					const face = faces[ i ];
  					f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );

  				}

  			}

  			scope.addGroup( start, verticesArray.length / 3 - start, 0 );

  		}

  		// Create faces for the z-sides of the shape

  		function buildSideFaces() {

  			const start = verticesArray.length / 3;
  			let layeroffset = 0;
  			sidewalls( contour, layeroffset );
  			layeroffset += contour.length;

  			for ( let h = 0, hl = holes.length; h < hl; h ++ ) {

  				const ahole = holes[ h ];
  				sidewalls( ahole, layeroffset );

  				//, true
  				layeroffset += ahole.length;

  			}


  			scope.addGroup( start, verticesArray.length / 3 - start, 1 );


  		}

  		function sidewalls( contour, layeroffset ) {

  			let i = contour.length;

  			while ( -- i >= 0 ) {

  				const j = i;
  				let k = i - 1;
  				if ( k < 0 ) k = contour.length - 1;

  				//console.log('b', i,j, i-1, k,vertices.length);

  				for ( let s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) {

  					const slen1 = vlen * s;
  					const slen2 = vlen * ( s + 1 );

  					const a = layeroffset + j + slen1,
  						b = layeroffset + k + slen1,
  						c = layeroffset + k + slen2,
  						d = layeroffset + j + slen2;

  					f4( a, b, c, d );

  				}

  			}

  		}

  		function v( x, y, z ) {

  			placeholder.push( x );
  			placeholder.push( y );
  			placeholder.push( z );

  		}


  		function f3( a, b, c ) {

  			addVertex( a );
  			addVertex( b );
  			addVertex( c );

  			const nextIndex = verticesArray.length / 3;
  			const uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

  			addUV( uvs[ 0 ] );
  			addUV( uvs[ 1 ] );
  			addUV( uvs[ 2 ] );

  		}

  		function f4( a, b, c, d ) {

  			addVertex( a );
  			addVertex( b );
  			addVertex( d );

  			addVertex( b );
  			addVertex( c );
  			addVertex( d );


  			const nextIndex = verticesArray.length / 3;
  			const uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

  			addUV( uvs[ 0 ] );
  			addUV( uvs[ 1 ] );
  			addUV( uvs[ 3 ] );

  			addUV( uvs[ 1 ] );
  			addUV( uvs[ 2 ] );
  			addUV( uvs[ 3 ] );

  		}

  		function addVertex( index ) {

  			verticesArray.push( placeholder[ index * 3 + 0 ] );
  			verticesArray.push( placeholder[ index * 3 + 1 ] );
  			verticesArray.push( placeholder[ index * 3 + 2 ] );

  		}


  		function addUV( vector2 ) {

  			uvArray.push( vector2.x );
  			uvArray.push( vector2.y );

  		}

  	}

  }

  ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry;

  ExtrudeBufferGeometry.prototype.toJSON = function () {

  	const data = BufferGeometry.prototype.toJSON.call( this );

  	const shapes = this.parameters.shapes;
  	const options = this.parameters.options;

  	return toJSON( shapes, options, data );

  };

  //

  const WorldUVGenerator = {

  	generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {

  		const a_x = vertices[ indexA * 3 ];
  		const a_y = vertices[ indexA * 3 + 1 ];
  		const b_x = vertices[ indexB * 3 ];
  		const b_y = vertices[ indexB * 3 + 1 ];
  		const c_x = vertices[ indexC * 3 ];
  		const c_y = vertices[ indexC * 3 + 1 ];

  		return [
  			new Vector2( a_x, a_y ),
  			new Vector2( b_x, b_y ),
  			new Vector2( c_x, c_y )
  		];

  	},

  	generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {

  		const a_x = vertices[ indexA * 3 ];
  		const a_y = vertices[ indexA * 3 + 1 ];
  		const a_z = vertices[ indexA * 3 + 2 ];
  		const b_x = vertices[ indexB * 3 ];
  		const b_y = vertices[ indexB * 3 + 1 ];
  		const b_z = vertices[ indexB * 3 + 2 ];
  		const c_x = vertices[ indexC * 3 ];
  		const c_y = vertices[ indexC * 3 + 1 ];
  		const c_z = vertices[ indexC * 3 + 2 ];
  		const d_x = vertices[ indexD * 3 ];
  		const d_y = vertices[ indexD * 3 + 1 ];
  		const d_z = vertices[ indexD * 3 + 2 ];

  		if ( Math.abs( a_y - b_y ) < 0.01 ) {

  			return [
  				new Vector2( a_x, 1 - a_z ),
  				new Vector2( b_x, 1 - b_z ),
  				new Vector2( c_x, 1 - c_z ),
  				new Vector2( d_x, 1 - d_z )
  			];

  		} else {

  			return [
  				new Vector2( a_y, 1 - a_z ),
  				new Vector2( b_y, 1 - b_z ),
  				new Vector2( c_y, 1 - c_z ),
  				new Vector2( d_y, 1 - d_z )
  			];

  		}

  	}
  };

  function toJSON( shapes, options, data ) {

  	//

  	data.shapes = [];

  	if ( Array.isArray( shapes ) ) {

  		for ( let i = 0, l = shapes.length; i < l; i ++ ) {

  			const shape = shapes[ i ];

  			data.shapes.push( shape.uuid );

  		}

  	} else {

  		data.shapes.push( shapes.uuid );

  	}

  	//

  	if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON();

  	return data;

  }

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * @author alteredq / http://alteredqualia.com/
   *
   * Text = 3D Text
   *
   * parameters = {
   *  font: <THREE.Font>, // font
   *
   *  size: <float>, // size of the text
   *  height: <float>, // thickness to extrude text
   *  curveSegments: <int>, // number of points on the curves
   *
   *  bevelEnabled: <bool>, // turn on bevel
   *  bevelThickness: <float>, // how deep into text bevel goes
   *  bevelSize: <float>, // how far from text outline (including bevelOffset) is bevel
   *  bevelOffset: <float> // how far from text outline does bevel start
   * }
   */

  // TextGeometry

  function TextGeometry( text, parameters ) {

  	Geometry.call( this );

  	this.type = 'TextGeometry';

  	this.parameters = {
  		text: text,
  		parameters: parameters
  	};

  	this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) );
  	this.mergeVertices();

  }

  TextGeometry.prototype = Object.create( Geometry.prototype );
  TextGeometry.prototype.constructor = TextGeometry;

  // TextBufferGeometry

  function TextBufferGeometry( text, parameters ) {

  	parameters = parameters || {};

  	const font = parameters.font;

  	if ( ! ( font && font.isFont ) ) {

  		console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' );
  		return new Geometry();

  	}

  	const shapes = font.generateShapes( text, parameters.size );

  	// translate parameters to ExtrudeGeometry API

  	parameters.depth = parameters.height !== undefined ? parameters.height : 50;

  	// defaults

  	if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10;
  	if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8;
  	if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;

  	ExtrudeBufferGeometry.call( this, shapes, parameters );

  	this.type = 'TextBufferGeometry';

  }

  TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype );
  TextBufferGeometry.prototype.constructor = TextBufferGeometry;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author benaadams / https://twitter.com/ben_a_adams
   * @author Mugen87 / https://github.com/Mugen87
   */

  // SphereGeometry

  function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

  	Geometry.call( this );

  	this.type = 'SphereGeometry';

  	this.parameters = {
  		radius: radius,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments,
  		phiStart: phiStart,
  		phiLength: phiLength,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) );
  	this.mergeVertices();

  }

  SphereGeometry.prototype = Object.create( Geometry.prototype );
  SphereGeometry.prototype.constructor = SphereGeometry;

  // SphereBufferGeometry

  function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

  	BufferGeometry.call( this );

  	this.type = 'SphereBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments,
  		phiStart: phiStart,
  		phiLength: phiLength,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	radius = radius || 1;

  	widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 );
  	heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );

  	phiStart = phiStart !== undefined ? phiStart : 0;
  	phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;

  	thetaStart = thetaStart !== undefined ? thetaStart : 0;
  	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;

  	const thetaEnd = Math.min( thetaStart + thetaLength, Math.PI );

  	let index = 0;
  	const grid = [];

  	const vertex = new Vector3();
  	const normal = new Vector3();

  	// buffers

  	const indices = [];
  	const vertices = [];
  	const normals = [];
  	const uvs = [];

  	// generate vertices, normals and uvs

  	for ( let iy = 0; iy <= heightSegments; iy ++ ) {

  		const verticesRow = [];

  		const v = iy / heightSegments;

  		// special case for the poles

  		let uOffset = 0;

  		if ( iy == 0 && thetaStart == 0 ) {

  			uOffset = 0.5 / widthSegments;

  		} else if ( iy == heightSegments && thetaEnd == Math.PI ) {

  			uOffset = - 0.5 / widthSegments;

  		}

  		for ( let ix = 0; ix <= widthSegments; ix ++ ) {

  			const u = ix / widthSegments;

  			// vertex

  			vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
  			vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
  			vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal

  			normal.copy( vertex ).normalize();
  			normals.push( normal.x, normal.y, normal.z );

  			// uv

  			uvs.push( u + uOffset, 1 - v );

  			verticesRow.push( index ++ );

  		}

  		grid.push( verticesRow );

  	}

  	// indices

  	for ( let iy = 0; iy < heightSegments; iy ++ ) {

  		for ( let ix = 0; ix < widthSegments; ix ++ ) {

  			const a = grid[ iy ][ ix + 1 ];
  			const b = grid[ iy ][ ix ];
  			const c = grid[ iy + 1 ][ ix ];
  			const d = grid[ iy + 1 ][ ix + 1 ];

  			if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d );
  			if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  SphereBufferGeometry.prototype.constructor = SphereBufferGeometry;

  /**
   * @author Kaleb Murphy
   * @author Mugen87 / https://github.com/Mugen87
   */

  // RingGeometry

  function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

  	Geometry.call( this );

  	this.type = 'RingGeometry';

  	this.parameters = {
  		innerRadius: innerRadius,
  		outerRadius: outerRadius,
  		thetaSegments: thetaSegments,
  		phiSegments: phiSegments,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) );
  	this.mergeVertices();

  }

  RingGeometry.prototype = Object.create( Geometry.prototype );
  RingGeometry.prototype.constructor = RingGeometry;

  // RingBufferGeometry

  function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

  	BufferGeometry.call( this );

  	this.type = 'RingBufferGeometry';

  	this.parameters = {
  		innerRadius: innerRadius,
  		outerRadius: outerRadius,
  		thetaSegments: thetaSegments,
  		phiSegments: phiSegments,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	innerRadius = innerRadius || 0.5;
  	outerRadius = outerRadius || 1;

  	thetaStart = thetaStart !== undefined ? thetaStart : 0;
  	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

  	thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8;
  	phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;

  	// buffers

  	const indices = [];
  	const vertices = [];
  	const normals = [];
  	const uvs = [];

  	// some helper variables

  	let radius = innerRadius;
  	const radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
  	const vertex = new Vector3();
  	const uv = new Vector2();

  	// generate vertices, normals and uvs

  	for ( let j = 0; j <= phiSegments; j ++ ) {

  		for ( let i = 0; i <= thetaSegments; i ++ ) {

  			// values are generate from the inside of the ring to the outside

  			const segment = thetaStart + i / thetaSegments * thetaLength;

  			// vertex

  			vertex.x = radius * Math.cos( segment );
  			vertex.y = radius * Math.sin( segment );

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal

  			normals.push( 0, 0, 1 );

  			// uv

  			uv.x = ( vertex.x / outerRadius + 1 ) / 2;
  			uv.y = ( vertex.y / outerRadius + 1 ) / 2;

  			uvs.push( uv.x, uv.y );

  		}

  		// increase the radius for next row of vertices

  		radius += radiusStep;

  	}

  	// indices

  	for ( let j = 0; j < phiSegments; j ++ ) {

  		const thetaSegmentLevel = j * ( thetaSegments + 1 );

  		for ( let i = 0; i < thetaSegments; i ++ ) {

  			const segment = i + thetaSegmentLevel;

  			const a = segment;
  			const b = segment + thetaSegments + 1;
  			const c = segment + thetaSegments + 2;
  			const d = segment + 1;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  RingBufferGeometry.prototype.constructor = RingBufferGeometry;

  /**
   * @author zz85 / https://github.com/zz85
   * @author bhouston / http://clara.io
   * @author Mugen87 / https://github.com/Mugen87
   */

  // LatheGeometry

  function LatheGeometry( points, segments, phiStart, phiLength ) {

  	Geometry.call( this );

  	this.type = 'LatheGeometry';

  	this.parameters = {
  		points: points,
  		segments: segments,
  		phiStart: phiStart,
  		phiLength: phiLength
  	};

  	this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) );
  	this.mergeVertices();

  }

  LatheGeometry.prototype = Object.create( Geometry.prototype );
  LatheGeometry.prototype.constructor = LatheGeometry;

  // LatheBufferGeometry

  function LatheBufferGeometry( points, segments, phiStart, phiLength ) {

  	BufferGeometry.call( this );

  	this.type = 'LatheBufferGeometry';

  	this.parameters = {
  		points: points,
  		segments: segments,
  		phiStart: phiStart,
  		phiLength: phiLength
  	};

  	segments = Math.floor( segments ) || 12;
  	phiStart = phiStart || 0;
  	phiLength = phiLength || Math.PI * 2;

  	// clamp phiLength so it's in range of [ 0, 2PI ]

  	phiLength = MathUtils.clamp( phiLength, 0, Math.PI * 2 );


  	// buffers

  	const indices = [];
  	const vertices = [];
  	const uvs = [];

  	// helper variables

  	const inverseSegments = 1.0 / segments;
  	const vertex = new Vector3();
  	const uv = new Vector2();

  	// generate vertices and uvs

  	for ( let i = 0; i <= segments; i ++ ) {

  		const phi = phiStart + i * inverseSegments * phiLength;

  		const sin = Math.sin( phi );
  		const cos = Math.cos( phi );

  		for ( let j = 0; j <= ( points.length - 1 ); j ++ ) {

  			// vertex

  			vertex.x = points[ j ].x * sin;
  			vertex.y = points[ j ].y;
  			vertex.z = points[ j ].x * cos;

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// uv

  			uv.x = i / segments;
  			uv.y = j / ( points.length - 1 );

  			uvs.push( uv.x, uv.y );


  		}

  	}

  	// indices

  	for ( let i = 0; i < segments; i ++ ) {

  		for ( let j = 0; j < ( points.length - 1 ); j ++ ) {

  			const base = j + i * points.length;

  			const a = base;
  			const b = base + points.length;
  			const c = base + points.length + 1;
  			const d = base + 1;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  	// generate normals

  	this.computeVertexNormals();

  	// if the geometry is closed, we need to average the normals along the seam.
  	// because the corresponding vertices are identical (but still have different UVs).

  	if ( phiLength === Math.PI * 2 ) {

  		const normals = this.attributes.normal.array;
  		const n1 = new Vector3();
  		const n2 = new Vector3();
  		const n = new Vector3();

  		// this is the buffer offset for the last line of vertices

  		const base = segments * points.length * 3;

  		for ( let i = 0, j = 0; i < points.length; i ++, j += 3 ) {

  			// select the normal of the vertex in the first line

  			n1.x = normals[ j + 0 ];
  			n1.y = normals[ j + 1 ];
  			n1.z = normals[ j + 2 ];

  			// select the normal of the vertex in the last line

  			n2.x = normals[ base + j + 0 ];
  			n2.y = normals[ base + j + 1 ];
  			n2.z = normals[ base + j + 2 ];

  			// average normals

  			n.addVectors( n1, n2 ).normalize();

  			// assign the new values to both normals

  			normals[ j + 0 ] = normals[ base + j + 0 ] = n.x;
  			normals[ j + 1 ] = normals[ base + j + 1 ] = n.y;
  			normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;

  		}

  	}

  }

  LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  LatheBufferGeometry.prototype.constructor = LatheBufferGeometry;

  /**
   * @author jonobr1 / http://jonobr1.com
   * @author Mugen87 / https://github.com/Mugen87
   */

  // ShapeGeometry

  function ShapeGeometry( shapes, curveSegments ) {

  	Geometry.call( this );

  	this.type = 'ShapeGeometry';

  	if ( typeof curveSegments === 'object' ) {

  		console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' );

  		curveSegments = curveSegments.curveSegments;

  	}

  	this.parameters = {
  		shapes: shapes,
  		curveSegments: curveSegments
  	};

  	this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) );
  	this.mergeVertices();

  }

  ShapeGeometry.prototype = Object.create( Geometry.prototype );
  ShapeGeometry.prototype.constructor = ShapeGeometry;

  ShapeGeometry.prototype.toJSON = function () {

  	const data = Geometry.prototype.toJSON.call( this );

  	const shapes = this.parameters.shapes;

  	return toJSON$1( shapes, data );

  };

  // ShapeBufferGeometry

  function ShapeBufferGeometry( shapes, curveSegments ) {

  	BufferGeometry.call( this );

  	this.type = 'ShapeBufferGeometry';

  	this.parameters = {
  		shapes: shapes,
  		curveSegments: curveSegments
  	};

  	curveSegments = curveSegments || 12;

  	// buffers

  	const indices = [];
  	const vertices = [];
  	const normals = [];
  	const uvs = [];

  	// helper variables

  	let groupStart = 0;
  	let groupCount = 0;

  	// allow single and array values for "shapes" parameter

  	if ( Array.isArray( shapes ) === false ) {

  		addShape( shapes );

  	} else {

  		for ( let i = 0; i < shapes.length; i ++ ) {

  			addShape( shapes[ i ] );

  			this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support

  			groupStart += groupCount;
  			groupCount = 0;

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );


  	// helper functions

  	function addShape( shape ) {

  		const indexOffset = vertices.length / 3;
  		const points = shape.extractPoints( curveSegments );

  		let shapeVertices = points.shape;
  		const shapeHoles = points.holes;

  		// check direction of vertices

  		if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {

  			shapeVertices = shapeVertices.reverse();

  		}

  		for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) {

  			const shapeHole = shapeHoles[ i ];

  			if ( ShapeUtils.isClockWise( shapeHole ) === true ) {

  				shapeHoles[ i ] = shapeHole.reverse();

  			}

  		}

  		const faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );

  		// join vertices of inner and outer paths to a single array

  		for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) {

  			const shapeHole = shapeHoles[ i ];
  			shapeVertices = shapeVertices.concat( shapeHole );

  		}

  		// vertices, normals, uvs

  		for ( let i = 0, l = shapeVertices.length; i < l; i ++ ) {

  			const vertex = shapeVertices[ i ];

  			vertices.push( vertex.x, vertex.y, 0 );
  			normals.push( 0, 0, 1 );
  			uvs.push( vertex.x, vertex.y ); // world uvs

  		}

  		// incides

  		for ( let i = 0, l = faces.length; i < l; i ++ ) {

  			const face = faces[ i ];

  			const a = face[ 0 ] + indexOffset;
  			const b = face[ 1 ] + indexOffset;
  			const c = face[ 2 ] + indexOffset;

  			indices.push( a, b, c );
  			groupCount += 3;

  		}

  	}

  }

  ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry;

  ShapeBufferGeometry.prototype.toJSON = function () {

  	const data = BufferGeometry.prototype.toJSON.call( this );

  	const shapes = this.parameters.shapes;

  	return toJSON$1( shapes, data );

  };

  //

  function toJSON$1( shapes, data ) {

  	data.shapes = [];

  	if ( Array.isArray( shapes ) ) {

  		for ( let i = 0, l = shapes.length; i < l; i ++ ) {

  			const shape = shapes[ i ];

  			data.shapes.push( shape.uuid );

  		}

  	} else {

  		data.shapes.push( shapes.uuid );

  	}

  	return data;

  }

  /**
   * @author WestLangley / http://github.com/WestLangley
   * @author Mugen87 / https://github.com/Mugen87
   */

  function EdgesGeometry( geometry, thresholdAngle ) {

  	BufferGeometry.call( this );

  	this.type = 'EdgesGeometry';

  	this.parameters = {
  		thresholdAngle: thresholdAngle
  	};

  	thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;

  	// buffer

  	const vertices = [];

  	// helper variables

  	const thresholdDot = Math.cos( MathUtils.DEG2RAD * thresholdAngle );
  	const edge = [ 0, 0 ], edges = {};
  	let edge1, edge2, key;
  	const keys = [ 'a', 'b', 'c' ];

  	// prepare source geometry

  	let geometry2;

  	if ( geometry.isBufferGeometry ) {

  		geometry2 = new Geometry();
  		geometry2.fromBufferGeometry( geometry );

  	} else {

  		geometry2 = geometry.clone();

  	}

  	geometry2.mergeVertices();
  	geometry2.computeFaceNormals();

  	const sourceVertices = geometry2.vertices;
  	const faces = geometry2.faces;

  	// now create a data structure where each entry represents an edge with its adjoining faces

  	for ( let i = 0, l = faces.length; i < l; i ++ ) {

  		const face = faces[ i ];

  		for ( let j = 0; j < 3; j ++ ) {

  			edge1 = face[ keys[ j ] ];
  			edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
  			edge[ 0 ] = Math.min( edge1, edge2 );
  			edge[ 1 ] = Math.max( edge1, edge2 );

  			key = edge[ 0 ] + ',' + edge[ 1 ];

  			if ( edges[ key ] === undefined ) {

  				edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined };

  			} else {

  				edges[ key ].face2 = i;

  			}

  		}

  	}

  	// generate vertices

  	for ( key in edges ) {

  		const e = edges[ key ];

  		// an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree.

  		if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) {

  			let vertex = sourceVertices[ e.index1 ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  			vertex = sourceVertices[ e.index2 ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  		}

  	}

  	// build geometry

  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

  }

  EdgesGeometry.prototype = Object.create( BufferGeometry.prototype );
  EdgesGeometry.prototype.constructor = EdgesGeometry;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  // CylinderGeometry

  function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

  	Geometry.call( this );

  	this.type = 'CylinderGeometry';

  	this.parameters = {
  		radiusTop: radiusTop,
  		radiusBottom: radiusBottom,
  		height: height,
  		radialSegments: radialSegments,
  		heightSegments: heightSegments,
  		openEnded: openEnded,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) );
  	this.mergeVertices();

  }

  CylinderGeometry.prototype = Object.create( Geometry.prototype );
  CylinderGeometry.prototype.constructor = CylinderGeometry;

  // CylinderBufferGeometry

  function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

  	BufferGeometry.call( this );

  	this.type = 'CylinderBufferGeometry';

  	this.parameters = {
  		radiusTop: radiusTop,
  		radiusBottom: radiusBottom,
  		height: height,
  		radialSegments: radialSegments,
  		heightSegments: heightSegments,
  		openEnded: openEnded,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	const scope = this;

  	radiusTop = radiusTop !== undefined ? radiusTop : 1;
  	radiusBottom = radiusBottom !== undefined ? radiusBottom : 1;
  	height = height || 1;

  	radialSegments = Math.floor( radialSegments ) || 8;
  	heightSegments = Math.floor( heightSegments ) || 1;

  	openEnded = openEnded !== undefined ? openEnded : false;
  	thetaStart = thetaStart !== undefined ? thetaStart : 0.0;
  	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

  	// buffers

  	const indices = [];
  	const vertices = [];
  	const normals = [];
  	const uvs = [];

  	// helper variables

  	let index = 0;
  	const indexArray = [];
  	const halfHeight = height / 2;
  	let groupStart = 0;

  	// generate geometry

  	generateTorso();

  	if ( openEnded === false ) {

  		if ( radiusTop > 0 ) generateCap( true );
  		if ( radiusBottom > 0 ) generateCap( false );

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  	function generateTorso() {

  		const normal = new Vector3();
  		const vertex = new Vector3();

  		let groupCount = 0;

  		// this will be used to calculate the normal
  		const slope = ( radiusBottom - radiusTop ) / height;

  		// generate vertices, normals and uvs

  		for ( let y = 0; y <= heightSegments; y ++ ) {

  			const indexRow = [];

  			const v = y / heightSegments;

  			// calculate the radius of the current row

  			const radius = v * ( radiusBottom - radiusTop ) + radiusTop;

  			for ( let x = 0; x <= radialSegments; x ++ ) {

  				const u = x / radialSegments;

  				const theta = u * thetaLength + thetaStart;

  				const sinTheta = Math.sin( theta );
  				const cosTheta = Math.cos( theta );

  				// vertex

  				vertex.x = radius * sinTheta;
  				vertex.y = - v * height + halfHeight;
  				vertex.z = radius * cosTheta;
  				vertices.push( vertex.x, vertex.y, vertex.z );

  				// normal

  				normal.set( sinTheta, slope, cosTheta ).normalize();
  				normals.push( normal.x, normal.y, normal.z );

  				// uv

  				uvs.push( u, 1 - v );

  				// save index of vertex in respective row

  				indexRow.push( index ++ );

  			}

  			// now save vertices of the row in our index array

  			indexArray.push( indexRow );

  		}

  		// generate indices

  		for ( let x = 0; x < radialSegments; x ++ ) {

  			for ( let y = 0; y < heightSegments; y ++ ) {

  				// we use the index array to access the correct indices

  				const a = indexArray[ y ][ x ];
  				const b = indexArray[ y + 1 ][ x ];
  				const c = indexArray[ y + 1 ][ x + 1 ];
  				const d = indexArray[ y ][ x + 1 ];

  				// faces

  				indices.push( a, b, d );
  				indices.push( b, c, d );

  				// update group counter

  				groupCount += 6;

  			}

  		}

  		// add a group to the geometry. this will ensure multi material support

  		scope.addGroup( groupStart, groupCount, 0 );

  		// calculate new start value for groups

  		groupStart += groupCount;

  	}

  	function generateCap( top ) {

  		let centerIndexStart, centerIndexEnd;

  		const uv = new Vector2();
  		const vertex = new Vector3();

  		let groupCount = 0;

  		const radius = ( top === true ) ? radiusTop : radiusBottom;
  		const sign = ( top === true ) ? 1 : - 1;

  		// save the index of the first center vertex
  		centerIndexStart = index;

  		// first we generate the center vertex data of the cap.
  		// because the geometry needs one set of uvs per face,
  		// we must generate a center vertex per face/segment

  		for ( let x = 1; x <= radialSegments; x ++ ) {

  			// vertex

  			vertices.push( 0, halfHeight * sign, 0 );

  			// normal

  			normals.push( 0, sign, 0 );

  			// uv

  			uvs.push( 0.5, 0.5 );

  			// increase index

  			index ++;

  		}

  		// save the index of the last center vertex

  		centerIndexEnd = index;

  		// now we generate the surrounding vertices, normals and uvs

  		for ( let x = 0; x <= radialSegments; x ++ ) {

  			const u = x / radialSegments;
  			const theta = u * thetaLength + thetaStart;

  			const cosTheta = Math.cos( theta );
  			const sinTheta = Math.sin( theta );

  			// vertex

  			vertex.x = radius * sinTheta;
  			vertex.y = halfHeight * sign;
  			vertex.z = radius * cosTheta;
  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal

  			normals.push( 0, sign, 0 );

  			// uv

  			uv.x = ( cosTheta * 0.5 ) + 0.5;
  			uv.y = ( sinTheta * 0.5 * sign ) + 0.5;
  			uvs.push( uv.x, uv.y );

  			// increase index

  			index ++;

  		}

  		// generate indices

  		for ( let x = 0; x < radialSegments; x ++ ) {

  			const c = centerIndexStart + x;
  			const i = centerIndexEnd + x;

  			if ( top === true ) {

  				// face top

  				indices.push( i, i + 1, c );

  			} else {

  				// face bottom

  				indices.push( i + 1, i, c );

  			}

  			groupCount += 3;

  		}

  		// add a group to the geometry. this will ensure multi material support

  		scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );

  		// calculate new start value for groups

  		groupStart += groupCount;

  	}

  }

  CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry;

  /**
   * @author abelnation / http://github.com/abelnation
   */

  // ConeGeometry

  function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

  	CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

  	this.type = 'ConeGeometry';

  	this.parameters = {
  		radius: radius,
  		height: height,
  		radialSegments: radialSegments,
  		heightSegments: heightSegments,
  		openEnded: openEnded,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  }

  ConeGeometry.prototype = Object.create( CylinderGeometry.prototype );
  ConeGeometry.prototype.constructor = ConeGeometry;

  // ConeBufferGeometry

  function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

  	CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

  	this.type = 'ConeBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		height: height,
  		radialSegments: radialSegments,
  		heightSegments: heightSegments,
  		openEnded: openEnded,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  }

  ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype );
  ConeBufferGeometry.prototype.constructor = ConeBufferGeometry;

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   * @author Mugen87 / https://github.com/Mugen87
   * @author hughes
   */

  // CircleGeometry

  function CircleGeometry( radius, segments, thetaStart, thetaLength ) {

  	Geometry.call( this );

  	this.type = 'CircleGeometry';

  	this.parameters = {
  		radius: radius,
  		segments: segments,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) );
  	this.mergeVertices();

  }

  CircleGeometry.prototype = Object.create( Geometry.prototype );
  CircleGeometry.prototype.constructor = CircleGeometry;

  // CircleBufferGeometry

  function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) {

  	BufferGeometry.call( this );

  	this.type = 'CircleBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		segments: segments,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	radius = radius || 1;
  	segments = segments !== undefined ? Math.max( 3, segments ) : 8;

  	thetaStart = thetaStart !== undefined ? thetaStart : 0;
  	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

  	// buffers

  	const indices = [];
  	const vertices = [];
  	const normals = [];
  	const uvs = [];

  	// helper variables

  	const vertex = new Vector3();
  	const uv = new Vector2();

  	// center point

  	vertices.push( 0, 0, 0 );
  	normals.push( 0, 0, 1 );
  	uvs.push( 0.5, 0.5 );

  	for ( let s = 0, i = 3; s <= segments; s ++, i += 3 ) {

  		const segment = thetaStart + s / segments * thetaLength;

  		// vertex

  		vertex.x = radius * Math.cos( segment );
  		vertex.y = radius * Math.sin( segment );

  		vertices.push( vertex.x, vertex.y, vertex.z );

  		// normal

  		normals.push( 0, 0, 1 );

  		// uvs

  		uv.x = ( vertices[ i ] / radius + 1 ) / 2;
  		uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;

  		uvs.push( uv.x, uv.y );

  	}

  	// indices

  	for ( let i = 1; i <= segments; i ++ ) {

  		indices.push( i, i + 1, 0 );

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  CircleBufferGeometry.prototype.constructor = CircleBufferGeometry;

  var Geometries = /*#__PURE__*/Object.freeze({
  	__proto__: null,
  	WireframeGeometry: WireframeGeometry,
  	ParametricGeometry: ParametricGeometry,
  	ParametricBufferGeometry: ParametricBufferGeometry,
  	TetrahedronGeometry: TetrahedronGeometry,
  	TetrahedronBufferGeometry: TetrahedronBufferGeometry,
  	OctahedronGeometry: OctahedronGeometry,
  	OctahedronBufferGeometry: OctahedronBufferGeometry,
  	IcosahedronGeometry: IcosahedronGeometry,
  	IcosahedronBufferGeometry: IcosahedronBufferGeometry,
  	DodecahedronGeometry: DodecahedronGeometry,
  	DodecahedronBufferGeometry: DodecahedronBufferGeometry,
  	PolyhedronGeometry: PolyhedronGeometry,
  	PolyhedronBufferGeometry: PolyhedronBufferGeometry,
  	TubeGeometry: TubeGeometry,
  	TubeBufferGeometry: TubeBufferGeometry,
  	TorusKnotGeometry: TorusKnotGeometry,
  	TorusKnotBufferGeometry: TorusKnotBufferGeometry,
  	TorusGeometry: TorusGeometry,
  	TorusBufferGeometry: TorusBufferGeometry,
  	TextGeometry: TextGeometry,
  	TextBufferGeometry: TextBufferGeometry,
  	SphereGeometry: SphereGeometry,
  	SphereBufferGeometry: SphereBufferGeometry,
  	RingGeometry: RingGeometry,
  	RingBufferGeometry: RingBufferGeometry,
  	PlaneGeometry: PlaneGeometry,
  	PlaneBufferGeometry: PlaneBufferGeometry,
  	LatheGeometry: LatheGeometry,
  	LatheBufferGeometry: LatheBufferGeometry,
  	ShapeGeometry: ShapeGeometry,
  	ShapeBufferGeometry: ShapeBufferGeometry,
  	ExtrudeGeometry: ExtrudeGeometry,
  	ExtrudeBufferGeometry: ExtrudeBufferGeometry,
  	EdgesGeometry: EdgesGeometry,
  	ConeGeometry: ConeGeometry,
  	ConeBufferGeometry: ConeBufferGeometry,
  	CylinderGeometry: CylinderGeometry,
  	CylinderBufferGeometry: CylinderBufferGeometry,
  	CircleGeometry: CircleGeometry,
  	CircleBufferGeometry: CircleBufferGeometry,
  	BoxGeometry: BoxGeometry,
  	BoxBufferGeometry: BoxBufferGeometry
  });

  /**
   * @author mrdoob / http://mrdoob.com/
   *
   * parameters = {
   *  color: <THREE.Color>
   * }
   */

  function ShadowMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'ShadowMaterial';

  	this.color = new Color( 0x000000 );
  	this.transparent = true;

  	this.setValues( parameters );

  }

  ShadowMaterial.prototype = Object.create( Material.prototype );
  ShadowMaterial.prototype.constructor = ShadowMaterial;

  ShadowMaterial.prototype.isShadowMaterial = true;

  ShadowMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function RawShaderMaterial( parameters ) {

  	ShaderMaterial.call( this, parameters );

  	this.type = 'RawShaderMaterial';

  }

  RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype );
  RawShaderMaterial.prototype.constructor = RawShaderMaterial;

  RawShaderMaterial.prototype.isRawShaderMaterial = true;

  /**
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *  color: <hex>,
   *  roughness: <float>,
   *  metalness: <float>,
   *  opacity: <float>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  lightMap: new THREE.Texture( <Image> ),
   *  lightMapIntensity: <float>
   *
   *  aoMap: new THREE.Texture( <Image> ),
   *  aoMapIntensity: <float>
   *
   *  emissive: <hex>,
   *  emissiveIntensity: <float>
   *  emissiveMap: new THREE.Texture( <Image> ),
   *
   *  bumpMap: new THREE.Texture( <Image> ),
   *  bumpScale: <float>,
   *
   *  normalMap: new THREE.Texture( <Image> ),
   *  normalMapType: THREE.TangentSpaceNormalMap,
   *  normalScale: <Vector2>,
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  roughnessMap: new THREE.Texture( <Image> ),
   *
   *  metalnessMap: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
   *  envMapIntensity: <float>
   *
   *  refractionRatio: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshStandardMaterial( parameters ) {

  	Material.call( this );

  	this.defines = { 'STANDARD': '' };

  	this.type = 'MeshStandardMaterial';

  	this.color = new Color( 0xffffff ); // diffuse
  	this.roughness = 1.0;
  	this.metalness = 0.0;

  	this.map = null;

  	this.lightMap = null;
  	this.lightMapIntensity = 1.0;

  	this.aoMap = null;
  	this.aoMapIntensity = 1.0;

  	this.emissive = new Color( 0x000000 );
  	this.emissiveIntensity = 1.0;
  	this.emissiveMap = null;

  	this.bumpMap = null;
  	this.bumpScale = 1;

  	this.normalMap = null;
  	this.normalMapType = TangentSpaceNormalMap;
  	this.normalScale = new Vector2( 1, 1 );

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.roughnessMap = null;

  	this.metalnessMap = null;

  	this.alphaMap = null;

  	this.envMap = null;
  	this.envMapIntensity = 1.0;

  	this.refractionRatio = 0.98;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;
  	this.wireframeLinecap = 'round';
  	this.wireframeLinejoin = 'round';

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.vertexTangents = false;

  	this.setValues( parameters );

  }

  MeshStandardMaterial.prototype = Object.create( Material.prototype );
  MeshStandardMaterial.prototype.constructor = MeshStandardMaterial;

  MeshStandardMaterial.prototype.isMeshStandardMaterial = true;

  MeshStandardMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.defines = { 'STANDARD': '' };

  	this.color.copy( source.color );
  	this.roughness = source.roughness;
  	this.metalness = source.metalness;

  	this.map = source.map;

  	this.lightMap = source.lightMap;
  	this.lightMapIntensity = source.lightMapIntensity;

  	this.aoMap = source.aoMap;
  	this.aoMapIntensity = source.aoMapIntensity;

  	this.emissive.copy( source.emissive );
  	this.emissiveMap = source.emissiveMap;
  	this.emissiveIntensity = source.emissiveIntensity;

  	this.bumpMap = source.bumpMap;
  	this.bumpScale = source.bumpScale;

  	this.normalMap = source.normalMap;
  	this.normalMapType = source.normalMapType;
  	this.normalScale.copy( source.normalScale );

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.roughnessMap = source.roughnessMap;

  	this.metalnessMap = source.metalnessMap;

  	this.alphaMap = source.alphaMap;

  	this.envMap = source.envMap;
  	this.envMapIntensity = source.envMapIntensity;

  	this.refractionRatio = source.refractionRatio;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;
  	this.wireframeLinecap = source.wireframeLinecap;
  	this.wireframeLinejoin = source.wireframeLinejoin;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	this.vertexTangents = source.vertexTangents;

  	return this;

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *  clearcoat: <float>,
   *  clearcoatMap: new THREE.Texture( <Image> ),
   *  clearcoatRoughness: <float>,
   *  clearcoatRoughnessMap: new THREE.Texture( <Image> ),
   *  clearcoatNormalScale: <Vector2>,
   *  clearcoatNormalMap: new THREE.Texture( <Image> ),
   *
   *  reflectivity: <float>,
   *
   *  sheen: <Color>,
   *
   *  transparency: <float>
   * }
   */

  function MeshPhysicalMaterial( parameters ) {

  	MeshStandardMaterial.call( this );

  	this.defines = {

  		'STANDARD': '',
  		'PHYSICAL': ''

  	};

  	this.type = 'MeshPhysicalMaterial';

  	this.clearcoat = 0.0;
  	this.clearcoatMap = null;
  	this.clearcoatRoughness = 0.0;
  	this.clearcoatRoughnessMap = null;
  	this.clearcoatNormalScale = new Vector2( 1, 1 );
  	this.clearcoatNormalMap = null;

  	this.reflectivity = 0.5; // maps to F0 = 0.04

  	this.sheen = null; // null will disable sheen bsdf

  	this.transparency = 0.0;

  	this.setValues( parameters );

  }

  MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
  MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial;

  MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;

  MeshPhysicalMaterial.prototype.copy = function ( source ) {

  	MeshStandardMaterial.prototype.copy.call( this, source );

  	this.defines = {

  		'STANDARD': '',
  		'PHYSICAL': ''

  	};

  	this.clearcoat = source.clearcoat;
  	this.clearcoatMap = source.clearcoatMap;
  	this.clearcoatRoughness = source.clearcoatRoughness;
  	this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
  	this.clearcoatNormalMap = source.clearcoatNormalMap;
  	this.clearcoatNormalScale.copy( source.clearcoatNormalScale );

  	this.reflectivity = source.reflectivity;

  	if ( source.sheen ) {

  		this.sheen = ( this.sheen || new Color() ).copy( source.sheen );

  	} else {

  		this.sheen = null;

  	}

  	this.transparency = source.transparency;

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  specular: <hex>,
   *  shininess: <float>,
   *  opacity: <float>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  lightMap: new THREE.Texture( <Image> ),
   *  lightMapIntensity: <float>
   *
   *  aoMap: new THREE.Texture( <Image> ),
   *  aoMapIntensity: <float>
   *
   *  emissive: <hex>,
   *  emissiveIntensity: <float>
   *  emissiveMap: new THREE.Texture( <Image> ),
   *
   *  bumpMap: new THREE.Texture( <Image> ),
   *  bumpScale: <float>,
   *
   *  normalMap: new THREE.Texture( <Image> ),
   *  normalMapType: THREE.TangentSpaceNormalMap,
   *  normalScale: <Vector2>,
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  specularMap: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
   *  combine: THREE.MultiplyOperation,
   *  reflectivity: <float>,
   *  refractionRatio: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshPhongMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshPhongMaterial';

  	this.color = new Color( 0xffffff ); // diffuse
  	this.specular = new Color( 0x111111 );
  	this.shininess = 30;

  	this.map = null;

  	this.lightMap = null;
  	this.lightMapIntensity = 1.0;

  	this.aoMap = null;
  	this.aoMapIntensity = 1.0;

  	this.emissive = new Color( 0x000000 );
  	this.emissiveIntensity = 1.0;
  	this.emissiveMap = null;

  	this.bumpMap = null;
  	this.bumpScale = 1;

  	this.normalMap = null;
  	this.normalMapType = TangentSpaceNormalMap;
  	this.normalScale = new Vector2( 1, 1 );

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.specularMap = null;

  	this.alphaMap = null;

  	this.envMap = null;
  	this.combine = MultiplyOperation;
  	this.reflectivity = 1;
  	this.refractionRatio = 0.98;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;
  	this.wireframeLinecap = 'round';
  	this.wireframeLinejoin = 'round';

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.setValues( parameters );

  }

  MeshPhongMaterial.prototype = Object.create( Material.prototype );
  MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;

  MeshPhongMaterial.prototype.isMeshPhongMaterial = true;

  MeshPhongMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );
  	this.specular.copy( source.specular );
  	this.shininess = source.shininess;

  	this.map = source.map;

  	this.lightMap = source.lightMap;
  	this.lightMapIntensity = source.lightMapIntensity;

  	this.aoMap = source.aoMap;
  	this.aoMapIntensity = source.aoMapIntensity;

  	this.emissive.copy( source.emissive );
  	this.emissiveMap = source.emissiveMap;
  	this.emissiveIntensity = source.emissiveIntensity;

  	this.bumpMap = source.bumpMap;
  	this.bumpScale = source.bumpScale;

  	this.normalMap = source.normalMap;
  	this.normalMapType = source.normalMapType;
  	this.normalScale.copy( source.normalScale );

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.specularMap = source.specularMap;

  	this.alphaMap = source.alphaMap;

  	this.envMap = source.envMap;
  	this.combine = source.combine;
  	this.reflectivity = source.reflectivity;
  	this.refractionRatio = source.refractionRatio;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;
  	this.wireframeLinecap = source.wireframeLinecap;
  	this.wireframeLinejoin = source.wireframeLinejoin;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	return this;

  };

  /**
   * @author takahirox / http://github.com/takahirox
   *
   * parameters = {
   *  color: <hex>,
   *
   *  map: new THREE.Texture( <Image> ),
   *  gradientMap: new THREE.Texture( <Image> ),
   *
   *  lightMap: new THREE.Texture( <Image> ),
   *  lightMapIntensity: <float>
   *
   *  aoMap: new THREE.Texture( <Image> ),
   *  aoMapIntensity: <float>
   *
   *  emissive: <hex>,
   *  emissiveIntensity: <float>
   *  emissiveMap: new THREE.Texture( <Image> ),
   *
   *  bumpMap: new THREE.Texture( <Image> ),
   *  bumpScale: <float>,
   *
   *  normalMap: new THREE.Texture( <Image> ),
   *  normalMapType: THREE.TangentSpaceNormalMap,
   *  normalScale: <Vector2>,
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshToonMaterial( parameters ) {

  	Material.call( this );

  	this.defines = { 'TOON': '' };

  	this.type = 'MeshToonMaterial';

  	this.color = new Color( 0xffffff );

  	this.map = null;
  	this.gradientMap = null;

  	this.lightMap = null;
  	this.lightMapIntensity = 1.0;

  	this.aoMap = null;
  	this.aoMapIntensity = 1.0;

  	this.emissive = new Color( 0x000000 );
  	this.emissiveIntensity = 1.0;
  	this.emissiveMap = null;

  	this.bumpMap = null;
  	this.bumpScale = 1;

  	this.normalMap = null;
  	this.normalMapType = TangentSpaceNormalMap;
  	this.normalScale = new Vector2( 1, 1 );

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.alphaMap = null;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;
  	this.wireframeLinecap = 'round';
  	this.wireframeLinejoin = 'round';

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.setValues( parameters );

  }

  MeshToonMaterial.prototype = Object.create( Material.prototype );
  MeshToonMaterial.prototype.constructor = MeshToonMaterial;

  MeshToonMaterial.prototype.isMeshToonMaterial = true;

  MeshToonMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.map = source.map;
  	this.gradientMap = source.gradientMap;

  	this.lightMap = source.lightMap;
  	this.lightMapIntensity = source.lightMapIntensity;

  	this.aoMap = source.aoMap;
  	this.aoMapIntensity = source.aoMapIntensity;

  	this.emissive.copy( source.emissive );
  	this.emissiveMap = source.emissiveMap;
  	this.emissiveIntensity = source.emissiveIntensity;

  	this.bumpMap = source.bumpMap;
  	this.bumpScale = source.bumpScale;

  	this.normalMap = source.normalMap;
  	this.normalMapType = source.normalMapType;
  	this.normalScale.copy( source.normalScale );

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.alphaMap = source.alphaMap;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;
  	this.wireframeLinecap = source.wireframeLinecap;
  	this.wireframeLinejoin = source.wireframeLinejoin;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *  opacity: <float>,
   *
   *  bumpMap: new THREE.Texture( <Image> ),
   *  bumpScale: <float>,
   *
   *  normalMap: new THREE.Texture( <Image> ),
   *  normalMapType: THREE.TangentSpaceNormalMap,
   *  normalScale: <Vector2>,
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshNormalMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshNormalMaterial';

  	this.bumpMap = null;
  	this.bumpScale = 1;

  	this.normalMap = null;
  	this.normalMapType = TangentSpaceNormalMap;
  	this.normalScale = new Vector2( 1, 1 );

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;

  	this.fog = false;

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.setValues( parameters );

  }

  MeshNormalMaterial.prototype = Object.create( Material.prototype );
  MeshNormalMaterial.prototype.constructor = MeshNormalMaterial;

  MeshNormalMaterial.prototype.isMeshNormalMaterial = true;

  MeshNormalMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.bumpMap = source.bumpMap;
  	this.bumpScale = source.bumpScale;

  	this.normalMap = source.normalMap;
  	this.normalMapType = source.normalMapType;
  	this.normalScale.copy( source.normalScale );

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  lightMap: new THREE.Texture( <Image> ),
   *  lightMapIntensity: <float>
   *
   *  aoMap: new THREE.Texture( <Image> ),
   *  aoMapIntensity: <float>
   *
   *  emissive: <hex>,
   *  emissiveIntensity: <float>
   *  emissiveMap: new THREE.Texture( <Image> ),
   *
   *  specularMap: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
   *  combine: THREE.Multiply,
   *  reflectivity: <float>,
   *  refractionRatio: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshLambertMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshLambertMaterial';

  	this.color = new Color( 0xffffff ); // diffuse

  	this.map = null;

  	this.lightMap = null;
  	this.lightMapIntensity = 1.0;

  	this.aoMap = null;
  	this.aoMapIntensity = 1.0;

  	this.emissive = new Color( 0x000000 );
  	this.emissiveIntensity = 1.0;
  	this.emissiveMap = null;

  	this.specularMap = null;

  	this.alphaMap = null;

  	this.envMap = null;
  	this.combine = MultiplyOperation;
  	this.reflectivity = 1;
  	this.refractionRatio = 0.98;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;
  	this.wireframeLinecap = 'round';
  	this.wireframeLinejoin = 'round';

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.setValues( parameters );

  }

  MeshLambertMaterial.prototype = Object.create( Material.prototype );
  MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;

  MeshLambertMaterial.prototype.isMeshLambertMaterial = true;

  MeshLambertMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.map = source.map;

  	this.lightMap = source.lightMap;
  	this.lightMapIntensity = source.lightMapIntensity;

  	this.aoMap = source.aoMap;
  	this.aoMapIntensity = source.aoMapIntensity;

  	this.emissive.copy( source.emissive );
  	this.emissiveMap = source.emissiveMap;
  	this.emissiveIntensity = source.emissiveIntensity;

  	this.specularMap = source.specularMap;

  	this.alphaMap = source.alphaMap;

  	this.envMap = source.envMap;
  	this.combine = source.combine;
  	this.reflectivity = source.reflectivity;
  	this.refractionRatio = source.refractionRatio;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;
  	this.wireframeLinecap = source.wireframeLinecap;
  	this.wireframeLinejoin = source.wireframeLinejoin;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	return this;

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *
   *  matcap: new THREE.Texture( <Image> ),
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  bumpMap: new THREE.Texture( <Image> ),
   *  bumpScale: <float>,
   *
   *  normalMap: new THREE.Texture( <Image> ),
   *  normalMapType: THREE.TangentSpaceNormalMap,
   *  normalScale: <Vector2>,
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshMatcapMaterial( parameters ) {

  	Material.call( this );

  	this.defines = { 'MATCAP': '' };

  	this.type = 'MeshMatcapMaterial';

  	this.color = new Color( 0xffffff ); // diffuse

  	this.matcap = null;

  	this.map = null;

  	this.bumpMap = null;
  	this.bumpScale = 1;

  	this.normalMap = null;
  	this.normalMapType = TangentSpaceNormalMap;
  	this.normalScale = new Vector2( 1, 1 );

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.alphaMap = null;

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.setValues( parameters );

  }

  MeshMatcapMaterial.prototype = Object.create( Material.prototype );
  MeshMatcapMaterial.prototype.constructor = MeshMatcapMaterial;

  MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;

  MeshMatcapMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.defines = { 'MATCAP': '' };

  	this.color.copy( source.color );

  	this.matcap = source.matcap;

  	this.map = source.map;

  	this.bumpMap = source.bumpMap;
  	this.bumpScale = source.bumpScale;

  	this.normalMap = source.normalMap;
  	this.normalMapType = source.normalMapType;
  	this.normalScale.copy( source.normalScale );

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.alphaMap = source.alphaMap;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	return this;

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *
   *  linewidth: <float>,
   *
   *  scale: <float>,
   *  dashSize: <float>,
   *  gapSize: <float>
   * }
   */

  function LineDashedMaterial( parameters ) {

  	LineBasicMaterial.call( this );

  	this.type = 'LineDashedMaterial';

  	this.scale = 1;
  	this.dashSize = 3;
  	this.gapSize = 1;

  	this.setValues( parameters );

  }

  LineDashedMaterial.prototype = Object.create( LineBasicMaterial.prototype );
  LineDashedMaterial.prototype.constructor = LineDashedMaterial;

  LineDashedMaterial.prototype.isLineDashedMaterial = true;

  LineDashedMaterial.prototype.copy = function ( source ) {

  	LineBasicMaterial.prototype.copy.call( this, source );

  	this.scale = source.scale;
  	this.dashSize = source.dashSize;
  	this.gapSize = source.gapSize;

  	return this;

  };

  var Materials = /*#__PURE__*/Object.freeze({
  	__proto__: null,
  	ShadowMaterial: ShadowMaterial,
  	SpriteMaterial: SpriteMaterial,
  	RawShaderMaterial: RawShaderMaterial,
  	ShaderMaterial: ShaderMaterial,
  	PointsMaterial: PointsMaterial,
  	MeshPhysicalMaterial: MeshPhysicalMaterial,
  	MeshStandardMaterial: MeshStandardMaterial,
  	MeshPhongMaterial: MeshPhongMaterial,
  	MeshToonMaterial: MeshToonMaterial,
  	MeshNormalMaterial: MeshNormalMaterial,
  	MeshLambertMaterial: MeshLambertMaterial,
  	MeshDepthMaterial: MeshDepthMaterial,
  	MeshDistanceMaterial: MeshDistanceMaterial,
  	MeshBasicMaterial: MeshBasicMaterial,
  	MeshMatcapMaterial: MeshMatcapMaterial,
  	LineDashedMaterial: LineDashedMaterial,
  	LineBasicMaterial: LineBasicMaterial,
  	Material: Material
  });

  /**
   * @author tschw
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   */

  const AnimationUtils = {

  	// same as Array.prototype.slice, but also works on typed arrays
  	arraySlice: function ( array, from, to ) {

  		if ( AnimationUtils.isTypedArray( array ) ) {

  			// in ios9 array.subarray(from, undefined) will return empty array
  			// but array.subarray(from) or array.subarray(from, len) is correct
  			return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );

  		}

  		return array.slice( from, to );

  	},

  	// converts an array to a specific type
  	convertArray: function ( array, type, forceClone ) {

  		if ( ! array || // let 'undefined' and 'null' pass
  			! forceClone && array.constructor === type ) return array;

  		if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {

  			return new type( array ); // create typed array

  		}

  		return Array.prototype.slice.call( array ); // create Array

  	},

  	isTypedArray: function ( object ) {

  		return ArrayBuffer.isView( object ) &&
  			! ( object instanceof DataView );

  	},

  	// returns an array by which times and values can be sorted
  	getKeyframeOrder: function ( times ) {

  		function compareTime( i, j ) {

  			return times[ i ] - times[ j ];

  		}

  		const n = times.length;
  		const result = new Array( n );
  		for ( let i = 0; i !== n; ++ i ) result[ i ] = i;

  		result.sort( compareTime );

  		return result;

  	},

  	// uses the array previously returned by 'getKeyframeOrder' to sort data
  	sortedArray: function ( values, stride, order ) {

  		const nValues = values.length;
  		const result = new values.constructor( nValues );

  		for ( let i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {

  			const srcOffset = order[ i ] * stride;

  			for ( let j = 0; j !== stride; ++ j ) {

  				result[ dstOffset ++ ] = values[ srcOffset + j ];

  			}

  		}

  		return result;

  	},

  	// function for parsing AOS keyframe formats
  	flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {

  		let i = 1, key = jsonKeys[ 0 ];

  		while ( key !== undefined && key[ valuePropertyName ] === undefined ) {

  			key = jsonKeys[ i ++ ];

  		}

  		if ( key === undefined ) return; // no data

  		let value = key[ valuePropertyName ];
  		if ( value === undefined ) return; // no data

  		if ( Array.isArray( value ) ) {

  			do {

  				value = key[ valuePropertyName ];

  				if ( value !== undefined ) {

  					times.push( key.time );
  					values.push.apply( values, value ); // push all elements

  				}

  				key = jsonKeys[ i ++ ];

  			} while ( key !== undefined );

  		} else if ( value.toArray !== undefined ) {

  			// ...assume THREE.Math-ish

  			do {

  				value = key[ valuePropertyName ];

  				if ( value !== undefined ) {

  					times.push( key.time );
  					value.toArray( values, values.length );

  				}

  				key = jsonKeys[ i ++ ];

  			} while ( key !== undefined );

  		} else {

  			// otherwise push as-is

  			do {

  				value = key[ valuePropertyName ];

  				if ( value !== undefined ) {

  					times.push( key.time );
  					values.push( value );

  				}

  				key = jsonKeys[ i ++ ];

  			} while ( key !== undefined );

  		}

  	},

  	subclip: function ( sourceClip, name, startFrame, endFrame, fps ) {

  		fps = fps || 30;

  		const clip = sourceClip.clone();

  		clip.name = name;

  		const tracks = [];

  		for ( let i = 0; i < clip.tracks.length; ++ i ) {

  			const track = clip.tracks[ i ];
  			const valueSize = track.getValueSize();

  			const times = [];
  			const values = [];

  			for ( let j = 0; j < track.times.length; ++ j ) {

  				const frame = track.times[ j ] * fps;

  				if ( frame < startFrame || frame >= endFrame ) continue;

  				times.push( track.times[ j ] );

  				for ( let k = 0; k < valueSize; ++ k ) {

  					values.push( track.values[ j * valueSize + k ] );

  				}

  			}

  			if ( times.length === 0 ) continue;

  			track.times = AnimationUtils.convertArray( times, track.times.constructor );
  			track.values = AnimationUtils.convertArray( values, track.values.constructor );

  			tracks.push( track );

  		}

  		clip.tracks = tracks;

  		// find minimum .times value across all tracks in the trimmed clip

  		let minStartTime = Infinity;

  		for ( let i = 0; i < clip.tracks.length; ++ i ) {

  			if ( minStartTime > clip.tracks[ i ].times[ 0 ] ) {

  				minStartTime = clip.tracks[ i ].times[ 0 ];

  			}

  		}

  		// shift all tracks such that clip begins at t=0

  		for ( let i = 0; i < clip.tracks.length; ++ i ) {

  			clip.tracks[ i ].shift( - 1 * minStartTime );

  		}

  		clip.resetDuration();

  		return clip;

  	},

  	makeClipAdditive: function ( targetClip, referenceFrame, referenceClip, fps ) {

  		if ( referenceFrame === undefined ) referenceFrame = 0;
  		if ( referenceClip === undefined ) referenceClip = targetClip;
  		if ( fps === undefined || fps <= 0 ) fps = 30;

  		const numTracks = targetClip.tracks.length;
  		const referenceTime = referenceFrame / fps;

  		// Make each track's values relative to the values at the reference frame
  		for ( let i = 0; i < numTracks; ++ i ) {

  			const referenceTrack = referenceClip.tracks[ i ];
  			const referenceTrackType = referenceTrack.ValueTypeName;

  			// Skip this track if it's non-numeric
  			if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) continue;

  			// Find the track in the target clip whose name and type matches the reference track
  			const targetTrack = targetClip.tracks.find( function ( track ) {

  				return track.name === referenceTrack.name
  				&& track.ValueTypeName === referenceTrackType;

  			} );

  			if ( targetTrack === undefined ) continue;

  			const valueSize = referenceTrack.getValueSize();
  			const lastIndex = referenceTrack.times.length - 1;
  			let referenceValue;

  			// Find the value to subtract out of the track
  			if ( referenceTime <= referenceTrack.times[ 0 ] ) {

  				// Reference frame is earlier than the first keyframe, so just use the first keyframe
  				referenceValue = AnimationUtils.arraySlice( referenceTrack.values, 0, referenceTrack.valueSize );

  			} else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) {

  				// Reference frame is after the last keyframe, so just use the last keyframe
  				const startIndex = lastIndex * valueSize;
  				referenceValue = AnimationUtils.arraySlice( referenceTrack.values, startIndex );

  			} else {

  				// Interpolate to the reference value
  				const interpolant = referenceTrack.createInterpolant();
  				interpolant.evaluate( referenceTime );
  				referenceValue = interpolant.resultBuffer;

  			}

  			// Conjugate the quaternion
  			if ( referenceTrackType === 'quaternion' ) {

  				const referenceQuat = new Quaternion(
  					referenceValue[ 0 ],
  					referenceValue[ 1 ],
  					referenceValue[ 2 ],
  					referenceValue[ 3 ]
  				).normalize().conjugate();
  				referenceQuat.toArray( referenceValue );

  			}

  			// Subtract the reference value from all of the track values

  			const numTimes = targetTrack.times.length;
  			for ( let j = 0; j < numTimes; ++ j ) {

  				const valueStart = j * valueSize;

  				if ( referenceTrackType === 'quaternion' ) {

  					// Multiply the conjugate for quaternion track types
  					Quaternion.multiplyQuaternionsFlat(
  						targetTrack.values,
  						valueStart,
  						referenceValue,
  						0,
  						targetTrack.values,
  						valueStart
  					);

  				} else {

  					// Subtract each value for all other numeric track types
  					for ( let k = 0; k < valueSize; ++ k ) {

  						targetTrack.values[ valueStart + k ] -= referenceValue[ k ];

  					}

  				}

  			}

  		}

  		targetClip.blendMode = AdditiveAnimationBlendMode;

  		return targetClip;

  	}

  };

  /**
   * Abstract base class of interpolants over parametric samples.
   *
   * The parameter domain is one dimensional, typically the time or a path
   * along a curve defined by the data.
   *
   * The sample values can have any dimensionality and derived classes may
   * apply special interpretations to the data.
   *
   * This class provides the interval seek in a Template Method, deferring
   * the actual interpolation to derived classes.
   *
   * Time complexity is O(1) for linear access crossing at most two points
   * and O(log N) for random access, where N is the number of positions.
   *
   * References:
   *
   * 		http://www.oodesign.com/template-method-pattern.html
   *
   * @author tschw
   */

  function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	this.parameterPositions = parameterPositions;
  	this._cachedIndex = 0;

  	this.resultBuffer = resultBuffer !== undefined ?
  		resultBuffer : new sampleValues.constructor( sampleSize );
  	this.sampleValues = sampleValues;
  	this.valueSize = sampleSize;

  }

  Object.assign( Interpolant.prototype, {

  	evaluate: function ( t ) {

  		let pp = this.parameterPositions,
  			i1 = this._cachedIndex,

  			t1 = pp[ i1 ],
  			t0 = pp[ i1 - 1 ];

  		validate_interval: {

  			seek: {

  				let right;

  				linear_scan: {

  					//- See http://jsperf.com/comparison-to-undefined/3
  					//- slower code:
  					//-
  					//- 				if ( t >= t1 || t1 === undefined ) {
  					forward_scan: if ( ! ( t < t1 ) ) {

  						for ( let giveUpAt = i1 + 2; ; ) {

  							if ( t1 === undefined ) {

  								if ( t < t0 ) break forward_scan;

  								// after end

  								i1 = pp.length;
  								this._cachedIndex = i1;
  								return this.afterEnd_( i1 - 1, t, t0 );

  							}

  							if ( i1 === giveUpAt ) break; // this loop

  							t0 = t1;
  							t1 = pp[ ++ i1 ];

  							if ( t < t1 ) {

  								// we have arrived at the sought interval
  								break seek;

  							}

  						}

  						// prepare binary search on the right side of the index
  						right = pp.length;
  						break linear_scan;

  					}

  					//- slower code:
  					//-					if ( t < t0 || t0 === undefined ) {
  					if ( ! ( t >= t0 ) ) {

  						// looping?

  						const t1global = pp[ 1 ];

  						if ( t < t1global ) {

  							i1 = 2; // + 1, using the scan for the details
  							t0 = t1global;

  						}

  						// linear reverse scan

  						for ( let giveUpAt = i1 - 2; ; ) {

  							if ( t0 === undefined ) {

  								// before start

  								this._cachedIndex = 0;
  								return this.beforeStart_( 0, t, t1 );

  							}

  							if ( i1 === giveUpAt ) break; // this loop

  							t1 = t0;
  							t0 = pp[ -- i1 - 1 ];

  							if ( t >= t0 ) {

  								// we have arrived at the sought interval
  								break seek;

  							}

  						}

  						// prepare binary search on the left side of the index
  						right = i1;
  						i1 = 0;
  						break linear_scan;

  					}

  					// the interval is valid

  					break validate_interval;

  				} // linear scan

  				// binary search

  				while ( i1 < right ) {

  					const mid = ( i1 + right ) >>> 1;

  					if ( t < pp[ mid ] ) {

  						right = mid;

  					} else {

  						i1 = mid + 1;

  					}

  				}

  				t1 = pp[ i1 ];
  				t0 = pp[ i1 - 1 ];

  				// check boundary cases, again

  				if ( t0 === undefined ) {

  					this._cachedIndex = 0;
  					return this.beforeStart_( 0, t, t1 );

  				}

  				if ( t1 === undefined ) {

  					i1 = pp.length;
  					this._cachedIndex = i1;
  					return this.afterEnd_( i1 - 1, t0, t );

  				}

  			} // seek

  			this._cachedIndex = i1;

  			this.intervalChanged_( i1, t0, t1 );

  		} // validate_interval

  		return this.interpolate_( i1, t0, t, t1 );

  	},

  	settings: null, // optional, subclass-specific settings structure
  	// Note: The indirection allows central control of many interpolants.

  	// --- Protected interface

  	DefaultSettings_: {},

  	getSettings_: function () {

  		return this.settings || this.DefaultSettings_;

  	},

  	copySampleValue_: function ( index ) {

  		// copies a sample value to the result buffer

  		const result = this.resultBuffer,
  			values = this.sampleValues,
  			stride = this.valueSize,
  			offset = index * stride;

  		for ( let i = 0; i !== stride; ++ i ) {

  			result[ i ] = values[ offset + i ];

  		}

  		return result;

  	},

  	// Template methods for derived classes:

  	interpolate_: function ( /* i1, t0, t, t1 */ ) {

  		throw new Error( 'call to abstract method' );
  		// implementations shall return this.resultBuffer

  	},

  	intervalChanged_: function ( /* i1, t0, t1 */ ) {

  		// empty

  	}

  } );

  // DECLARE ALIAS AFTER assign prototype
  Object.assign( Interpolant.prototype, {

  	//( 0, t, t0 ), returns this.resultBuffer
  	beforeStart_: Interpolant.prototype.copySampleValue_,

  	//( N-1, tN-1, t ), returns this.resultBuffer
  	afterEnd_: Interpolant.prototype.copySampleValue_,

  } );

  /**
   * Fast and simple cubic spline interpolant.
   *
   * It was derived from a Hermitian construction setting the first derivative
   * at each sample position to the linear slope between neighboring positions
   * over their parameter interval.
   *
   * @author tschw
   */

  function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

  	this._weightPrev = - 0;
  	this._offsetPrev = - 0;
  	this._weightNext = - 0;
  	this._offsetNext = - 0;

  }

  CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

  	constructor: CubicInterpolant,

  	DefaultSettings_: {

  		endingStart: ZeroCurvatureEnding,
  		endingEnd: ZeroCurvatureEnding

  	},

  	intervalChanged_: function ( i1, t0, t1 ) {

  		let pp = this.parameterPositions,
  			iPrev = i1 - 2,
  			iNext = i1 + 1,

  			tPrev = pp[ iPrev ],
  			tNext = pp[ iNext ];

  		if ( tPrev === undefined ) {

  			switch ( this.getSettings_().endingStart ) {

  				case ZeroSlopeEnding:

  					// f'(t0) = 0
  					iPrev = i1;
  					tPrev = 2 * t0 - t1;

  					break;

  				case WrapAroundEnding:

  					// use the other end of the curve
  					iPrev = pp.length - 2;
  					tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];

  					break;

  				default: // ZeroCurvatureEnding

  					// f''(t0) = 0 a.k.a. Natural Spline
  					iPrev = i1;
  					tPrev = t1;

  			}

  		}

  		if ( tNext === undefined ) {

  			switch ( this.getSettings_().endingEnd ) {

  				case ZeroSlopeEnding:

  					// f'(tN) = 0
  					iNext = i1;
  					tNext = 2 * t1 - t0;

  					break;

  				case WrapAroundEnding:

  					// use the other end of the curve
  					iNext = 1;
  					tNext = t1 + pp[ 1 ] - pp[ 0 ];

  					break;

  				default: // ZeroCurvatureEnding

  					// f''(tN) = 0, a.k.a. Natural Spline
  					iNext = i1 - 1;
  					tNext = t0;

  			}

  		}

  		const halfDt = ( t1 - t0 ) * 0.5,
  			stride = this.valueSize;

  		this._weightPrev = halfDt / ( t0 - tPrev );
  		this._weightNext = halfDt / ( tNext - t1 );
  		this._offsetPrev = iPrev * stride;
  		this._offsetNext = iNext * stride;

  	},

  	interpolate_: function ( i1, t0, t, t1 ) {

  		const result = this.resultBuffer,
  			values = this.sampleValues,
  			stride = this.valueSize,

  			o1 = i1 * stride,		o0 = o1 - stride,
  			oP = this._offsetPrev, 	oN = this._offsetNext,
  			wP = this._weightPrev,	wN = this._weightNext,

  			p = ( t - t0 ) / ( t1 - t0 ),
  			pp = p * p,
  			ppp = pp * p;

  		// evaluate polynomials

  		const sP = - wP * ppp + 2 * wP * pp - wP * p;
  		const s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1;
  		const s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
  		const sN = wN * ppp - wN * pp;

  		// combine data linearly

  		for ( let i = 0; i !== stride; ++ i ) {

  			result[ i ] =
  					sP * values[ oP + i ] +
  					s0 * values[ o0 + i ] +
  					s1 * values[ o1 + i ] +
  					sN * values[ oN + i ];

  		}

  		return result;

  	}

  } );

  /**
   * @author tschw
   */

  function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

  }

  LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

  	constructor: LinearInterpolant,

  	interpolate_: function ( i1, t0, t, t1 ) {

  		const result = this.resultBuffer,
  			values = this.sampleValues,
  			stride = this.valueSize,

  			offset1 = i1 * stride,
  			offset0 = offset1 - stride,

  			weight1 = ( t - t0 ) / ( t1 - t0 ),
  			weight0 = 1 - weight1;

  		for ( let i = 0; i !== stride; ++ i ) {

  			result[ i ] =
  					values[ offset0 + i ] * weight0 +
  					values[ offset1 + i ] * weight1;

  		}

  		return result;

  	}

  } );

  /**
   *
   * Interpolant that evaluates to the sample value at the position preceeding
   * the parameter.
   *
   * @author tschw
   */

  function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

  }

  DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

  	constructor: DiscreteInterpolant,

  	interpolate_: function ( i1 /*, t0, t, t1 */ ) {

  		return this.copySampleValue_( i1 - 1 );

  	}

  } );

  /**
   *
   * A timed sequence of keyframes for a specific property.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function KeyframeTrack( name, times, values, interpolation ) {

  	if ( name === undefined ) throw new Error( 'THREE.KeyframeTrack: track name is undefined' );
  	if ( times === undefined || times.length === 0 ) throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name );

  	this.name = name;

  	this.times = AnimationUtils.convertArray( times, this.TimeBufferType );
  	this.values = AnimationUtils.convertArray( values, this.ValueBufferType );

  	this.setInterpolation( interpolation || this.DefaultInterpolation );

  }

  // Static methods

  Object.assign( KeyframeTrack, {

  	// Serialization (in static context, because of constructor invocation
  	// and automatic invocation of .toJSON):

  	toJSON: function ( track ) {

  		const trackType = track.constructor;

  		let json;

  		// derived classes can define a static toJSON method
  		if ( trackType.toJSON !== undefined ) {

  			json = trackType.toJSON( track );

  		} else {

  			// by default, we assume the data can be serialized as-is
  			json = {

  				'name': track.name,
  				'times': AnimationUtils.convertArray( track.times, Array ),
  				'values': AnimationUtils.convertArray( track.values, Array )

  			};

  			const interpolation = track.getInterpolation();

  			if ( interpolation !== track.DefaultInterpolation ) {

  				json.interpolation = interpolation;

  			}

  		}

  		json.type = track.ValueTypeName; // mandatory

  		return json;

  	}

  } );

  Object.assign( KeyframeTrack.prototype, {

  	constructor: KeyframeTrack,

  	TimeBufferType: Float32Array,

  	ValueBufferType: Float32Array,

  	DefaultInterpolation: InterpolateLinear,

  	InterpolantFactoryMethodDiscrete: function ( result ) {

  		return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result );

  	},

  	InterpolantFactoryMethodLinear: function ( result ) {

  		return new LinearInterpolant( this.times, this.values, this.getValueSize(), result );

  	},

  	InterpolantFactoryMethodSmooth: function ( result ) {

  		return new CubicInterpolant( this.times, this.values, this.getValueSize(), result );

  	},

  	setInterpolation: function ( interpolation ) {

  		let factoryMethod;

  		switch ( interpolation ) {

  			case InterpolateDiscrete:

  				factoryMethod = this.InterpolantFactoryMethodDiscrete;

  				break;

  			case InterpolateLinear:

  				factoryMethod = this.InterpolantFactoryMethodLinear;

  				break;

  			case InterpolateSmooth:

  				factoryMethod = this.InterpolantFactoryMethodSmooth;

  				break;

  		}

  		if ( factoryMethod === undefined ) {

  			const message = "unsupported interpolation for " +
  				this.ValueTypeName + " keyframe track named " + this.name;

  			if ( this.createInterpolant === undefined ) {

  				// fall back to default, unless the default itself is messed up
  				if ( interpolation !== this.DefaultInterpolation ) {

  					this.setInterpolation( this.DefaultInterpolation );

  				} else {

  					throw new Error( message ); // fatal, in this case

  				}

  			}

  			console.warn( 'THREE.KeyframeTrack:', message );
  			return this;

  		}

  		this.createInterpolant = factoryMethod;

  		return this;

  	},

  	getInterpolation: function () {

  		switch ( this.createInterpolant ) {

  			case this.InterpolantFactoryMethodDiscrete:

  				return InterpolateDiscrete;

  			case this.InterpolantFactoryMethodLinear:

  				return InterpolateLinear;

  			case this.InterpolantFactoryMethodSmooth:

  				return InterpolateSmooth;

  		}

  	},

  	getValueSize: function () {

  		return this.values.length / this.times.length;

  	},

  	// move all keyframes either forwards or backwards in time
  	shift: function ( timeOffset ) {

  		if ( timeOffset !== 0.0 ) {

  			const times = this.times;

  			for ( let i = 0, n = times.length; i !== n; ++ i ) {

  				times[ i ] += timeOffset;

  			}

  		}

  		return this;

  	},

  	// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
  	scale: function ( timeScale ) {

  		if ( timeScale !== 1.0 ) {

  			const times = this.times;

  			for ( let i = 0, n = times.length; i !== n; ++ i ) {

  				times[ i ] *= timeScale;

  			}

  		}

  		return this;

  	},

  	// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
  	// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
  	trim: function ( startTime, endTime ) {

  		const times = this.times,
  			nKeys = times.length;

  		let from = 0,
  			to = nKeys - 1;

  		while ( from !== nKeys && times[ from ] < startTime ) {

  			++ from;

  		}

  		while ( to !== - 1 && times[ to ] > endTime ) {

  			-- to;

  		}

  		++ to; // inclusive -> exclusive bound

  		if ( from !== 0 || to !== nKeys ) {

  			// empty tracks are forbidden, so keep at least one keyframe
  			if ( from >= to ) {

  				to = Math.max( to, 1 );
  				from = to - 1;

  			}

  			const stride = this.getValueSize();
  			this.times = AnimationUtils.arraySlice( times, from, to );
  			this.values = AnimationUtils.arraySlice( this.values, from * stride, to * stride );

  		}

  		return this;

  	},

  	// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
  	validate: function () {

  		let valid = true;

  		const valueSize = this.getValueSize();
  		if ( valueSize - Math.floor( valueSize ) !== 0 ) {

  			console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this );
  			valid = false;

  		}

  		const times = this.times,
  			values = this.values,

  			nKeys = times.length;

  		if ( nKeys === 0 ) {

  			console.error( 'THREE.KeyframeTrack: Track is empty.', this );
  			valid = false;

  		}

  		let prevTime = null;

  		for ( let i = 0; i !== nKeys; i ++ ) {

  			const currTime = times[ i ];

  			if ( typeof currTime === 'number' && isNaN( currTime ) ) {

  				console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime );
  				valid = false;
  				break;

  			}

  			if ( prevTime !== null && prevTime > currTime ) {

  				console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime );
  				valid = false;
  				break;

  			}

  			prevTime = currTime;

  		}

  		if ( values !== undefined ) {

  			if ( AnimationUtils.isTypedArray( values ) ) {

  				for ( let i = 0, n = values.length; i !== n; ++ i ) {

  					const value = values[ i ];

  					if ( isNaN( value ) ) {

  						console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value );
  						valid = false;
  						break;

  					}

  				}

  			}

  		}

  		return valid;

  	},

  	// removes equivalent sequential keys as common in morph target sequences
  	// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
  	optimize: function () {

  		// times or values may be shared with other tracks, so overwriting is unsafe
  		const times = AnimationUtils.arraySlice( this.times ),
  			values = AnimationUtils.arraySlice( this.values ),
  			stride = this.getValueSize(),

  			smoothInterpolation = this.getInterpolation() === InterpolateSmooth,

  			lastIndex = times.length - 1;

  		let writeIndex = 1;

  		for ( let i = 1; i < lastIndex; ++ i ) {

  			let keep = false;

  			const time = times[ i ];
  			const timeNext = times[ i + 1 ];

  			// remove adjacent keyframes scheduled at the same time

  			if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {

  				if ( ! smoothInterpolation ) {

  					// remove unnecessary keyframes same as their neighbors

  					const offset = i * stride,
  						offsetP = offset - stride,
  						offsetN = offset + stride;

  					for ( let j = 0; j !== stride; ++ j ) {

  						const value = values[ offset + j ];

  						if ( value !== values[ offsetP + j ] ||
  							value !== values[ offsetN + j ] ) {

  							keep = true;
  							break;

  						}

  					}

  				} else {

  					keep = true;

  				}

  			}

  			// in-place compaction

  			if ( keep ) {

  				if ( i !== writeIndex ) {

  					times[ writeIndex ] = times[ i ];

  					const readOffset = i * stride,
  						writeOffset = writeIndex * stride;

  					for ( let j = 0; j !== stride; ++ j ) {

  						values[ writeOffset + j ] = values[ readOffset + j ];

  					}

  				}

  				++ writeIndex;

  			}

  		}

  		// flush last keyframe (compaction looks ahead)

  		if ( lastIndex > 0 ) {

  			times[ writeIndex ] = times[ lastIndex ];

  			for ( let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) {

  				values[ writeOffset + j ] = values[ readOffset + j ];

  			}

  			++ writeIndex;

  		}

  		if ( writeIndex !== times.length ) {

  			this.times = AnimationUtils.arraySlice( times, 0, writeIndex );
  			this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );

  		} else {

  			this.times = times;
  			this.values = values;

  		}

  		return this;

  	},

  	clone: function () {

  		const times = AnimationUtils.arraySlice( this.times, 0 );
  		const values = AnimationUtils.arraySlice( this.values, 0 );

  		const TypedKeyframeTrack = this.constructor;
  		const track = new TypedKeyframeTrack( this.name, times, values );

  		// Interpolant argument to constructor is not saved, so copy the factory method directly.
  		track.createInterpolant = this.createInterpolant;

  		return track;

  	}

  } );

  /**
   *
   * A Track of Boolean keyframe values.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function BooleanKeyframeTrack( name, times, values ) {

  	KeyframeTrack.call( this, name, times, values );

  }

  BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: BooleanKeyframeTrack,

  	ValueTypeName: 'bool',
  	ValueBufferType: Array,

  	DefaultInterpolation: InterpolateDiscrete,

  	InterpolantFactoryMethodLinear: undefined,
  	InterpolantFactoryMethodSmooth: undefined

  	// Note: Actually this track could have a optimized / compressed
  	// representation of a single value and a custom interpolant that
  	// computes "firstValue ^ isOdd( index )".

  } );

  /**
   *
   * A Track of keyframe values that represent color.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function ColorKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: ColorKeyframeTrack,

  	ValueTypeName: 'color'

  	// ValueBufferType is inherited

  	// DefaultInterpolation is inherited

  	// Note: Very basic implementation and nothing special yet.
  	// However, this is the place for color space parameterization.

  } );

  /**
   *
   * A Track of numeric keyframe values.
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function NumberKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: NumberKeyframeTrack,

  	ValueTypeName: 'number'

  	// ValueBufferType is inherited

  	// DefaultInterpolation is inherited

  } );

  /**
   * Spherical linear unit quaternion interpolant.
   *
   * @author tschw
   */

  function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

  }

  QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

  	constructor: QuaternionLinearInterpolant,

  	interpolate_: function ( i1, t0, t, t1 ) {

  		const result = this.resultBuffer,
  			values = this.sampleValues,
  			stride = this.valueSize,

  			alpha = ( t - t0 ) / ( t1 - t0 );

  		let offset = i1 * stride;

  		for ( let end = offset + stride; offset !== end; offset += 4 ) {

  			Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha );

  		}

  		return result;

  	}

  } );

  /**
   *
   * A Track of quaternion keyframe values.
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function QuaternionKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: QuaternionKeyframeTrack,

  	ValueTypeName: 'quaternion',

  	// ValueBufferType is inherited

  	DefaultInterpolation: InterpolateLinear,

  	InterpolantFactoryMethodLinear: function ( result ) {

  		return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result );

  	},

  	InterpolantFactoryMethodSmooth: undefined // not yet implemented

  } );

  /**
   *
   * A Track that interpolates Strings
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function StringKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: StringKeyframeTrack,

  	ValueTypeName: 'string',
  	ValueBufferType: Array,

  	DefaultInterpolation: InterpolateDiscrete,

  	InterpolantFactoryMethodLinear: undefined,

  	InterpolantFactoryMethodSmooth: undefined

  } );

  /**
   *
   * A Track of vectored keyframe values.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function VectorKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: VectorKeyframeTrack,

  	ValueTypeName: 'vector'

  	// ValueBufferType is inherited

  	// DefaultInterpolation is inherited

  } );

  /**
   *
   * Reusable set of Tracks that represent an animation.
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   */

  function AnimationClip( name, duration, tracks, blendMode ) {

  	this.name = name;
  	this.tracks = tracks;
  	this.duration = ( duration !== undefined ) ? duration : - 1;
  	this.blendMode = ( blendMode !== undefined ) ? blendMode : NormalAnimationBlendMode;

  	this.uuid = MathUtils.generateUUID();

  	// this means it should figure out its duration by scanning the tracks
  	if ( this.duration < 0 ) {

  		this.resetDuration();

  	}

  }

  function getTrackTypeForValueTypeName( typeName ) {

  	switch ( typeName.toLowerCase() ) {

  		case 'scalar':
  		case 'double':
  		case 'float':
  		case 'number':
  		case 'integer':

  			return NumberKeyframeTrack;

  		case 'vector':
  		case 'vector2':
  		case 'vector3':
  		case 'vector4':

  			return VectorKeyframeTrack;

  		case 'color':

  			return ColorKeyframeTrack;

  		case 'quaternion':

  			return QuaternionKeyframeTrack;

  		case 'bool':
  		case 'boolean':

  			return BooleanKeyframeTrack;

  		case 'string':

  			return StringKeyframeTrack;

  	}

  	throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName );

  }

  function parseKeyframeTrack( json ) {

  	if ( json.type === undefined ) {

  		throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' );

  	}

  	const trackType = getTrackTypeForValueTypeName( json.type );

  	if ( json.times === undefined ) {

  		const times = [], values = [];

  		AnimationUtils.flattenJSON( json.keys, times, values, 'value' );

  		json.times = times;
  		json.values = values;

  	}

  	// derived classes can define a static parse method
  	if ( trackType.parse !== undefined ) {

  		return trackType.parse( json );

  	} else {

  		// by default, we assume a constructor compatible with the base
  		return new trackType( json.name, json.times, json.values, json.interpolation );

  	}

  }

  Object.assign( AnimationClip, {

  	parse: function ( json ) {

  		const tracks = [],
  			jsonTracks = json.tracks,
  			frameTime = 1.0 / ( json.fps || 1.0 );

  		for ( let i = 0, n = jsonTracks.length; i !== n; ++ i ) {

  			tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) );

  		}

  		return new AnimationClip( json.name, json.duration, tracks, json.blendMode );

  	},

  	toJSON: function ( clip ) {

  		const tracks = [],
  			clipTracks = clip.tracks;

  		const json = {

  			'name': clip.name,
  			'duration': clip.duration,
  			'tracks': tracks,
  			'uuid': clip.uuid,
  			'blendMode': clip.blendMode

  		};

  		for ( let i = 0, n = clipTracks.length; i !== n; ++ i ) {

  			tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );

  		}

  		return json;

  	},

  	CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {

  		const numMorphTargets = morphTargetSequence.length;
  		const tracks = [];

  		for ( let i = 0; i < numMorphTargets; i ++ ) {

  			let times = [];
  			let values = [];

  			times.push(
  				( i + numMorphTargets - 1 ) % numMorphTargets,
  				i,
  				( i + 1 ) % numMorphTargets );

  			values.push( 0, 1, 0 );

  			const order = AnimationUtils.getKeyframeOrder( times );
  			times = AnimationUtils.sortedArray( times, 1, order );
  			values = AnimationUtils.sortedArray( values, 1, order );

  			// if there is a key at the first frame, duplicate it as the
  			// last frame as well for perfect loop.
  			if ( ! noLoop && times[ 0 ] === 0 ) {

  				times.push( numMorphTargets );
  				values.push( values[ 0 ] );

  			}

  			tracks.push(
  				new NumberKeyframeTrack(
  					'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
  					times, values
  				).scale( 1.0 / fps ) );

  		}

  		return new AnimationClip( name, - 1, tracks );

  	},

  	findByName: function ( objectOrClipArray, name ) {

  		let clipArray = objectOrClipArray;

  		if ( ! Array.isArray( objectOrClipArray ) ) {

  			const o = objectOrClipArray;
  			clipArray = o.geometry && o.geometry.animations || o.animations;

  		}

  		for ( let i = 0; i < clipArray.length; i ++ ) {

  			if ( clipArray[ i ].name === name ) {

  				return clipArray[ i ];

  			}

  		}

  		return null;

  	},

  	CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {

  		const animationToMorphTargets = {};

  		// tested with https://regex101.com/ on trick sequences
  		// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
  		const pattern = /^([\w-]*?)([\d]+)$/;

  		// sort morph target names into animation groups based
  		// patterns like Walk_001, Walk_002, Run_001, Run_002
  		for ( let i = 0, il = morphTargets.length; i < il; i ++ ) {

  			const morphTarget = morphTargets[ i ];
  			const parts = morphTarget.name.match( pattern );

  			if ( parts && parts.length > 1 ) {

  				const name = parts[ 1 ];

  				let animationMorphTargets = animationToMorphTargets[ name ];

  				if ( ! animationMorphTargets ) {

  					animationToMorphTargets[ name ] = animationMorphTargets = [];

  				}

  				animationMorphTargets.push( morphTarget );

  			}

  		}

  		const clips = [];

  		for ( const name in animationToMorphTargets ) {

  			clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );

  		}

  		return clips;

  	},

  	// parse the animation.hierarchy format
  	parseAnimation: function ( animation, bones ) {

  		if ( ! animation ) {

  			console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' );
  			return null;

  		}

  		const addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {

  			// only return track if there are actually keys.
  			if ( animationKeys.length !== 0 ) {

  				const times = [];
  				const values = [];

  				AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );

  				// empty keys are filtered out, so check again
  				if ( times.length !== 0 ) {

  					destTracks.push( new trackType( trackName, times, values ) );

  				}

  			}

  		};

  		const tracks = [];

  		const clipName = animation.name || 'default';
  		const fps = animation.fps || 30;
  		const blendMode = animation.blendMode;

  		// automatic length determination in AnimationClip.
  		let duration = animation.length || - 1;

  		const hierarchyTracks = animation.hierarchy || [];

  		for ( let h = 0; h < hierarchyTracks.length; h ++ ) {

  			const animationKeys = hierarchyTracks[ h ].keys;

  			// skip empty tracks
  			if ( ! animationKeys || animationKeys.length === 0 ) continue;

  			// process morph targets
  			if ( animationKeys[ 0 ].morphTargets ) {

  				// figure out all morph targets used in this track
  				const morphTargetNames = {};

  				let k;

  				for ( k = 0; k < animationKeys.length; k ++ ) {

  					if ( animationKeys[ k ].morphTargets ) {

  						for ( let m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {

  							morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;

  						}

  					}

  				}

  				// create a track for each morph target with all zero
  				// morphTargetInfluences except for the keys in which
  				// the morphTarget is named.
  				for ( const morphTargetName in morphTargetNames ) {

  					const times = [];
  					const values = [];

  					for ( let m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {

  						const animationKey = animationKeys[ k ];

  						times.push( animationKey.time );
  						values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );

  					}

  					tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );

  				}

  				duration = morphTargetNames.length * ( fps || 1.0 );

  			} else {

  				// ...assume skeletal animation

  				const boneName = '.bones[' + bones[ h ].name + ']';

  				addNonemptyTrack(
  					VectorKeyframeTrack, boneName + '.position',
  					animationKeys, 'pos', tracks );

  				addNonemptyTrack(
  					QuaternionKeyframeTrack, boneName + '.quaternion',
  					animationKeys, 'rot', tracks );

  				addNonemptyTrack(
  					VectorKeyframeTrack, boneName + '.scale',
  					animationKeys, 'scl', tracks );

  			}

  		}

  		if ( tracks.length === 0 ) {

  			return null;

  		}

  		const clip = new AnimationClip( clipName, duration, tracks, blendMode );

  		return clip;

  	}

  } );

  Object.assign( AnimationClip.prototype, {

  	resetDuration: function () {

  		const tracks = this.tracks;
  		let duration = 0;

  		for ( let i = 0, n = tracks.length; i !== n; ++ i ) {

  			const track = this.tracks[ i ];

  			duration = Math.max( duration, track.times[ track.times.length - 1 ] );

  		}

  		this.duration = duration;

  		return this;

  	},

  	trim: function () {

  		for ( let i = 0; i < this.tracks.length; i ++ ) {

  			this.tracks[ i ].trim( 0, this.duration );

  		}

  		return this;

  	},

  	validate: function () {

  		let valid = true;

  		for ( let i = 0; i < this.tracks.length; i ++ ) {

  			valid = valid && this.tracks[ i ].validate();

  		}

  		return valid;

  	},

  	optimize: function () {

  		for ( let i = 0; i < this.tracks.length; i ++ ) {

  			this.tracks[ i ].optimize();

  		}

  		return this;

  	},

  	clone: function () {

  		const tracks = [];

  		for ( let i = 0; i < this.tracks.length; i ++ ) {

  			tracks.push( this.tracks[ i ].clone() );

  		}

  		return new AnimationClip( this.name, this.duration, tracks, this.blendMode );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  const Cache = {

  	enabled: false,

  	files: {},

  	add: function ( key, file ) {

  		if ( this.enabled === false ) return;

  		// console.log( 'THREE.Cache', 'Adding key:', key );

  		this.files[ key ] = file;

  	},

  	get: function ( key ) {

  		if ( this.enabled === false ) return;

  		// console.log( 'THREE.Cache', 'Checking key:', key );

  		return this.files[ key ];

  	},

  	remove: function ( key ) {

  		delete this.files[ key ];

  	},

  	clear: function () {

  		this.files = {};

  	}

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function LoadingManager( onLoad, onProgress, onError ) {

  	const scope = this;

  	let isLoading = false;
  	let itemsLoaded = 0;
  	let itemsTotal = 0;
  	let urlModifier = undefined;
  	const handlers = [];

  	// Refer to #5689 for the reason why we don't set .onStart
  	// in the constructor

  	this.onStart = undefined;
  	this.onLoad = onLoad;
  	this.onProgress = onProgress;
  	this.onError = onError;

  	this.itemStart = function ( url ) {

  		itemsTotal ++;

  		if ( isLoading === false ) {

  			if ( scope.onStart !== undefined ) {

  				scope.onStart( url, itemsLoaded, itemsTotal );

  			}

  		}

  		isLoading = true;

  	};

  	this.itemEnd = function ( url ) {

  		itemsLoaded ++;

  		if ( scope.onProgress !== undefined ) {

  			scope.onProgress( url, itemsLoaded, itemsTotal );

  		}

  		if ( itemsLoaded === itemsTotal ) {

  			isLoading = false;

  			if ( scope.onLoad !== undefined ) {

  				scope.onLoad();

  			}

  		}

  	};

  	this.itemError = function ( url ) {

  		if ( scope.onError !== undefined ) {

  			scope.onError( url );

  		}

  	};

  	this.resolveURL = function ( url ) {

  		if ( urlModifier ) {

  			return urlModifier( url );

  		}

  		return url;

  	};

  	this.setURLModifier = function ( transform ) {

  		urlModifier = transform;

  		return this;

  	};

  	this.addHandler = function ( regex, loader ) {

  		handlers.push( regex, loader );

  		return this;

  	};

  	this.removeHandler = function ( regex ) {

  		const index = handlers.indexOf( regex );

  		if ( index !== - 1 ) {

  			handlers.splice( index, 2 );

  		}

  		return this;

  	};

  	this.getHandler = function ( file ) {

  		for ( let i = 0, l = handlers.length; i < l; i += 2 ) {

  			const regex = handlers[ i ];
  			const loader = handlers[ i + 1 ];

  			if ( regex.global ) regex.lastIndex = 0; // see #17920

  			if ( regex.test( file ) ) {

  				return loader;

  			}

  		}

  		return null;

  	};

  }

  const DefaultLoadingManager = new LoadingManager();

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function Loader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  	this.crossOrigin = 'anonymous';
  	this.path = '';
  	this.resourcePath = '';
  	this.requestHeader = {};

  }

  Object.assign( Loader.prototype, {

  	load: function ( /* url, onLoad, onProgress, onError */ ) {},

  	loadAsync: function ( url, onProgress ) {

  		const scope = this;

  		return new Promise( function ( resolve, reject ) {

  			scope.load( url, resolve, onProgress, reject );

  		} );

  	},

  	parse: function ( /* data */ ) {},

  	setCrossOrigin: function ( crossOrigin ) {

  		this.crossOrigin = crossOrigin;
  		return this;

  	},

  	setPath: function ( path ) {

  		this.path = path;
  		return this;

  	},

  	setResourcePath: function ( resourcePath ) {

  		this.resourcePath = resourcePath;
  		return this;

  	},

  	setRequestHeader: function ( requestHeader ) {

  		this.requestHeader = requestHeader;
  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  const loading = {};

  function FileLoader( manager ) {

  	Loader.call( this, manager );

  }

  FileLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: FileLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		if ( url === undefined ) url = '';

  		if ( this.path !== undefined ) url = this.path + url;

  		url = this.manager.resolveURL( url );

  		const scope = this;

  		const cached = Cache.get( url );

  		if ( cached !== undefined ) {

  			scope.manager.itemStart( url );

  			setTimeout( function () {

  				if ( onLoad ) onLoad( cached );

  				scope.manager.itemEnd( url );

  			}, 0 );

  			return cached;

  		}

  		// Check if request is duplicate

  		if ( loading[ url ] !== undefined ) {

  			loading[ url ].push( {

  				onLoad: onLoad,
  				onProgress: onProgress,
  				onError: onError

  			} );

  			return;

  		}

  		// Check for data: URI
  		const dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
  		const dataUriRegexResult = url.match( dataUriRegex );
  		let request;

  		// Safari can not handle Data URIs through XMLHttpRequest so process manually
  		if ( dataUriRegexResult ) {

  			const mimeType = dataUriRegexResult[ 1 ];
  			const isBase64 = !! dataUriRegexResult[ 2 ];

  			let data = dataUriRegexResult[ 3 ];
  			data = decodeURIComponent( data );

  			if ( isBase64 ) data = atob( data );

  			try {

  				let response;
  				const responseType = ( this.responseType || '' ).toLowerCase();

  				switch ( responseType ) {

  					case 'arraybuffer':
  					case 'blob':

  						const view = new Uint8Array( data.length );

  						for ( let i = 0; i < data.length; i ++ ) {

  							view[ i ] = data.charCodeAt( i );

  						}

  						if ( responseType === 'blob' ) {

  							response = new Blob( [ view.buffer ], { type: mimeType } );

  						} else {

  							response = view.buffer;

  						}

  						break;

  					case 'document':

  						const parser = new DOMParser();
  						response = parser.parseFromString( data, mimeType );

  						break;

  					case 'json':

  						response = JSON.parse( data );

  						break;

  					default: // 'text' or other

  						response = data;

  						break;

  				}

  				// Wait for next browser tick like standard XMLHttpRequest event dispatching does
  				setTimeout( function () {

  					if ( onLoad ) onLoad( response );

  					scope.manager.itemEnd( url );

  				}, 0 );

  			} catch ( error ) {

  				// Wait for next browser tick like standard XMLHttpRequest event dispatching does
  				setTimeout( function () {

  					if ( onError ) onError( error );

  					scope.manager.itemError( url );
  					scope.manager.itemEnd( url );

  				}, 0 );

  			}

  		} else {

  			// Initialise array for duplicate requests

  			loading[ url ] = [];

  			loading[ url ].push( {

  				onLoad: onLoad,
  				onProgress: onProgress,
  				onError: onError

  			} );

  			request = new XMLHttpRequest();

  			request.open( 'GET', url, true );

  			request.addEventListener( 'load', function ( event ) {

  				const response = this.response;

  				const callbacks = loading[ url ];

  				delete loading[ url ];

  				if ( this.status === 200 || this.status === 0 ) {

  					// Some browsers return HTTP Status 0 when using non-http protocol
  					// e.g. 'file://' or 'data://'. Handle as success.

  					if ( this.status === 0 ) console.warn( 'THREE.FileLoader: HTTP Status 0 received.' );

  					// Add to cache only on HTTP success, so that we do not cache
  					// error response bodies as proper responses to requests.
  					Cache.add( url, response );

  					for ( let i = 0, il = callbacks.length; i < il; i ++ ) {

  						const callback = callbacks[ i ];
  						if ( callback.onLoad ) callback.onLoad( response );

  					}

  					scope.manager.itemEnd( url );

  				} else {

  					for ( let i = 0, il = callbacks.length; i < il; i ++ ) {

  						const callback = callbacks[ i ];
  						if ( callback.onError ) callback.onError( event );

  					}

  					scope.manager.itemError( url );
  					scope.manager.itemEnd( url );

  				}

  			}, false );

  			request.addEventListener( 'progress', function ( event ) {

  				const callbacks = loading[ url ];

  				for ( let i = 0, il = callbacks.length; i < il; i ++ ) {

  					const callback = callbacks[ i ];
  					if ( callback.onProgress ) callback.onProgress( event );

  				}

  			}, false );

  			request.addEventListener( 'error', function ( event ) {

  				const callbacks = loading[ url ];

  				delete loading[ url ];

  				for ( let i = 0, il = callbacks.length; i < il; i ++ ) {

  					const callback = callbacks[ i ];
  					if ( callback.onError ) callback.onError( event );

  				}

  				scope.manager.itemError( url );
  				scope.manager.itemEnd( url );

  			}, false );

  			request.addEventListener( 'abort', function ( event ) {

  				const callbacks = loading[ url ];

  				delete loading[ url ];

  				for ( let i = 0, il = callbacks.length; i < il; i ++ ) {

  					const callback = callbacks[ i ];
  					if ( callback.onError ) callback.onError( event );

  				}

  				scope.manager.itemError( url );
  				scope.manager.itemEnd( url );

  			}, false );

  			if ( this.responseType !== undefined ) request.responseType = this.responseType;
  			if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;

  			if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' );

  			for ( const header in this.requestHeader ) {

  				request.setRequestHeader( header, this.requestHeader[ header ] );

  			}

  			request.send( null );

  		}

  		scope.manager.itemStart( url );

  		return request;

  	},

  	setResponseType: function ( value ) {

  		this.responseType = value;
  		return this;

  	},

  	setWithCredentials: function ( value ) {

  		this.withCredentials = value;
  		return this;

  	},

  	setMimeType: function ( value ) {

  		this.mimeType = value;
  		return this;

  	}

  } );

  /**
   * @author bhouston / http://clara.io/
   */

  function AnimationLoader( manager ) {

  	Loader.call( this, manager );

  }

  AnimationLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: AnimationLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		const scope = this;

  		const loader = new FileLoader( scope.manager );
  		loader.setPath( scope.path );
  		loader.load( url, function ( text ) {

  			try {

  				onLoad( scope.parse( JSON.parse( text ) ) );

  			} catch ( e ) {

  				if ( onError ) {

  					onError( e );

  				} else {

  					console.error( e );

  				}

  				scope.manager.itemError( url );

  			}

  		}, onProgress, onError );

  	},

  	parse: function ( json ) {

  		const animations = [];

  		for ( let i = 0; i < json.length; i ++ ) {

  			const clip = AnimationClip.parse( json[ i ] );

  			animations.push( clip );

  		}

  		return animations;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   *
   * Abstract Base class to block based textures loader (dds, pvr, ...)
   *
   * Sub classes have to implement the parse() method which will be used in load().
   */

  function CompressedTextureLoader( manager ) {

  	Loader.call( this, manager );

  }

  CompressedTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: CompressedTextureLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		const scope = this;

  		const images = [];

  		const texture = new CompressedTexture();
  		texture.image = images;

  		const loader = new FileLoader( this.manager );
  		loader.setPath( this.path );
  		loader.setResponseType( 'arraybuffer' );

  		let loaded = 0;

  		function loadTexture( i ) {

  			loader.load( url[ i ], function ( buffer ) {

  				const texDatas = scope.parse( buffer, true );

  				images[ i ] = {
  					width: texDatas.width,
  					height: texDatas.height,
  					format: texDatas.format,
  					mipmaps: texDatas.mipmaps
  				};

  				loaded += 1;

  				if ( loaded === 6 ) {

  					if ( texDatas.mipmapCount === 1 )
  						texture.minFilter = LinearFilter;

  					texture.format = texDatas.format;
  					texture.needsUpdate = true;

  					if ( onLoad ) onLoad( texture );

  				}

  			}, onProgress, onError );

  		}

  		if ( Array.isArray( url ) ) {

  			for ( let i = 0, il = url.length; i < il; ++ i ) {

  				loadTexture( i );

  			}

  		} else {

  			// compressed cubemap texture stored in a single DDS file

  			loader.load( url, function ( buffer ) {

  				const texDatas = scope.parse( buffer, true );

  				if ( texDatas.isCubemap ) {

  					const faces = texDatas.mipmaps.length / texDatas.mipmapCount;

  					for ( let f = 0; f < faces; f ++ ) {

  						images[ f ] = { mipmaps: [] };

  						for ( let i = 0; i < texDatas.mipmapCount; i ++ ) {

  							images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
  							images[ f ].format = texDatas.format;
  							images[ f ].width = texDatas.width;
  							images[ f ].height = texDatas.height;

  						}

  					}

  				} else {

  					texture.image.width = texDatas.width;
  					texture.image.height = texDatas.height;
  					texture.mipmaps = texDatas.mipmaps;

  				}

  				if ( texDatas.mipmapCount === 1 ) {

  					texture.minFilter = LinearFilter;

  				}

  				texture.format = texDatas.format;
  				texture.needsUpdate = true;

  				if ( onLoad ) onLoad( texture );

  			}, onProgress, onError );

  		}

  		return texture;

  	}

  } );

  /**
   * @author Nikos M. / https://github.com/foo123/
   *
   * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
   *
   * Sub classes have to implement the parse() method which will be used in load().
   */

  function DataTextureLoader( manager ) {

  	Loader.call( this, manager );

  }

  DataTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: DataTextureLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		const scope = this;

  		const texture = new DataTexture();

  		const loader = new FileLoader( this.manager );
  		loader.setResponseType( 'arraybuffer' );
  		loader.setPath( this.path );
  		loader.load( url, function ( buffer ) {

  			const texData = scope.parse( buffer );

  			if ( ! texData ) return;

  			if ( texData.image !== undefined ) {

  				texture.image = texData.image;

  			} else if ( texData.data !== undefined ) {

  				texture.image.width = texData.width;
  				texture.image.height = texData.height;
  				texture.image.data = texData.data;

  			}

  			texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
  			texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;

  			texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
  			texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;

  			texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;

  			if ( texData.format !== undefined ) {

  				texture.format = texData.format;

  			}

  			if ( texData.type !== undefined ) {

  				texture.type = texData.type;

  			}

  			if ( texData.mipmaps !== undefined ) {

  				texture.mipmaps = texData.mipmaps;
  				texture.minFilter = LinearMipmapLinearFilter; // presumably...

  			}

  			if ( texData.mipmapCount === 1 ) {

  				texture.minFilter = LinearFilter;

  			}

  			texture.needsUpdate = true;

  			if ( onLoad ) onLoad( texture, texData );

  		}, onProgress, onError );


  		return texture;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function ImageLoader( manager ) {

  	Loader.call( this, manager );

  }

  ImageLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: ImageLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		if ( this.path !== undefined ) url = this.path + url;

  		url = this.manager.resolveURL( url );

  		const scope = this;

  		const cached = Cache.get( url );

  		if ( cached !== undefined ) {

  			scope.manager.itemStart( url );

  			setTimeout( function () {

  				if ( onLoad ) onLoad( cached );

  				scope.manager.itemEnd( url );

  			}, 0 );

  			return cached;

  		}

  		const image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );

  		function onImageLoad() {

  			image.removeEventListener( 'load', onImageLoad, false );
  			image.removeEventListener( 'error', onImageError, false );

  			Cache.add( url, this );

  			if ( onLoad ) onLoad( this );

  			scope.manager.itemEnd( url );

  		}

  		function onImageError( event ) {

  			image.removeEventListener( 'load', onImageLoad, false );
  			image.removeEventListener( 'error', onImageError, false );

  			if ( onError ) onError( event );

  			scope.manager.itemError( url );
  			scope.manager.itemEnd( url );

  		}

  		image.addEventListener( 'load', onImageLoad, false );
  		image.addEventListener( 'error', onImageError, false );

  		if ( url.substr( 0, 5 ) !== 'data:' ) {

  			if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;

  		}

  		scope.manager.itemStart( url );

  		image.src = url;

  		return image;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */


  function CubeTextureLoader( manager ) {

  	Loader.call( this, manager );

  }

  CubeTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: CubeTextureLoader,

  	load: function ( urls, onLoad, onProgress, onError ) {

  		const texture = new CubeTexture();

  		const loader = new ImageLoader( this.manager );
  		loader.setCrossOrigin( this.crossOrigin );
  		loader.setPath( this.path );

  		let loaded = 0;

  		function loadTexture( i ) {

  			loader.load( urls[ i ], function ( image ) {

  				texture.images[ i ] = image;

  				loaded ++;

  				if ( loaded === 6 ) {

  					texture.needsUpdate = true;

  					if ( onLoad ) onLoad( texture );

  				}

  			}, undefined, onError );

  		}

  		for ( let i = 0; i < urls.length; ++ i ) {

  			loadTexture( i );

  		}

  		return texture;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function TextureLoader( manager ) {

  	Loader.call( this, manager );

  }

  TextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: TextureLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		const texture = new Texture();

  		const loader = new ImageLoader( this.manager );
  		loader.setCrossOrigin( this.crossOrigin );
  		loader.setPath( this.path );

  		loader.load( url, function ( image ) {

  			texture.image = image;

  			// JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
  			const isJPEG = url.search( /\.jpe?g($|\?)/i ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;

  			texture.format = isJPEG ? RGBFormat : RGBAFormat;
  			texture.needsUpdate = true;

  			if ( onLoad !== undefined ) {

  				onLoad( texture );

  			}

  		}, onProgress, onError );

  		return texture;

  	}

  } );

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * Extensible curve object
   *
   * Some common of curve methods:
   * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
   * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
   * .getPoints(), .getSpacedPoints()
   * .getLength()
   * .updateArcLengths()
   *
   * This following curves inherit from THREE.Curve:
   *
   * -- 2D curves --
   * THREE.ArcCurve
   * THREE.CubicBezierCurve
   * THREE.EllipseCurve
   * THREE.LineCurve
   * THREE.QuadraticBezierCurve
   * THREE.SplineCurve
   *
   * -- 3D curves --
   * THREE.CatmullRomCurve3
   * THREE.CubicBezierCurve3
   * THREE.LineCurve3
   * THREE.QuadraticBezierCurve3
   *
   * A series of curves can be represented as a THREE.CurvePath.
   *
   **/

  /**************************************************************
   *	Abstract Curve base class
   **************************************************************/

  function Curve() {

  	this.type = 'Curve';

  	this.arcLengthDivisions = 200;

  }

  Object.assign( Curve.prototype, {

  	// Virtual base class method to overwrite and implement in subclasses
  	//	- t [0 .. 1]

  	getPoint: function ( /* t, optionalTarget */ ) {

  		console.warn( 'THREE.Curve: .getPoint() not implemented.' );
  		return null;

  	},

  	// Get point at relative position in curve according to arc length
  	// - u [0 .. 1]

  	getPointAt: function ( u, optionalTarget ) {

  		const t = this.getUtoTmapping( u );
  		return this.getPoint( t, optionalTarget );

  	},

  	// Get sequence of points using getPoint( t )

  	getPoints: function ( divisions ) {

  		if ( divisions === undefined ) divisions = 5;

  		const points = [];

  		for ( let d = 0; d <= divisions; d ++ ) {

  			points.push( this.getPoint( d / divisions ) );

  		}

  		return points;

  	},

  	// Get sequence of points using getPointAt( u )

  	getSpacedPoints: function ( divisions ) {

  		if ( divisions === undefined ) divisions = 5;

  		const points = [];

  		for ( let d = 0; d <= divisions; d ++ ) {

  			points.push( this.getPointAt( d / divisions ) );

  		}

  		return points;

  	},

  	// Get total curve arc length

  	getLength: function () {

  		const lengths = this.getLengths();
  		return lengths[ lengths.length - 1 ];

  	},

  	// Get list of cumulative segment lengths

  	getLengths: function ( divisions ) {

  		if ( divisions === undefined ) divisions = this.arcLengthDivisions;

  		if ( this.cacheArcLengths &&
  			( this.cacheArcLengths.length === divisions + 1 ) &&
  			! this.needsUpdate ) {

  			return this.cacheArcLengths;

  		}

  		this.needsUpdate = false;

  		const cache = [];
  		let current, last = this.getPoint( 0 );
  		let sum = 0;

  		cache.push( 0 );

  		for ( let p = 1; p <= divisions; p ++ ) {

  			current = this.getPoint( p / divisions );
  			sum += current.distanceTo( last );
  			cache.push( sum );
  			last = current;

  		}

  		this.cacheArcLengths = cache;

  		return cache; // { sums: cache, sum: sum }; Sum is in the last element.

  	},

  	updateArcLengths: function () {

  		this.needsUpdate = true;
  		this.getLengths();

  	},

  	// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant

  	getUtoTmapping: function ( u, distance ) {

  		const arcLengths = this.getLengths();

  		let i = 0, il = arcLengths.length;

  		let targetArcLength; // The targeted u distance value to get

  		if ( distance ) {

  			targetArcLength = distance;

  		} else {

  			targetArcLength = u * arcLengths[ il - 1 ];

  		}

  		// binary search for the index with largest value smaller than target u distance

  		let low = 0, high = il - 1, comparison;

  		while ( low <= high ) {

  			i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats

  			comparison = arcLengths[ i ] - targetArcLength;

  			if ( comparison < 0 ) {

  				low = i + 1;

  			} else if ( comparison > 0 ) {

  				high = i - 1;

  			} else {

  				high = i;
  				break;

  				// DONE

  			}

  		}

  		i = high;

  		if ( arcLengths[ i ] === targetArcLength ) {

  			return i / ( il - 1 );

  		}

  		// we could get finer grain at lengths, or use simple interpolation between two points

  		const lengthBefore = arcLengths[ i ];
  		const lengthAfter = arcLengths[ i + 1 ];

  		const segmentLength = lengthAfter - lengthBefore;

  		// determine where we are between the 'before' and 'after' points

  		const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;

  		// add that fractional amount to t

  		const t = ( i + segmentFraction ) / ( il - 1 );

  		return t;

  	},

  	// Returns a unit vector tangent at t
  	// In case any sub curve does not implement its tangent derivation,
  	// 2 points a small delta apart will be used to find its gradient
  	// which seems to give a reasonable approximation

  	getTangent: function ( t, optionalTarget ) {

  		const delta = 0.0001;
  		let t1 = t - delta;
  		let t2 = t + delta;

  		// Capping in case of danger

  		if ( t1 < 0 ) t1 = 0;
  		if ( t2 > 1 ) t2 = 1;

  		const pt1 = this.getPoint( t1 );
  		const pt2 = this.getPoint( t2 );

  		const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() );

  		tangent.copy( pt2 ).sub( pt1 ).normalize();

  		return tangent;

  	},

  	getTangentAt: function ( u, optionalTarget ) {

  		const t = this.getUtoTmapping( u );
  		return this.getTangent( t, optionalTarget );

  	},

  	computeFrenetFrames: function ( segments, closed ) {

  		// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf

  		const normal = new Vector3();

  		const tangents = [];
  		const normals = [];
  		const binormals = [];

  		const vec = new Vector3();
  		const mat = new Matrix4();

  		// compute the tangent vectors for each segment on the curve

  		for ( let i = 0; i <= segments; i ++ ) {

  			const u = i / segments;

  			tangents[ i ] = this.getTangentAt( u, new Vector3() );
  			tangents[ i ].normalize();

  		}

  		// select an initial normal vector perpendicular to the first tangent vector,
  		// and in the direction of the minimum tangent xyz component

  		normals[ 0 ] = new Vector3();
  		binormals[ 0 ] = new Vector3();
  		let min = Number.MAX_VALUE;
  		const tx = Math.abs( tangents[ 0 ].x );
  		const ty = Math.abs( tangents[ 0 ].y );
  		const tz = Math.abs( tangents[ 0 ].z );

  		if ( tx <= min ) {

  			min = tx;
  			normal.set( 1, 0, 0 );

  		}

  		if ( ty <= min ) {

  			min = ty;
  			normal.set( 0, 1, 0 );

  		}

  		if ( tz <= min ) {

  			normal.set( 0, 0, 1 );

  		}

  		vec.crossVectors( tangents[ 0 ], normal ).normalize();

  		normals[ 0 ].crossVectors( tangents[ 0 ], vec );
  		binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );


  		// compute the slowly-varying normal and binormal vectors for each segment on the curve

  		for ( let i = 1; i <= segments; i ++ ) {

  			normals[ i ] = normals[ i - 1 ].clone();

  			binormals[ i ] = binormals[ i - 1 ].clone();

  			vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );

  			if ( vec.length() > Number.EPSILON ) {

  				vec.normalize();

  				const theta = Math.acos( MathUtils.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors

  				normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );

  			}

  			binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

  		}

  		// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same

  		if ( closed === true ) {

  			let theta = Math.acos( MathUtils.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
  			theta /= segments;

  			if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {

  				theta = - theta;

  			}

  			for ( let i = 1; i <= segments; i ++ ) {

  				// twist a little...
  				normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
  				binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

  			}

  		}

  		return {
  			tangents: tangents,
  			normals: normals,
  			binormals: binormals
  		};

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.arcLengthDivisions = source.arcLengthDivisions;

  		return this;

  	},

  	toJSON: function () {

  		const data = {
  			metadata: {
  				version: 4.5,
  				type: 'Curve',
  				generator: 'Curve.toJSON'
  			}
  		};

  		data.arcLengthDivisions = this.arcLengthDivisions;
  		data.type = this.type;

  		return data;

  	},

  	fromJSON: function ( json ) {

  		this.arcLengthDivisions = json.arcLengthDivisions;

  		return this;

  	}

  } );

  function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

  	Curve.call( this );

  	this.type = 'EllipseCurve';

  	this.aX = aX || 0;
  	this.aY = aY || 0;

  	this.xRadius = xRadius || 1;
  	this.yRadius = yRadius || 1;

  	this.aStartAngle = aStartAngle || 0;
  	this.aEndAngle = aEndAngle || 2 * Math.PI;

  	this.aClockwise = aClockwise || false;

  	this.aRotation = aRotation || 0;

  }

  EllipseCurve.prototype = Object.create( Curve.prototype );
  EllipseCurve.prototype.constructor = EllipseCurve;

  EllipseCurve.prototype.isEllipseCurve = true;

  EllipseCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	const point = optionalTarget || new Vector2();

  	const twoPi = Math.PI * 2;
  	let deltaAngle = this.aEndAngle - this.aStartAngle;
  	const samePoints = Math.abs( deltaAngle ) < Number.EPSILON;

  	// ensures that deltaAngle is 0 .. 2 PI
  	while ( deltaAngle < 0 ) deltaAngle += twoPi;
  	while ( deltaAngle > twoPi ) deltaAngle -= twoPi;

  	if ( deltaAngle < Number.EPSILON ) {

  		if ( samePoints ) {

  			deltaAngle = 0;

  		} else {

  			deltaAngle = twoPi;

  		}

  	}

  	if ( this.aClockwise === true && ! samePoints ) {

  		if ( deltaAngle === twoPi ) {

  			deltaAngle = - twoPi;

  		} else {

  			deltaAngle = deltaAngle - twoPi;

  		}

  	}

  	const angle = this.aStartAngle + t * deltaAngle;
  	let x = this.aX + this.xRadius * Math.cos( angle );
  	let y = this.aY + this.yRadius * Math.sin( angle );

  	if ( this.aRotation !== 0 ) {

  		const cos = Math.cos( this.aRotation );
  		const sin = Math.sin( this.aRotation );

  		const tx = x - this.aX;
  		const ty = y - this.aY;

  		// Rotate the point about the center of the ellipse.
  		x = tx * cos - ty * sin + this.aX;
  		y = tx * sin + ty * cos + this.aY;

  	}

  	return point.set( x, y );

  };

  EllipseCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.aX = source.aX;
  	this.aY = source.aY;

  	this.xRadius = source.xRadius;
  	this.yRadius = source.yRadius;

  	this.aStartAngle = source.aStartAngle;
  	this.aEndAngle = source.aEndAngle;

  	this.aClockwise = source.aClockwise;

  	this.aRotation = source.aRotation;

  	return this;

  };


  EllipseCurve.prototype.toJSON = function () {

  	const data = Curve.prototype.toJSON.call( this );

  	data.aX = this.aX;
  	data.aY = this.aY;

  	data.xRadius = this.xRadius;
  	data.yRadius = this.yRadius;

  	data.aStartAngle = this.aStartAngle;
  	data.aEndAngle = this.aEndAngle;

  	data.aClockwise = this.aClockwise;

  	data.aRotation = this.aRotation;

  	return data;

  };

  EllipseCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.aX = json.aX;
  	this.aY = json.aY;

  	this.xRadius = json.xRadius;
  	this.yRadius = json.yRadius;

  	this.aStartAngle = json.aStartAngle;
  	this.aEndAngle = json.aEndAngle;

  	this.aClockwise = json.aClockwise;

  	this.aRotation = json.aRotation;

  	return this;

  };

  function ArcCurve( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

  	EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );

  	this.type = 'ArcCurve';

  }

  ArcCurve.prototype = Object.create( EllipseCurve.prototype );
  ArcCurve.prototype.constructor = ArcCurve;

  ArcCurve.prototype.isArcCurve = true;

  /**
   * @author zz85 https://github.com/zz85
   *
   * Centripetal CatmullRom Curve - which is useful for avoiding
   * cusps and self-intersections in non-uniform catmull rom curves.
   * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
   *
   * curve.type accepts centripetal(default), chordal and catmullrom
   * curve.tension is used for catmullrom which defaults to 0.5
   */


  /*
  Based on an optimized c++ solution in
   - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
   - http://ideone.com/NoEbVM

  This CubicPoly class could be used for reusing some variables and calculations,
  but for three.js curve use, it could be possible inlined and flatten into a single function call
  which can be placed in CurveUtils.
  */

  function CubicPoly() {

  	let c0 = 0, c1 = 0, c2 = 0, c3 = 0;

  	/*
  	 * Compute coefficients for a cubic polynomial
  	 *   p(s) = c0 + c1*s + c2*s^2 + c3*s^3
  	 * such that
  	 *   p(0) = x0, p(1) = x1
  	 *  and
  	 *   p'(0) = t0, p'(1) = t1.
  	 */
  	function init( x0, x1, t0, t1 ) {

  		c0 = x0;
  		c1 = t0;
  		c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
  		c3 = 2 * x0 - 2 * x1 + t0 + t1;

  	}

  	return {

  		initCatmullRom: function ( x0, x1, x2, x3, tension ) {

  			init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );

  		},

  		initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) {

  			// compute tangents when parameterized in [t1,t2]
  			let t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
  			let t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;

  			// rescale tangents for parametrization in [0,1]
  			t1 *= dt1;
  			t2 *= dt1;

  			init( x1, x2, t1, t2 );

  		},

  		calc: function ( t ) {

  			const t2 = t * t;
  			const t3 = t2 * t;
  			return c0 + c1 * t + c2 * t2 + c3 * t3;

  		}

  	};

  }

  //

  const tmp = new Vector3();
  const px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly();

  function CatmullRomCurve3( points, closed, curveType, tension ) {

  	Curve.call( this );

  	this.type = 'CatmullRomCurve3';

  	this.points = points || [];
  	this.closed = closed || false;
  	this.curveType = curveType || 'centripetal';
  	this.tension = tension || 0.5;

  }

  CatmullRomCurve3.prototype = Object.create( Curve.prototype );
  CatmullRomCurve3.prototype.constructor = CatmullRomCurve3;

  CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;

  CatmullRomCurve3.prototype.getPoint = function ( t, optionalTarget ) {

  	const point = optionalTarget || new Vector3();

  	const points = this.points;
  	const l = points.length;

  	const p = ( l - ( this.closed ? 0 : 1 ) ) * t;
  	let intPoint = Math.floor( p );
  	let weight = p - intPoint;

  	if ( this.closed ) {

  		intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l;

  	} else if ( weight === 0 && intPoint === l - 1 ) {

  		intPoint = l - 2;
  		weight = 1;

  	}

  	let p0, p1, p2, p3; // 4 points

  	if ( this.closed || intPoint > 0 ) {

  		p0 = points[ ( intPoint - 1 ) % l ];

  	} else {

  		// extrapolate first point
  		tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
  		p0 = tmp;

  	}

  	p1 = points[ intPoint % l ];
  	p2 = points[ ( intPoint + 1 ) % l ];

  	if ( this.closed || intPoint + 2 < l ) {

  		p3 = points[ ( intPoint + 2 ) % l ];

  	} else {

  		// extrapolate last point
  		tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] );
  		p3 = tmp;

  	}

  	if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) {

  		// init Centripetal / Chordal Catmull-Rom
  		const pow = this.curveType === 'chordal' ? 0.5 : 0.25;
  		let dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
  		let dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
  		let dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );

  		// safety check for repeated points
  		if ( dt1 < 1e-4 ) dt1 = 1.0;
  		if ( dt0 < 1e-4 ) dt0 = dt1;
  		if ( dt2 < 1e-4 ) dt2 = dt1;

  		px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
  		py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
  		pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );

  	} else if ( this.curveType === 'catmullrom' ) {

  		px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension );
  		py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension );
  		pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension );

  	}

  	point.set(
  		px.calc( weight ),
  		py.calc( weight ),
  		pz.calc( weight )
  	);

  	return point;

  };

  CatmullRomCurve3.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.points = [];

  	for ( let i = 0, l = source.points.length; i < l; i ++ ) {

  		const point = source.points[ i ];

  		this.points.push( point.clone() );

  	}

  	this.closed = source.closed;
  	this.curveType = source.curveType;
  	this.tension = source.tension;

  	return this;

  };

  CatmullRomCurve3.prototype.toJSON = function () {

  	const data = Curve.prototype.toJSON.call( this );

  	data.points = [];

  	for ( let i = 0, l = this.points.length; i < l; i ++ ) {

  		const point = this.points[ i ];
  		data.points.push( point.toArray() );

  	}

  	data.closed = this.closed;
  	data.curveType = this.curveType;
  	data.tension = this.tension;

  	return data;

  };

  CatmullRomCurve3.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.points = [];

  	for ( let i = 0, l = json.points.length; i < l; i ++ ) {

  		const point = json.points[ i ];
  		this.points.push( new Vector3().fromArray( point ) );

  	}

  	this.closed = json.closed;
  	this.curveType = json.curveType;
  	this.tension = json.tension;

  	return this;

  };

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   *
   * Bezier Curves formulas obtained from
   * http://en.wikipedia.org/wiki/Bézier_curve
   */

  function CatmullRom( t, p0, p1, p2, p3 ) {

  	const v0 = ( p2 - p0 ) * 0.5;
  	const v1 = ( p3 - p1 ) * 0.5;
  	const t2 = t * t;
  	const t3 = t * t2;
  	return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;

  }

  //

  function QuadraticBezierP0( t, p ) {

  	const k = 1 - t;
  	return k * k * p;

  }

  function QuadraticBezierP1( t, p ) {

  	return 2 * ( 1 - t ) * t * p;

  }

  function QuadraticBezierP2( t, p ) {

  	return t * t * p;

  }

  function QuadraticBezier( t, p0, p1, p2 ) {

  	return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) +
  		QuadraticBezierP2( t, p2 );

  }

  //

  function CubicBezierP0( t, p ) {

  	const k = 1 - t;
  	return k * k * k * p;

  }

  function CubicBezierP1( t, p ) {

  	const k = 1 - t;
  	return 3 * k * k * t * p;

  }

  function CubicBezierP2( t, p ) {

  	return 3 * ( 1 - t ) * t * t * p;

  }

  function CubicBezierP3( t, p ) {

  	return t * t * t * p;

  }

  function CubicBezier( t, p0, p1, p2, p3 ) {

  	return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) +
  		CubicBezierP3( t, p3 );

  }

  function CubicBezierCurve( v0, v1, v2, v3 ) {

  	Curve.call( this );

  	this.type = 'CubicBezierCurve';

  	this.v0 = v0 || new Vector2();
  	this.v1 = v1 || new Vector2();
  	this.v2 = v2 || new Vector2();
  	this.v3 = v3 || new Vector2();

  }

  CubicBezierCurve.prototype = Object.create( Curve.prototype );
  CubicBezierCurve.prototype.constructor = CubicBezierCurve;

  CubicBezierCurve.prototype.isCubicBezierCurve = true;

  CubicBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	const point = optionalTarget || new Vector2();

  	const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

  	point.set(
  		CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
  		CubicBezier( t, v0.y, v1.y, v2.y, v3.y )
  	);

  	return point;

  };

  CubicBezierCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v0.copy( source.v0 );
  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );
  	this.v3.copy( source.v3 );

  	return this;

  };

  CubicBezierCurve.prototype.toJSON = function () {

  	const data = Curve.prototype.toJSON.call( this );

  	data.v0 = this.v0.toArray();
  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();
  	data.v3 = this.v3.toArray();

  	return data;

  };

  CubicBezierCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v0.fromArray( json.v0 );
  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );
  	this.v3.fromArray( json.v3 );

  	return this;

  };

  function CubicBezierCurve3( v0, v1, v2, v3 ) {

  	Curve.call( this );

  	this.type = 'CubicBezierCurve3';

  	this.v0 = v0 || new Vector3();
  	this.v1 = v1 || new Vector3();
  	this.v2 = v2 || new Vector3();
  	this.v3 = v3 || new Vector3();

  }

  CubicBezierCurve3.prototype = Object.create( Curve.prototype );
  CubicBezierCurve3.prototype.constructor = CubicBezierCurve3;

  CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;

  CubicBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {

  	const point = optionalTarget || new Vector3();

  	const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

  	point.set(
  		CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
  		CubicBezier( t, v0.y, v1.y, v2.y, v3.y ),
  		CubicBezier( t, v0.z, v1.z, v2.z, v3.z )
  	);

  	return point;

  };

  CubicBezierCurve3.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v0.copy( source.v0 );
  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );
  	this.v3.copy( source.v3 );

  	return this;

  };

  CubicBezierCurve3.prototype.toJSON = function () {

  	const data = Curve.prototype.toJSON.call( this );

  	data.v0 = this.v0.toArray();
  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();
  	data.v3 = this.v3.toArray();

  	return data;

  };

  CubicBezierCurve3.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v0.fromArray( json.v0 );
  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );
  	this.v3.fromArray( json.v3 );

  	return this;

  };

  function LineCurve( v1, v2 ) {

  	Curve.call( this );

  	this.type = 'LineCurve';

  	this.v1 = v1 || new Vector2();
  	this.v2 = v2 || new Vector2();

  }

  LineCurve.prototype = Object.create( Curve.prototype );
  LineCurve.prototype.constructor = LineCurve;

  LineCurve.prototype.isLineCurve = true;

  LineCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	const point = optionalTarget || new Vector2();

  	if ( t === 1 ) {

  		point.copy( this.v2 );

  	} else {

  		point.copy( this.v2 ).sub( this.v1 );
  		point.multiplyScalar( t ).add( this.v1 );

  	}

  	return point;

  };

  // Line curve is linear, so we can overwrite default getPointAt

  LineCurve.prototype.getPointAt = function ( u, optionalTarget ) {

  	return this.getPoint( u, optionalTarget );

  };

  LineCurve.prototype.getTangent = function ( t, optionalTarget ) {

  	const tangent = optionalTarget || new Vector2();

  	tangent.copy( this.v2 ).sub( this.v1 ).normalize();

  	return tangent;

  };

  LineCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );

  	return this;

  };

  LineCurve.prototype.toJSON = function () {

  	const data = Curve.prototype.toJSON.call( this );

  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();

  	return data;

  };

  LineCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );

  	return this;

  };

  function LineCurve3( v1, v2 ) {

  	Curve.call( this );

  	this.type = 'LineCurve3';

  	this.v1 = v1 || new Vector3();
  	this.v2 = v2 || new Vector3();

  }

  LineCurve3.prototype = Object.create( Curve.prototype );
  LineCurve3.prototype.constructor = LineCurve3;

  LineCurve3.prototype.isLineCurve3 = true;

  LineCurve3.prototype.getPoint = function ( t, optionalTarget ) {

  	const point = optionalTarget || new Vector3();

  	if ( t === 1 ) {

  		point.copy( this.v2 );

  	} else {

  		point.copy( this.v2 ).sub( this.v1 );
  		point.multiplyScalar( t ).add( this.v1 );

  	}

  	return point;

  };

  // Line curve is linear, so we can overwrite default getPointAt

  LineCurve3.prototype.getPointAt = function ( u, optionalTarget ) {

  	return this.getPoint( u, optionalTarget );

  };

  LineCurve3.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );

  	return this;

  };

  LineCurve3.prototype.toJSON = function () {

  	const data = Curve.prototype.toJSON.call( this );

  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();

  	return data;

  };

  LineCurve3.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );

  	return this;

  };

  function QuadraticBezierCurve( v0, v1, v2 ) {

  	Curve.call( this );

  	this.type = 'QuadraticBezierCurve';

  	this.v0 = v0 || new Vector2();
  	this.v1 = v1 || new Vector2();
  	this.v2 = v2 || new Vector2();

  }

  QuadraticBezierCurve.prototype = Object.create( Curve.prototype );
  QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve;

  QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;

  QuadraticBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	const point = optionalTarget || new Vector2();

  	const v0 = this.v0, v1 = this.v1, v2 = this.v2;

  	point.set(
  		QuadraticBezier( t, v0.x, v1.x, v2.x ),
  		QuadraticBezier( t, v0.y, v1.y, v2.y )
  	);

  	return point;

  };

  QuadraticBezierCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v0.copy( source.v0 );
  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );

  	return this;

  };

  QuadraticBezierCurve.prototype.toJSON = function () {

  	const data = Curve.prototype.toJSON.call( this );

  	data.v0 = this.v0.toArray();
  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();

  	return data;

  };

  QuadraticBezierCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v0.fromArray( json.v0 );
  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );

  	return this;

  };

  function QuadraticBezierCurve3( v0, v1, v2 ) {

  	Curve.call( this );

  	this.type = 'QuadraticBezierCurve3';

  	this.v0 = v0 || new Vector3();
  	this.v1 = v1 || new Vector3();
  	this.v2 = v2 || new Vector3();

  }

  QuadraticBezierCurve3.prototype = Object.create( Curve.prototype );
  QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3;

  QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;

  QuadraticBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {

  	const point = optionalTarget || new Vector3();

  	const v0 = this.v0, v1 = this.v1, v2 = this.v2;

  	point.set(
  		QuadraticBezier( t, v0.x, v1.x, v2.x ),
  		QuadraticBezier( t, v0.y, v1.y, v2.y ),
  		QuadraticBezier( t, v0.z, v1.z, v2.z )
  	);

  	return point;

  };

  QuadraticBezierCurve3.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v0.copy( source.v0 );
  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );

  	return this;

  };

  QuadraticBezierCurve3.prototype.toJSON = function () {

  	const data = Curve.prototype.toJSON.call( this );

  	data.v0 = this.v0.toArray();
  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();

  	return data;

  };

  QuadraticBezierCurve3.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v0.fromArray( json.v0 );
  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );

  	return this;

  };

  function SplineCurve( points /* array of Vector2 */ ) {

  	Curve.call( this );

  	this.type = 'SplineCurve';

  	this.points = points || [];

  }

  SplineCurve.prototype = Object.create( Curve.prototype );
  SplineCurve.prototype.constructor = SplineCurve;

  SplineCurve.prototype.isSplineCurve = true;

  SplineCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	const point = optionalTarget || new Vector2();

  	const points = this.points;
  	const p = ( points.length - 1 ) * t;

  	const intPoint = Math.floor( p );
  	const weight = p - intPoint;

  	const p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ];
  	const p1 = points[ intPoint ];
  	const p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
  	const p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];

  	point.set(
  		CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ),
  		CatmullRom( weight, p0.y, p1.y, p2.y, p3.y )
  	);

  	return point;

  };

  SplineCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.points = [];

  	for ( let i = 0, l = source.points.length; i < l; i ++ ) {

  		const point = source.points[ i ];

  		this.points.push( point.clone() );

  	}

  	return this;

  };

  SplineCurve.prototype.toJSON = function () {

  	const data = Curve.prototype.toJSON.call( this );

  	data.points = [];

  	for ( let i = 0, l = this.points.length; i < l; i ++ ) {

  		const point = this.points[ i ];
  		data.points.push( point.toArray() );

  	}

  	return data;

  };

  SplineCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.points = [];

  	for ( let i = 0, l = json.points.length; i < l; i ++ ) {

  		const point = json.points[ i ];
  		this.points.push( new Vector2().fromArray( point ) );

  	}

  	return this;

  };

  var Curves = /*#__PURE__*/Object.freeze({
  	__proto__: null,
  	ArcCurve: ArcCurve,
  	CatmullRomCurve3: CatmullRomCurve3,
  	CubicBezierCurve: CubicBezierCurve,
  	CubicBezierCurve3: CubicBezierCurve3,
  	EllipseCurve: EllipseCurve,
  	LineCurve: LineCurve,
  	LineCurve3: LineCurve3,
  	QuadraticBezierCurve: QuadraticBezierCurve,
  	QuadraticBezierCurve3: QuadraticBezierCurve3,
  	SplineCurve: SplineCurve
  });

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   *
   **/

  /**************************************************************
   *	Curved Path - a curve path is simply a array of connected
   *  curves, but retains the api of a curve
   **************************************************************/

  function CurvePath() {

  	Curve.call( this );

  	this.type = 'CurvePath';

  	this.curves = [];
  	this.autoClose = false; // Automatically closes the path

  }

  CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), {

  	constructor: CurvePath,

  	add: function ( curve ) {

  		this.curves.push( curve );

  	},

  	closePath: function () {

  		// Add a line curve if start and end of lines are not connected
  		const startPoint = this.curves[ 0 ].getPoint( 0 );
  		const endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );

  		if ( ! startPoint.equals( endPoint ) ) {

  			this.curves.push( new LineCurve( endPoint, startPoint ) );

  		}

  	},

  	// To get accurate point with reference to
  	// entire path distance at time t,
  	// following has to be done:

  	// 1. Length of each sub path have to be known
  	// 2. Locate and identify type of curve
  	// 3. Get t for the curve
  	// 4. Return curve.getPointAt(t')

  	getPoint: function ( t ) {

  		const d = t * this.getLength();
  		const curveLengths = this.getCurveLengths();
  		let i = 0;

  		// To think about boundaries points.

  		while ( i < curveLengths.length ) {

  			if ( curveLengths[ i ] >= d ) {

  				const diff = curveLengths[ i ] - d;
  				const curve = this.curves[ i ];

  				const segmentLength = curve.getLength();
  				const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;

  				return curve.getPointAt( u );

  			}

  			i ++;

  		}

  		return null;

  		// loop where sum != 0, sum > d , sum+1 <d

  	},

  	// We cannot use the default THREE.Curve getPoint() with getLength() because in
  	// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
  	// getPoint() depends on getLength

  	getLength: function () {

  		const lens = this.getCurveLengths();
  		return lens[ lens.length - 1 ];

  	},

  	// cacheLengths must be recalculated.
  	updateArcLengths: function () {

  		this.needsUpdate = true;
  		this.cacheLengths = null;
  		this.getCurveLengths();

  	},

  	// Compute lengths and cache them
  	// We cannot overwrite getLengths() because UtoT mapping uses it.

  	getCurveLengths: function () {

  		// We use cache values if curves and cache array are same length

  		if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {

  			return this.cacheLengths;

  		}

  		// Get length of sub-curve
  		// Push sums into cached array

  		const lengths = [];
  		let sums = 0;

  		for ( let i = 0, l = this.curves.length; i < l; i ++ ) {

  			sums += this.curves[ i ].getLength();
  			lengths.push( sums );

  		}

  		this.cacheLengths = lengths;

  		return lengths;

  	},

  	getSpacedPoints: function ( divisions ) {

  		if ( divisions === undefined ) divisions = 40;

  		const points = [];

  		for ( let i = 0; i <= divisions; i ++ ) {

  			points.push( this.getPoint( i / divisions ) );

  		}

  		if ( this.autoClose ) {

  			points.push( points[ 0 ] );

  		}

  		return points;

  	},

  	getPoints: function ( divisions ) {

  		divisions = divisions || 12;

  		const points = [];
  		let last;

  		for ( let i = 0, curves = this.curves; i < curves.length; i ++ ) {

  			const curve = curves[ i ];
  			const resolution = ( curve && curve.isEllipseCurve ) ? divisions * 2
  				: ( curve && ( curve.isLineCurve || curve.isLineCurve3 ) ) ? 1
  					: ( curve && curve.isSplineCurve ) ? divisions * curve.points.length
  						: divisions;

  			const pts = curve.getPoints( resolution );

  			for ( let j = 0; j < pts.length; j ++ ) {

  				const point = pts[ j ];

  				if ( last && last.equals( point ) ) continue; // ensures no consecutive points are duplicates

  				points.push( point );
  				last = point;

  			}

  		}

  		if ( this.autoClose && points.length > 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) {

  			points.push( points[ 0 ] );

  		}

  		return points;

  	},

  	copy: function ( source ) {

  		Curve.prototype.copy.call( this, source );

  		this.curves = [];

  		for ( let i = 0, l = source.curves.length; i < l; i ++ ) {

  			const curve = source.curves[ i ];

  			this.curves.push( curve.clone() );

  		}

  		this.autoClose = source.autoClose;

  		return this;

  	},

  	toJSON: function () {

  		const data = Curve.prototype.toJSON.call( this );

  		data.autoClose = this.autoClose;
  		data.curves = [];

  		for ( let i = 0, l = this.curves.length; i < l; i ++ ) {

  			const curve = this.curves[ i ];
  			data.curves.push( curve.toJSON() );

  		}

  		return data;

  	},

  	fromJSON: function ( json ) {

  		Curve.prototype.fromJSON.call( this, json );

  		this.autoClose = json.autoClose;
  		this.curves = [];

  		for ( let i = 0, l = json.curves.length; i < l; i ++ ) {

  			const curve = json.curves[ i ];
  			this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) );

  		}

  		return this;

  	}

  } );

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * Creates free form 2d path using series of points, lines or curves.
   **/

  function Path( points ) {

  	CurvePath.call( this );

  	this.type = 'Path';

  	this.currentPoint = new Vector2();

  	if ( points ) {

  		this.setFromPoints( points );

  	}

  }

  Path.prototype = Object.assign( Object.create( CurvePath.prototype ), {

  	constructor: Path,

  	setFromPoints: function ( points ) {

  		this.moveTo( points[ 0 ].x, points[ 0 ].y );

  		for ( let i = 1, l = points.length; i < l; i ++ ) {

  			this.lineTo( points[ i ].x, points[ i ].y );

  		}

  		return this;

  	},

  	moveTo: function ( x, y ) {

  		this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying?

  		return this;

  	},

  	lineTo: function ( x, y ) {

  		const curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) );
  		this.curves.push( curve );

  		this.currentPoint.set( x, y );

  		return this;

  	},

  	quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

  		const curve = new QuadraticBezierCurve(
  			this.currentPoint.clone(),
  			new Vector2( aCPx, aCPy ),
  			new Vector2( aX, aY )
  		);

  		this.curves.push( curve );

  		this.currentPoint.set( aX, aY );

  		return this;

  	},

  	bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

  		const curve = new CubicBezierCurve(
  			this.currentPoint.clone(),
  			new Vector2( aCP1x, aCP1y ),
  			new Vector2( aCP2x, aCP2y ),
  			new Vector2( aX, aY )
  		);

  		this.curves.push( curve );

  		this.currentPoint.set( aX, aY );

  		return this;

  	},

  	splineThru: function ( pts /*Array of Vector*/ ) {

  		const npts = [ this.currentPoint.clone() ].concat( pts );

  		const curve = new SplineCurve( npts );
  		this.curves.push( curve );

  		this.currentPoint.copy( pts[ pts.length - 1 ] );

  		return this;

  	},

  	arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

  		const x0 = this.currentPoint.x;
  		const y0 = this.currentPoint.y;

  		this.absarc( aX + x0, aY + y0, aRadius,
  			aStartAngle, aEndAngle, aClockwise );

  		return this;

  	},

  	absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

  		this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );

  		return this;

  	},

  	ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

  		const x0 = this.currentPoint.x;
  		const y0 = this.currentPoint.y;

  		this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

  		return this;

  	},

  	absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

  		const curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

  		if ( this.curves.length > 0 ) {

  			// if a previous curve is present, attempt to join
  			const firstPoint = curve.getPoint( 0 );

  			if ( ! firstPoint.equals( this.currentPoint ) ) {

  				this.lineTo( firstPoint.x, firstPoint.y );

  			}

  		}

  		this.curves.push( curve );

  		const lastPoint = curve.getPoint( 1 );
  		this.currentPoint.copy( lastPoint );

  		return this;

  	},

  	copy: function ( source ) {

  		CurvePath.prototype.copy.call( this, source );

  		this.currentPoint.copy( source.currentPoint );

  		return this;

  	},

  	toJSON: function () {

  		const data = CurvePath.prototype.toJSON.call( this );

  		data.currentPoint = this.currentPoint.toArray();

  		return data;

  	},

  	fromJSON: function ( json ) {

  		CurvePath.prototype.fromJSON.call( this, json );

  		this.currentPoint.fromArray( json.currentPoint );

  		return this;

  	}

  } );

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * Defines a 2d shape plane using paths.
   **/

  // STEP 1 Create a path.
  // STEP 2 Turn path into shape.
  // STEP 3 ExtrudeGeometry takes in Shape/Shapes
  // STEP 3a - Extract points from each shape, turn to vertices
  // STEP 3b - Triangulate each shape, add faces.

  function Shape( points ) {

  	Path.call( this, points );

  	this.uuid = MathUtils.generateUUID();

  	this.type = 'Shape';

  	this.holes = [];

  }

  Shape.prototype = Object.assign( Object.create( Path.prototype ), {

  	constructor: Shape,

  	getPointsHoles: function ( divisions ) {

  		const holesPts = [];

  		for ( let i = 0, l = this.holes.length; i < l; i ++ ) {

  			holesPts[ i ] = this.holes[ i ].getPoints( divisions );

  		}

  		return holesPts;

  	},

  	// get points of shape and holes (keypoints based on segments parameter)

  	extractPoints: function ( divisions ) {

  		return {

  			shape: this.getPoints( divisions ),
  			holes: this.getPointsHoles( divisions )

  		};

  	},

  	copy: function ( source ) {

  		Path.prototype.copy.call( this, source );

  		this.holes = [];

  		for ( let i = 0, l = source.holes.length; i < l; i ++ ) {

  			const hole = source.holes[ i ];

  			this.holes.push( hole.clone() );

  		}

  		return this;

  	},

  	toJSON: function () {

  		const data = Path.prototype.toJSON.call( this );

  		data.uuid = this.uuid;
  		data.holes = [];

  		for ( let i = 0, l = this.holes.length; i < l; i ++ ) {

  			const hole = this.holes[ i ];
  			data.holes.push( hole.toJSON() );

  		}

  		return data;

  	},

  	fromJSON: function ( json ) {

  		Path.prototype.fromJSON.call( this, json );

  		this.uuid = json.uuid;
  		this.holes = [];

  		for ( let i = 0, l = json.holes.length; i < l; i ++ ) {

  			const hole = json.holes[ i ];
  			this.holes.push( new Path().fromJSON( hole ) );

  		}

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function Light( color, intensity ) {

  	Object3D.call( this );

  	this.type = 'Light';

  	this.color = new Color( color );
  	this.intensity = intensity !== undefined ? intensity : 1;

  	this.receiveShadow = undefined;

  }

  Light.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Light,

  	isLight: true,

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source );

  		this.color.copy( source.color );
  		this.intensity = source.intensity;

  		return this;

  	},

  	toJSON: function ( meta ) {

  		const data = Object3D.prototype.toJSON.call( this, meta );

  		data.object.color = this.color.getHex();
  		data.object.intensity = this.intensity;

  		if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();

  		if ( this.distance !== undefined ) data.object.distance = this.distance;
  		if ( this.angle !== undefined ) data.object.angle = this.angle;
  		if ( this.decay !== undefined ) data.object.decay = this.decay;
  		if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;

  		if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON();

  		return data;

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function HemisphereLight( skyColor, groundColor, intensity ) {

  	Light.call( this, skyColor, intensity );

  	this.type = 'HemisphereLight';

  	this.castShadow = undefined;

  	this.position.copy( Object3D.DefaultUp );
  	this.updateMatrix();

  	this.groundColor = new Color( groundColor );

  }

  HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: HemisphereLight,

  	isHemisphereLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.groundColor.copy( source.groundColor );

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function LightShadow( camera ) {

  	this.camera = camera;

  	this.bias = 0;
  	this.normalBias = 0;
  	this.radius = 1;

  	this.mapSize = new Vector2( 512, 512 );

  	this.map = null;
  	this.mapPass = null;
  	this.matrix = new Matrix4();

  	this.autoUpdate = true;
  	this.needsUpdate = false;

  	this._frustum = new Frustum();
  	this._frameExtents = new Vector2( 1, 1 );

  	this._viewportCount = 1;

  	this._viewports = [

  		new Vector4( 0, 0, 1, 1 )

  	];

  }

  Object.assign( LightShadow.prototype, {

  	_projScreenMatrix: new Matrix4(),

  	_lightPositionWorld: new Vector3(),

  	_lookTarget: new Vector3(),

  	getViewportCount: function () {

  		return this._viewportCount;

  	},

  	getFrustum: function () {

  		return this._frustum;

  	},

  	updateMatrices: function ( light ) {

  		const shadowCamera = this.camera,
  			shadowMatrix = this.matrix,
  			projScreenMatrix = this._projScreenMatrix,
  			lookTarget = this._lookTarget,
  			lightPositionWorld = this._lightPositionWorld;

  		lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
  		shadowCamera.position.copy( lightPositionWorld );

  		lookTarget.setFromMatrixPosition( light.target.matrixWorld );
  		shadowCamera.lookAt( lookTarget );
  		shadowCamera.updateMatrixWorld();

  		projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
  		this._frustum.setFromProjectionMatrix( projScreenMatrix );

  		shadowMatrix.set(
  			0.5, 0.0, 0.0, 0.5,
  			0.0, 0.5, 0.0, 0.5,
  			0.0, 0.0, 0.5, 0.5,
  			0.0, 0.0, 0.0, 1.0
  		);

  		shadowMatrix.multiply( shadowCamera.projectionMatrix );
  		shadowMatrix.multiply( shadowCamera.matrixWorldInverse );

  	},

  	getViewport: function ( viewportIndex ) {

  		return this._viewports[ viewportIndex ];

  	},

  	getFrameExtents: function () {

  		return this._frameExtents;

  	},

  	copy: function ( source ) {

  		this.camera = source.camera.clone();

  		this.bias = source.bias;
  		this.radius = source.radius;

  		this.mapSize.copy( source.mapSize );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	toJSON: function () {

  		const object = {};

  		if ( this.bias !== 0 ) object.bias = this.bias;
  		if ( this.normalBias !== 0 ) object.normalBias = this.normalBias;
  		if ( this.radius !== 1 ) object.radius = this.radius;
  		if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray();

  		object.camera = this.camera.toJSON( false ).object;
  		delete object.camera.matrix;

  		return object;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function SpotLightShadow() {

  	LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) );

  }

  SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

  	constructor: SpotLightShadow,

  	isSpotLightShadow: true,

  	updateMatrices: function ( light ) {

  		const camera = this.camera;

  		const fov = MathUtils.RAD2DEG * 2 * light.angle;
  		const aspect = this.mapSize.width / this.mapSize.height;
  		const far = light.distance || camera.far;

  		if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {

  			camera.fov = fov;
  			camera.aspect = aspect;
  			camera.far = far;
  			camera.updateProjectionMatrix();

  		}

  		LightShadow.prototype.updateMatrices.call( this, light );

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function SpotLight( color, intensity, distance, angle, penumbra, decay ) {

  	Light.call( this, color, intensity );

  	this.type = 'SpotLight';

  	this.position.copy( Object3D.DefaultUp );
  	this.updateMatrix();

  	this.target = new Object3D();

  	Object.defineProperty( this, 'power', {
  		get: function () {

  			// intensity = power per solid angle.
  			// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
  			return this.intensity * Math.PI;

  		},
  		set: function ( power ) {

  			// intensity = power per solid angle.
  			// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
  			this.intensity = power / Math.PI;

  		}
  	} );

  	this.distance = ( distance !== undefined ) ? distance : 0;
  	this.angle = ( angle !== undefined ) ? angle : Math.PI / 3;
  	this.penumbra = ( penumbra !== undefined ) ? penumbra : 0;
  	this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.

  	this.shadow = new SpotLightShadow();

  }

  SpotLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: SpotLight,

  	isSpotLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.distance = source.distance;
  		this.angle = source.angle;
  		this.penumbra = source.penumbra;
  		this.decay = source.decay;

  		this.target = source.target.clone();

  		this.shadow = source.shadow.clone();

  		return this;

  	}

  } );

  function PointLightShadow() {

  	LightShadow.call( this, new PerspectiveCamera( 90, 1, 0.5, 500 ) );

  	this._frameExtents = new Vector2( 4, 2 );

  	this._viewportCount = 6;

  	this._viewports = [
  		// These viewports map a cube-map onto a 2D texture with the
  		// following orientation:
  		//
  		//  xzXZ
  		//   y Y
  		//
  		// X - Positive x direction
  		// x - Negative x direction
  		// Y - Positive y direction
  		// y - Negative y direction
  		// Z - Positive z direction
  		// z - Negative z direction

  		// positive X
  		new Vector4( 2, 1, 1, 1 ),
  		// negative X
  		new Vector4( 0, 1, 1, 1 ),
  		// positive Z
  		new Vector4( 3, 1, 1, 1 ),
  		// negative Z
  		new Vector4( 1, 1, 1, 1 ),
  		// positive Y
  		new Vector4( 3, 0, 1, 1 ),
  		// negative Y
  		new Vector4( 1, 0, 1, 1 )
  	];

  	this._cubeDirections = [
  		new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ),
  		new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 )
  	];

  	this._cubeUps = [
  		new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ),
  		new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ),	new Vector3( 0, 0, - 1 )
  	];

  }

  PointLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

  	constructor: PointLightShadow,

  	isPointLightShadow: true,

  	updateMatrices: function ( light, viewportIndex ) {

  		if ( viewportIndex === undefined ) viewportIndex = 0;

  		const camera = this.camera,
  			shadowMatrix = this.matrix,
  			lightPositionWorld = this._lightPositionWorld,
  			lookTarget = this._lookTarget,
  			projScreenMatrix = this._projScreenMatrix;

  		lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
  		camera.position.copy( lightPositionWorld );

  		lookTarget.copy( camera.position );
  		lookTarget.add( this._cubeDirections[ viewportIndex ] );
  		camera.up.copy( this._cubeUps[ viewportIndex ] );
  		camera.lookAt( lookTarget );
  		camera.updateMatrixWorld();

  		shadowMatrix.makeTranslation( - lightPositionWorld.x, - lightPositionWorld.y, - lightPositionWorld.z );

  		projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
  		this._frustum.setFromProjectionMatrix( projScreenMatrix );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */


  function PointLight( color, intensity, distance, decay ) {

  	Light.call( this, color, intensity );

  	this.type = 'PointLight';

  	Object.defineProperty( this, 'power', {
  		get: function () {

  			// intensity = power per solid angle.
  			// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
  			return this.intensity * 4 * Math.PI;

  		},
  		set: function ( power ) {

  			// intensity = power per solid angle.
  			// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
  			this.intensity = power / ( 4 * Math.PI );

  		}
  	} );

  	this.distance = ( distance !== undefined ) ? distance : 0;
  	this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.

  	this.shadow = new PointLightShadow();

  }

  PointLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: PointLight,

  	isPointLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.distance = source.distance;
  		this.decay = source.decay;

  		this.shadow = source.shadow.clone();

  		return this;

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author arose / http://github.com/arose
   */

  function OrthographicCamera( left, right, top, bottom, near, far ) {

  	Camera.call( this );

  	this.type = 'OrthographicCamera';

  	this.zoom = 1;
  	this.view = null;

  	this.left = ( left !== undefined ) ? left : - 1;
  	this.right = ( right !== undefined ) ? right : 1;
  	this.top = ( top !== undefined ) ? top : 1;
  	this.bottom = ( bottom !== undefined ) ? bottom : - 1;

  	this.near = ( near !== undefined ) ? near : 0.1;
  	this.far = ( far !== undefined ) ? far : 2000;

  	this.updateProjectionMatrix();

  }

  OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

  	constructor: OrthographicCamera,

  	isOrthographicCamera: true,

  	copy: function ( source, recursive ) {

  		Camera.prototype.copy.call( this, source, recursive );

  		this.left = source.left;
  		this.right = source.right;
  		this.top = source.top;
  		this.bottom = source.bottom;
  		this.near = source.near;
  		this.far = source.far;

  		this.zoom = source.zoom;
  		this.view = source.view === null ? null : Object.assign( {}, source.view );

  		return this;

  	},

  	setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {

  		if ( this.view === null ) {

  			this.view = {
  				enabled: true,
  				fullWidth: 1,
  				fullHeight: 1,
  				offsetX: 0,
  				offsetY: 0,
  				width: 1,
  				height: 1
  			};

  		}

  		this.view.enabled = true;
  		this.view.fullWidth = fullWidth;
  		this.view.fullHeight = fullHeight;
  		this.view.offsetX = x;
  		this.view.offsetY = y;
  		this.view.width = width;
  		this.view.height = height;

  		this.updateProjectionMatrix();

  	},

  	clearViewOffset: function () {

  		if ( this.view !== null ) {

  			this.view.enabled = false;

  		}

  		this.updateProjectionMatrix();

  	},

  	updateProjectionMatrix: function () {

  		const dx = ( this.right - this.left ) / ( 2 * this.zoom );
  		const dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
  		const cx = ( this.right + this.left ) / 2;
  		const cy = ( this.top + this.bottom ) / 2;

  		let left = cx - dx;
  		let right = cx + dx;
  		let top = cy + dy;
  		let bottom = cy - dy;

  		if ( this.view !== null && this.view.enabled ) {

  			const scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom;
  			const scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom;

  			left += scaleW * this.view.offsetX;
  			right = left + scaleW * this.view.width;
  			top -= scaleH * this.view.offsetY;
  			bottom = top - scaleH * this.view.height;

  		}

  		this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far );

  		this.projectionMatrixInverse.getInverse( this.projectionMatrix );

  	},

  	toJSON: function ( meta ) {

  		const data = Object3D.prototype.toJSON.call( this, meta );

  		data.object.zoom = this.zoom;
  		data.object.left = this.left;
  		data.object.right = this.right;
  		data.object.top = this.top;
  		data.object.bottom = this.bottom;
  		data.object.near = this.near;
  		data.object.far = this.far;

  		if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );

  		return data;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function DirectionalLightShadow() {

  	LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );

  }

  DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

  	constructor: DirectionalLightShadow,

  	isDirectionalLightShadow: true,

  	updateMatrices: function ( light ) {

  		LightShadow.prototype.updateMatrices.call( this, light );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function DirectionalLight( color, intensity ) {

  	Light.call( this, color, intensity );

  	this.type = 'DirectionalLight';

  	this.position.copy( Object3D.DefaultUp );
  	this.updateMatrix();

  	this.target = new Object3D();

  	this.shadow = new DirectionalLightShadow();

  }

  DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: DirectionalLight,

  	isDirectionalLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.target = source.target.clone();

  		this.shadow = source.shadow.clone();

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function AmbientLight( color, intensity ) {

  	Light.call( this, color, intensity );

  	this.type = 'AmbientLight';

  	this.castShadow = undefined;

  }

  AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: AmbientLight,

  	isAmbientLight: true

  } );

  /**
   * @author abelnation / http://github.com/abelnation
   */

  function RectAreaLight( color, intensity, width, height ) {

  	Light.call( this, color, intensity );

  	this.type = 'RectAreaLight';

  	this.width = ( width !== undefined ) ? width : 10;
  	this.height = ( height !== undefined ) ? height : 10;

  }

  RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: RectAreaLight,

  	isRectAreaLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.width = source.width;
  		this.height = source.height;

  		return this;

  	},

  	toJSON: function ( meta ) {

  		const data = Light.prototype.toJSON.call( this, meta );

  		data.object.width = this.width;
  		data.object.height = this.height;

  		return data;

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   * @author WestLangley / http://github.com/WestLangley
   *
   * Primary reference:
   *   https://graphics.stanford.edu/papers/envmap/envmap.pdf
   *
   * Secondary reference:
   *   https://www.ppsloan.org/publications/StupidSH36.pdf
   */

  // 3-band SH defined by 9 coefficients

  function SphericalHarmonics3() {

  	this.coefficients = [];

  	for ( let i = 0; i < 9; i ++ ) {

  		this.coefficients.push( new Vector3() );

  	}

  }

  Object.assign( SphericalHarmonics3.prototype, {

  	isSphericalHarmonics3: true,

  	set: function ( coefficients ) {

  		for ( let i = 0; i < 9; i ++ ) {

  			this.coefficients[ i ].copy( coefficients[ i ] );

  		}

  		return this;

  	},

  	zero: function () {

  		for ( let i = 0; i < 9; i ++ ) {

  			this.coefficients[ i ].set( 0, 0, 0 );

  		}

  		return this;

  	},

  	// get the radiance in the direction of the normal
  	// target is a Vector3
  	getAt: function ( normal, target ) {

  		// normal is assumed to be unit length

  		const x = normal.x, y = normal.y, z = normal.z;

  		const coeff = this.coefficients;

  		// band 0
  		target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 );

  		// band 1
  		target.addScaledVector( coeff[ 1 ], 0.488603 * y );
  		target.addScaledVector( coeff[ 2 ], 0.488603 * z );
  		target.addScaledVector( coeff[ 3 ], 0.488603 * x );

  		// band 2
  		target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) );
  		target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) );
  		target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) );
  		target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) );
  		target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) );

  		return target;

  	},

  	// get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
  	// target is a Vector3
  	// https://graphics.stanford.edu/papers/envmap/envmap.pdf
  	getIrradianceAt: function ( normal, target ) {

  		// normal is assumed to be unit length

  		const x = normal.x, y = normal.y, z = normal.z;

  		const coeff = this.coefficients;

  		// band 0
  		target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095

  		// band 1
  		target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603
  		target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z );
  		target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x );

  		// band 2
  		target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548
  		target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z );
  		target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3
  		target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z );
  		target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274

  		return target;

  	},

  	add: function ( sh ) {

  		for ( let i = 0; i < 9; i ++ ) {

  			this.coefficients[ i ].add( sh.coefficients[ i ] );

  		}

  		return this;

  	},

  	addScaledSH: function ( sh, s ) {

  		for ( let i = 0; i < 9; i ++ ) {

  			this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s );

  		}

  		return this;

  	},

  	scale: function ( s ) {

  		for ( let i = 0; i < 9; i ++ ) {

  			this.coefficients[ i ].multiplyScalar( s );

  		}

  		return this;

  	},

  	lerp: function ( sh, alpha ) {

  		for ( let i = 0; i < 9; i ++ ) {

  			this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha );

  		}

  		return this;

  	},

  	equals: function ( sh ) {

  		for ( let i = 0; i < 9; i ++ ) {

  			if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) {

  				return false;

  			}

  		}

  		return true;

  	},

  	copy: function ( sh ) {

  		return this.set( sh.coefficients );

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		const coefficients = this.coefficients;

  		for ( let i = 0; i < 9; i ++ ) {

  			coefficients[ i ].fromArray( array, offset + ( i * 3 ) );

  		}

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		const coefficients = this.coefficients;

  		for ( let i = 0; i < 9; i ++ ) {

  			coefficients[ i ].toArray( array, offset + ( i * 3 ) );

  		}

  		return array;

  	}

  } );

  Object.assign( SphericalHarmonics3, {

  	// evaluate the basis functions
  	// shBasis is an Array[ 9 ]
  	getBasisAt: function ( normal, shBasis ) {

  		// normal is assumed to be unit length

  		const x = normal.x, y = normal.y, z = normal.z;

  		// band 0
  		shBasis[ 0 ] = 0.282095;

  		// band 1
  		shBasis[ 1 ] = 0.488603 * y;
  		shBasis[ 2 ] = 0.488603 * z;
  		shBasis[ 3 ] = 0.488603 * x;

  		// band 2
  		shBasis[ 4 ] = 1.092548 * x * y;
  		shBasis[ 5 ] = 1.092548 * y * z;
  		shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 );
  		shBasis[ 7 ] = 1.092548 * x * z;
  		shBasis[ 8 ] = 0.546274 * ( x * x - y * y );

  	}

  } );

  /**
   * @author WestLangley / http://github.com/WestLangley
   *
   * A LightProbe is a source of indirect-diffuse light
   */

  function LightProbe( sh, intensity ) {

  	Light.call( this, undefined, intensity );

  	this.type = 'LightProbe';

  	this.sh = ( sh !== undefined ) ? sh : new SphericalHarmonics3();

  }

  LightProbe.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: LightProbe,

  	isLightProbe: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.sh.copy( source.sh );

  		return this;

  	},

  	fromJSON: function ( json ) {

  		this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
  		this.sh.fromArray( json.sh );

  		return this;

  	},

  	toJSON: function ( meta ) {

  		const data = Light.prototype.toJSON.call( this, meta );

  		data.object.sh = this.sh.toArray();

  		return data;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function MaterialLoader( manager ) {

  	Loader.call( this, manager );

  	this.textures = {};

  }

  MaterialLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: MaterialLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		const scope = this;

  		const loader = new FileLoader( scope.manager );
  		loader.setPath( scope.path );
  		loader.load( url, function ( text ) {

  			try {

  				onLoad( scope.parse( JSON.parse( text ) ) );

  			} catch ( e ) {

  				if ( onError ) {

  					onError( e );

  				} else {

  					console.error( e );

  				}

  				scope.manager.itemError( url );

  			}

  		}, onProgress, onError );

  	},

  	parse: function ( json ) {

  		const textures = this.textures;

  		function getTexture( name ) {

  			if ( textures[ name ] === undefined ) {

  				console.warn( 'THREE.MaterialLoader: Undefined texture', name );

  			}

  			return textures[ name ];

  		}

  		const material = new Materials[ json.type ]();

  		if ( json.uuid !== undefined ) material.uuid = json.uuid;
  		if ( json.name !== undefined ) material.name = json.name;
  		if ( json.color !== undefined ) material.color.setHex( json.color );
  		if ( json.roughness !== undefined ) material.roughness = json.roughness;
  		if ( json.metalness !== undefined ) material.metalness = json.metalness;
  		if ( json.sheen !== undefined ) material.sheen = new Color().setHex( json.sheen );
  		if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive );
  		if ( json.specular !== undefined ) material.specular.setHex( json.specular );
  		if ( json.shininess !== undefined ) material.shininess = json.shininess;
  		if ( json.clearcoat !== undefined ) material.clearcoat = json.clearcoat;
  		if ( json.clearcoatRoughness !== undefined ) material.clearcoatRoughness = json.clearcoatRoughness;
  		if ( json.fog !== undefined ) material.fog = json.fog;
  		if ( json.flatShading !== undefined ) material.flatShading = json.flatShading;
  		if ( json.blending !== undefined ) material.blending = json.blending;
  		if ( json.combine !== undefined ) material.combine = json.combine;
  		if ( json.side !== undefined ) material.side = json.side;
  		if ( json.opacity !== undefined ) material.opacity = json.opacity;
  		if ( json.transparent !== undefined ) material.transparent = json.transparent;
  		if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
  		if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
  		if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
  		if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;

  		if ( json.stencilWrite !== undefined ) material.stencilWrite = json.stencilWrite;
  		if ( json.stencilWriteMask !== undefined ) material.stencilWriteMask = json.stencilWriteMask;
  		if ( json.stencilFunc !== undefined ) material.stencilFunc = json.stencilFunc;
  		if ( json.stencilRef !== undefined ) material.stencilRef = json.stencilRef;
  		if ( json.stencilFuncMask !== undefined ) material.stencilFuncMask = json.stencilFuncMask;
  		if ( json.stencilFail !== undefined ) material.stencilFail = json.stencilFail;
  		if ( json.stencilZFail !== undefined ) material.stencilZFail = json.stencilZFail;
  		if ( json.stencilZPass !== undefined ) material.stencilZPass = json.stencilZPass;

  		if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
  		if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
  		if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap;
  		if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin;

  		if ( json.rotation !== undefined ) material.rotation = json.rotation;

  		if ( json.linewidth !== 1 ) material.linewidth = json.linewidth;
  		if ( json.dashSize !== undefined ) material.dashSize = json.dashSize;
  		if ( json.gapSize !== undefined ) material.gapSize = json.gapSize;
  		if ( json.scale !== undefined ) material.scale = json.scale;

  		if ( json.polygonOffset !== undefined ) material.polygonOffset = json.polygonOffset;
  		if ( json.polygonOffsetFactor !== undefined ) material.polygonOffsetFactor = json.polygonOffsetFactor;
  		if ( json.polygonOffsetUnits !== undefined ) material.polygonOffsetUnits = json.polygonOffsetUnits;

  		if ( json.skinning !== undefined ) material.skinning = json.skinning;
  		if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets;
  		if ( json.morphNormals !== undefined ) material.morphNormals = json.morphNormals;
  		if ( json.dithering !== undefined ) material.dithering = json.dithering;

  		if ( json.vertexTangents !== undefined ) material.vertexTangents = json.vertexTangents;

  		if ( json.visible !== undefined ) material.visible = json.visible;

  		if ( json.toneMapped !== undefined ) material.toneMapped = json.toneMapped;

  		if ( json.userData !== undefined ) material.userData = json.userData;

  		if ( json.vertexColors !== undefined ) {

  			if ( typeof json.vertexColors === 'number' ) {

  				material.vertexColors = ( json.vertexColors > 0 ) ? true : false;

  			} else {

  				material.vertexColors = json.vertexColors;

  			}

  		}

  		// Shader Material

  		if ( json.uniforms !== undefined ) {

  			for ( const name in json.uniforms ) {

  				const uniform = json.uniforms[ name ];

  				material.uniforms[ name ] = {};

  				switch ( uniform.type ) {

  					case 't':
  						material.uniforms[ name ].value = getTexture( uniform.value );
  						break;

  					case 'c':
  						material.uniforms[ name ].value = new Color().setHex( uniform.value );
  						break;

  					case 'v2':
  						material.uniforms[ name ].value = new Vector2().fromArray( uniform.value );
  						break;

  					case 'v3':
  						material.uniforms[ name ].value = new Vector3().fromArray( uniform.value );
  						break;

  					case 'v4':
  						material.uniforms[ name ].value = new Vector4().fromArray( uniform.value );
  						break;

  					case 'm3':
  						material.uniforms[ name ].value = new Matrix3().fromArray( uniform.value );

  					case 'm4':
  						material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value );
  						break;

  					default:
  						material.uniforms[ name ].value = uniform.value;

  				}

  			}

  		}

  		if ( json.defines !== undefined ) material.defines = json.defines;
  		if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
  		if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;

  		if ( json.extensions !== undefined ) {

  			for ( const key in json.extensions ) {

  				material.extensions[ key ] = json.extensions[ key ];

  			}

  		}

  		// Deprecated

  		if ( json.shading !== undefined ) material.flatShading = json.shading === 1; // THREE.FlatShading

  		// for PointsMaterial

  		if ( json.size !== undefined ) material.size = json.size;
  		if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;

  		// maps

  		if ( json.map !== undefined ) material.map = getTexture( json.map );
  		if ( json.matcap !== undefined ) material.matcap = getTexture( json.matcap );

  		if ( json.alphaMap !== undefined ) material.alphaMap = getTexture( json.alphaMap );

  		if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap );
  		if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;

  		if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap );
  		if ( json.normalMapType !== undefined ) material.normalMapType = json.normalMapType;
  		if ( json.normalScale !== undefined ) {

  			let normalScale = json.normalScale;

  			if ( Array.isArray( normalScale ) === false ) {

  				// Blender exporter used to export a scalar. See #7459

  				normalScale = [ normalScale, normalScale ];

  			}

  			material.normalScale = new Vector2().fromArray( normalScale );

  		}

  		if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap );
  		if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
  		if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;

  		if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap );
  		if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap );

  		if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap );
  		if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;

  		if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap );

  		if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap );
  		if ( json.envMapIntensity !== undefined ) material.envMapIntensity = json.envMapIntensity;

  		if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity;
  		if ( json.refractionRatio !== undefined ) material.refractionRatio = json.refractionRatio;

  		if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap );
  		if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;

  		if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap );
  		if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;

  		if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap );

  		if ( json.clearcoatMap !== undefined ) material.clearcoatMap = getTexture( json.clearcoatMap );
  		if ( json.clearcoatRoughnessMap !== undefined ) material.clearcoatRoughnessMap = getTexture( json.clearcoatRoughnessMap );
  		if ( json.clearcoatNormalMap !== undefined ) material.clearcoatNormalMap = getTexture( json.clearcoatNormalMap );
  		if ( json.clearcoatNormalScale !== undefined ) material.clearcoatNormalScale = new Vector2().fromArray( json.clearcoatNormalScale );

  		return material;

  	},

  	setTextures: function ( value ) {

  		this.textures = value;
  		return this;

  	}

  } );

  /**
   * @author Don McCurdy / https://www.donmccurdy.com
   */

  const LoaderUtils = {

  	decodeText: function ( array ) {

  		if ( typeof TextDecoder !== 'undefined' ) {

  			return new TextDecoder().decode( array );

  		}

  		// Avoid the String.fromCharCode.apply(null, array) shortcut, which
  		// throws a "maximum call stack size exceeded" error for large arrays.

  		let s = '';

  		for ( let i = 0, il = array.length; i < il; i ++ ) {

  			// Implicitly assumes little-endian.
  			s += String.fromCharCode( array[ i ] );

  		}

  		try {

  			// merges multi-byte utf-8 characters.

  			return decodeURIComponent( escape( s ) );

  		} catch ( e ) { // see #16358

  			return s;

  		}

  	},

  	extractUrlBase: function ( url ) {

  		const index = url.lastIndexOf( '/' );

  		if ( index === - 1 ) return './';

  		return url.substr( 0, index + 1 );

  	}

  };

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  function InstancedBufferGeometry() {

  	BufferGeometry.call( this );

  	this.type = 'InstancedBufferGeometry';
  	this.instanceCount = Infinity;

  }

  InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), {

  	constructor: InstancedBufferGeometry,

  	isInstancedBufferGeometry: true,

  	copy: function ( source ) {

  		BufferGeometry.prototype.copy.call( this, source );

  		this.instanceCount = source.instanceCount;

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	toJSON: function () {

  		const data = BufferGeometry.prototype.toJSON.call( this );

  		data.instanceCount = this.instanceCount;

  		data.isInstancedBufferGeometry = true;

  		return data;

  	}

  } );

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  function InstancedBufferAttribute( array, itemSize, normalized, meshPerAttribute ) {

  	if ( typeof ( normalized ) === 'number' ) {

  		meshPerAttribute = normalized;

  		normalized = false;

  		console.error( 'THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.' );

  	}

  	BufferAttribute.call( this, array, itemSize, normalized );

  	this.meshPerAttribute = meshPerAttribute || 1;

  }

  InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), {

  	constructor: InstancedBufferAttribute,

  	isInstancedBufferAttribute: true,

  	copy: function ( source ) {

  		BufferAttribute.prototype.copy.call( this, source );

  		this.meshPerAttribute = source.meshPerAttribute;

  		return this;

  	},

  	toJSON: function ()	{

  		const data = BufferAttribute.prototype.toJSON.call( this );

  		data.meshPerAttribute = this.meshPerAttribute;

  		data.isInstancedBufferAttribute = true;

  		return data;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function BufferGeometryLoader( manager ) {

  	Loader.call( this, manager );

  }

  BufferGeometryLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: BufferGeometryLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		const scope = this;

  		const loader = new FileLoader( scope.manager );
  		loader.setPath( scope.path );
  		loader.load( url, function ( text ) {

  			try {

  				onLoad( scope.parse( JSON.parse( text ) ) );

  			} catch ( e ) {

  				if ( onError ) {

  					onError( e );

  				} else {

  					console.error( e );

  				}

  				scope.manager.itemError( url );

  			}

  		}, onProgress, onError );

  	},

  	parse: function ( json ) {

  		const interleavedBufferMap = {};
  		const arrayBufferMap = {};

  		function getInterleavedBuffer( json, uuid ) {

  			if ( interleavedBufferMap[ uuid ] !== undefined ) return interleavedBufferMap[ uuid ];

  			const interleavedBuffers = json.interleavedBuffers;
  			const interleavedBuffer = interleavedBuffers[ uuid ];

  			const buffer = getArrayBuffer( json, interleavedBuffer.buffer );

  			const array = new TYPED_ARRAYS[ interleavedBuffer.type ]( buffer );
  			const ib = new InterleavedBuffer( array, interleavedBuffer.stride );
  			ib.uuid = interleavedBuffer.uuid;

  			interleavedBufferMap[ uuid ] = ib;

  			return ib;

  		}

  		function getArrayBuffer( json, uuid ) {

  			if ( arrayBufferMap[ uuid ] !== undefined ) return arrayBufferMap[ uuid ];

  			const arrayBuffers = json.arrayBuffers;
  			const arrayBuffer = arrayBuffers[ uuid ];

  			const ab = new Uint32Array( arrayBuffer ).buffer;

  			arrayBufferMap[ uuid ] = ab;

  			return ab;

  		}

  		const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();

  		const index = json.data.index;

  		if ( index !== undefined ) {

  			const typedArray = new TYPED_ARRAYS[ index.type ]( index.array );
  			geometry.setIndex( new BufferAttribute( typedArray, 1 ) );

  		}

  		const attributes = json.data.attributes;

  		for ( const key in attributes ) {

  			const attribute = attributes[ key ];
  			let bufferAttribute;

  			if ( attribute.isInterleavedBufferAttribute ) {

  				const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data );
  				bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized );

  			} else {

  				const typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );
  				const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
  				bufferAttribute = new bufferAttributeConstr( typedArray, attribute.itemSize, attribute.normalized );

  			}

  			if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name;
  			geometry.setAttribute( key, bufferAttribute );

  		}

  		const morphAttributes = json.data.morphAttributes;

  		if ( morphAttributes ) {

  			for ( const key in morphAttributes ) {

  				const attributeArray = morphAttributes[ key ];

  				const array = [];

  				for ( let i = 0, il = attributeArray.length; i < il; i ++ ) {

  					const attribute = attributeArray[ i ];
  					let bufferAttribute;

  					if ( attribute.isInterleavedBufferAttribute ) {

  						const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data );
  						bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized );

  					} else {

  						const typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );
  						bufferAttribute = new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized );

  					}

  					if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name;
  					array.push( bufferAttribute );

  				}

  				geometry.morphAttributes[ key ] = array;

  			}

  		}

  		const morphTargetsRelative = json.data.morphTargetsRelative;

  		if ( morphTargetsRelative ) {

  			geometry.morphTargetsRelative = true;

  		}

  		const groups = json.data.groups || json.data.drawcalls || json.data.offsets;

  		if ( groups !== undefined ) {

  			for ( let i = 0, n = groups.length; i !== n; ++ i ) {

  				const group = groups[ i ];

  				geometry.addGroup( group.start, group.count, group.materialIndex );

  			}

  		}

  		const boundingSphere = json.data.boundingSphere;

  		if ( boundingSphere !== undefined ) {

  			const center = new Vector3();

  			if ( boundingSphere.center !== undefined ) {

  				center.fromArray( boundingSphere.center );

  			}

  			geometry.boundingSphere = new Sphere( center, boundingSphere.radius );

  		}

  		if ( json.name ) geometry.name = json.name;
  		if ( json.userData ) geometry.userData = json.userData;

  		return geometry;

  	}

  } );

  const TYPED_ARRAYS = {
  	Int8Array: Int8Array,
  	Uint8Array: Uint8Array,
  	// Workaround for IE11 pre KB2929437. See #11440
  	Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array,
  	Int16Array: Int16Array,
  	Uint16Array: Uint16Array,
  	Int32Array: Int32Array,
  	Uint32Array: Uint32Array,
  	Float32Array: Float32Array,
  	Float64Array: Float64Array
  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function ObjectLoader( manager ) {

  	Loader.call( this, manager );

  }

  ObjectLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: ObjectLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		const scope = this;

  		const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path;
  		this.resourcePath = this.resourcePath || path;

  		const loader = new FileLoader( scope.manager );
  		loader.setPath( this.path );
  		loader.load( url, function ( text ) {

  			let json = null;

  			try {

  				json = JSON.parse( text );

  			} catch ( error ) {

  				if ( onError !== undefined ) onError( error );

  				console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message );

  				return;

  			}

  			const metadata = json.metadata;

  			if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) {

  				console.error( 'THREE.ObjectLoader: Can\'t load ' + url );
  				return;

  			}

  			scope.parse( json, onLoad );

  		}, onProgress, onError );

  	},

  	parse: function ( json, onLoad ) {

  		const shapes = this.parseShape( json.shapes );
  		const geometries = this.parseGeometries( json.geometries, shapes );

  		const images = this.parseImages( json.images, function () {

  			if ( onLoad !== undefined ) onLoad( object );

  		} );

  		const textures = this.parseTextures( json.textures, images );
  		const materials = this.parseMaterials( json.materials, textures );

  		const object = this.parseObject( json.object, geometries, materials );

  		if ( json.animations ) {

  			object.animations = this.parseAnimations( json.animations );

  		}

  		if ( json.images === undefined || json.images.length === 0 ) {

  			if ( onLoad !== undefined ) onLoad( object );

  		}

  		return object;

  	},

  	parseShape: function ( json ) {

  		const shapes = {};

  		if ( json !== undefined ) {

  			for ( let i = 0, l = json.length; i < l; i ++ ) {

  				const shape = new Shape().fromJSON( json[ i ] );

  				shapes[ shape.uuid ] = shape;

  			}

  		}

  		return shapes;

  	},

  	parseGeometries: function ( json, shapes ) {

  		const geometries = {};
  		let geometryShapes;

  		if ( json !== undefined ) {

  			const bufferGeometryLoader = new BufferGeometryLoader();

  			for ( let i = 0, l = json.length; i < l; i ++ ) {

  				let geometry;
  				const data = json[ i ];

  				switch ( data.type ) {

  					case 'PlaneGeometry':
  					case 'PlaneBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.width,
  							data.height,
  							data.widthSegments,
  							data.heightSegments
  						);

  						break;

  					case 'BoxGeometry':
  					case 'BoxBufferGeometry':
  					case 'CubeGeometry': // backwards compatible

  						geometry = new Geometries[ data.type ](
  							data.width,
  							data.height,
  							data.depth,
  							data.widthSegments,
  							data.heightSegments,
  							data.depthSegments
  						);

  						break;

  					case 'CircleGeometry':
  					case 'CircleBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.segments,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'CylinderGeometry':
  					case 'CylinderBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radiusTop,
  							data.radiusBottom,
  							data.height,
  							data.radialSegments,
  							data.heightSegments,
  							data.openEnded,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'ConeGeometry':
  					case 'ConeBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.height,
  							data.radialSegments,
  							data.heightSegments,
  							data.openEnded,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'SphereGeometry':
  					case 'SphereBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.widthSegments,
  							data.heightSegments,
  							data.phiStart,
  							data.phiLength,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'DodecahedronGeometry':
  					case 'DodecahedronBufferGeometry':
  					case 'IcosahedronGeometry':
  					case 'IcosahedronBufferGeometry':
  					case 'OctahedronGeometry':
  					case 'OctahedronBufferGeometry':
  					case 'TetrahedronGeometry':
  					case 'TetrahedronBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.detail
  						);

  						break;

  					case 'RingGeometry':
  					case 'RingBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.innerRadius,
  							data.outerRadius,
  							data.thetaSegments,
  							data.phiSegments,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'TorusGeometry':
  					case 'TorusBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.tube,
  							data.radialSegments,
  							data.tubularSegments,
  							data.arc
  						);

  						break;

  					case 'TorusKnotGeometry':
  					case 'TorusKnotBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.tube,
  							data.tubularSegments,
  							data.radialSegments,
  							data.p,
  							data.q
  						);

  						break;

  					case 'TubeGeometry':
  					case 'TubeBufferGeometry':

  						// This only works for built-in curves (e.g. CatmullRomCurve3).
  						// User defined curves or instances of CurvePath will not be deserialized.
  						geometry = new Geometries[ data.type ](
  							new Curves[ data.path.type ]().fromJSON( data.path ),
  							data.tubularSegments,
  							data.radius,
  							data.radialSegments,
  							data.closed
  						);

  						break;

  					case 'LatheGeometry':
  					case 'LatheBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.points,
  							data.segments,
  							data.phiStart,
  							data.phiLength
  						);

  						break;

  					case 'PolyhedronGeometry':
  					case 'PolyhedronBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.vertices,
  							data.indices,
  							data.radius,
  							data.details
  						);

  						break;

  					case 'ShapeGeometry':
  					case 'ShapeBufferGeometry':

  						geometryShapes = [];

  						for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) {

  							const shape = shapes[ data.shapes[ j ] ];

  							geometryShapes.push( shape );

  						}

  						geometry = new Geometries[ data.type ](
  							geometryShapes,
  							data.curveSegments
  						);

  						break;


  					case 'ExtrudeGeometry':
  					case 'ExtrudeBufferGeometry':

  						geometryShapes = [];

  						for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) {

  							const shape = shapes[ data.shapes[ j ] ];

  							geometryShapes.push( shape );

  						}

  						const extrudePath = data.options.extrudePath;

  						if ( extrudePath !== undefined ) {

  							data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath );

  						}

  						geometry = new Geometries[ data.type ](
  							geometryShapes,
  							data.options
  						);

  						break;

  					case 'BufferGeometry':
  					case 'InstancedBufferGeometry':

  						geometry = bufferGeometryLoader.parse( data );

  						break;

  					case 'Geometry':

  						console.error( 'THREE.ObjectLoader: Loading "Geometry" is not supported anymore.' );

  						break;

  					default:

  						console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' );

  						continue;

  				}

  				geometry.uuid = data.uuid;

  				if ( data.name !== undefined ) geometry.name = data.name;
  				if ( geometry.isBufferGeometry === true && data.userData !== undefined ) geometry.userData = data.userData;

  				geometries[ data.uuid ] = geometry;

  			}

  		}

  		return geometries;

  	},

  	parseMaterials: function ( json, textures ) {

  		const cache = {}; // MultiMaterial
  		const materials = {};

  		if ( json !== undefined ) {

  			const loader = new MaterialLoader();
  			loader.setTextures( textures );

  			for ( let i = 0, l = json.length; i < l; i ++ ) {

  				const data = json[ i ];

  				if ( data.type === 'MultiMaterial' ) {

  					// Deprecated

  					const array = [];

  					for ( let j = 0; j < data.materials.length; j ++ ) {

  						const material = data.materials[ j ];

  						if ( cache[ material.uuid ] === undefined ) {

  							cache[ material.uuid ] = loader.parse( material );

  						}

  						array.push( cache[ material.uuid ] );

  					}

  					materials[ data.uuid ] = array;

  				} else {

  					if ( cache[ data.uuid ] === undefined ) {

  						cache[ data.uuid ] = loader.parse( data );

  					}

  					materials[ data.uuid ] = cache[ data.uuid ];

  				}

  			}

  		}

  		return materials;

  	},

  	parseAnimations: function ( json ) {

  		const animations = [];

  		for ( let i = 0; i < json.length; i ++ ) {

  			const data = json[ i ];

  			const clip = AnimationClip.parse( data );

  			if ( data.uuid !== undefined ) clip.uuid = data.uuid;

  			animations.push( clip );

  		}

  		return animations;

  	},

  	parseImages: function ( json, onLoad ) {

  		const scope = this;
  		const images = {};

  		let loader;

  		function loadImage( url ) {

  			scope.manager.itemStart( url );

  			return loader.load( url, function () {

  				scope.manager.itemEnd( url );

  			}, undefined, function () {

  				scope.manager.itemError( url );
  				scope.manager.itemEnd( url );

  			} );

  		}

  		if ( json !== undefined && json.length > 0 ) {

  			const manager = new LoadingManager( onLoad );

  			loader = new ImageLoader( manager );
  			loader.setCrossOrigin( this.crossOrigin );

  			for ( let i = 0, il = json.length; i < il; i ++ ) {

  				const image = json[ i ];
  				const url = image.url;

  				if ( Array.isArray( url ) ) {

  					// load array of images e.g CubeTexture

  					images[ image.uuid ] = [];

  					for ( let j = 0, jl = url.length; j < jl; j ++ ) {

  						const currentUrl = url[ j ];

  						const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( currentUrl ) ? currentUrl : scope.resourcePath + currentUrl;

  						images[ image.uuid ].push( loadImage( path ) );

  					}

  				} else {

  					// load single image

  					const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.resourcePath + image.url;

  					images[ image.uuid ] = loadImage( path );

  				}

  			}

  		}

  		return images;

  	},

  	parseTextures: function ( json, images ) {

  		function parseConstant( value, type ) {

  			if ( typeof value === 'number' ) return value;

  			console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );

  			return type[ value ];

  		}

  		const textures = {};

  		if ( json !== undefined ) {

  			for ( let i = 0, l = json.length; i < l; i ++ ) {

  				const data = json[ i ];

  				if ( data.image === undefined ) {

  					console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );

  				}

  				if ( images[ data.image ] === undefined ) {

  					console.warn( 'THREE.ObjectLoader: Undefined image', data.image );

  				}

  				let texture;

  				if ( Array.isArray( images[ data.image ] ) ) {

  					texture = new CubeTexture( images[ data.image ] );

  				} else {

  					texture = new Texture( images[ data.image ] );

  				}

  				texture.needsUpdate = true;

  				texture.uuid = data.uuid;

  				if ( data.name !== undefined ) texture.name = data.name;

  				if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING );

  				if ( data.offset !== undefined ) texture.offset.fromArray( data.offset );
  				if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat );
  				if ( data.center !== undefined ) texture.center.fromArray( data.center );
  				if ( data.rotation !== undefined ) texture.rotation = data.rotation;

  				if ( data.wrap !== undefined ) {

  					texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING );
  					texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING );

  				}

  				if ( data.format !== undefined ) texture.format = data.format;
  				if ( data.type !== undefined ) texture.type = data.type;
  				if ( data.encoding !== undefined ) texture.encoding = data.encoding;

  				if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER );
  				if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER );
  				if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy;

  				if ( data.flipY !== undefined ) texture.flipY = data.flipY;

  				if ( data.premultiplyAlpha !== undefined ) texture.premultiplyAlpha = data.premultiplyAlpha;
  				if ( data.unpackAlignment !== undefined ) texture.unpackAlignment = data.unpackAlignment;

  				textures[ data.uuid ] = texture;

  			}

  		}

  		return textures;

  	},

  	parseObject: function ( data, geometries, materials ) {

  		let object;

  		function getGeometry( name ) {

  			if ( geometries[ name ] === undefined ) {

  				console.warn( 'THREE.ObjectLoader: Undefined geometry', name );

  			}

  			return geometries[ name ];

  		}

  		function getMaterial( name ) {

  			if ( name === undefined ) return undefined;

  			if ( Array.isArray( name ) ) {

  				const array = [];

  				for ( let i = 0, l = name.length; i < l; i ++ ) {

  					const uuid = name[ i ];

  					if ( materials[ uuid ] === undefined ) {

  						console.warn( 'THREE.ObjectLoader: Undefined material', uuid );

  					}

  					array.push( materials[ uuid ] );

  				}

  				return array;

  			}

  			if ( materials[ name ] === undefined ) {

  				console.warn( 'THREE.ObjectLoader: Undefined material', name );

  			}

  			return materials[ name ];

  		}

  		let geometry, material;

  		switch ( data.type ) {

  			case 'Scene':

  				object = new Scene();

  				if ( data.background !== undefined ) {

  					if ( Number.isInteger( data.background ) ) {

  						object.background = new Color( data.background );

  					}

  				}

  				if ( data.fog !== undefined ) {

  					if ( data.fog.type === 'Fog' ) {

  						object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far );

  					} else if ( data.fog.type === 'FogExp2' ) {

  						object.fog = new FogExp2( data.fog.color, data.fog.density );

  					}

  				}

  				break;

  			case 'PerspectiveCamera':

  				object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far );

  				if ( data.focus !== undefined ) object.focus = data.focus;
  				if ( data.zoom !== undefined ) object.zoom = data.zoom;
  				if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge;
  				if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset;
  				if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );

  				break;

  			case 'OrthographicCamera':

  				object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );

  				if ( data.zoom !== undefined ) object.zoom = data.zoom;
  				if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );

  				break;

  			case 'AmbientLight':

  				object = new AmbientLight( data.color, data.intensity );

  				break;

  			case 'DirectionalLight':

  				object = new DirectionalLight( data.color, data.intensity );

  				break;

  			case 'PointLight':

  				object = new PointLight( data.color, data.intensity, data.distance, data.decay );

  				break;

  			case 'RectAreaLight':

  				object = new RectAreaLight( data.color, data.intensity, data.width, data.height );

  				break;

  			case 'SpotLight':

  				object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );

  				break;

  			case 'HemisphereLight':

  				object = new HemisphereLight( data.color, data.groundColor, data.intensity );

  				break;

  			case 'LightProbe':

  				object = new LightProbe().fromJSON( data );

  				break;

  			case 'SkinnedMesh':

  				console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' );

  			case 'Mesh':

  				geometry = getGeometry( data.geometry );
  				material = getMaterial( data.material );

  				object = new Mesh( geometry, material );

  				break;

  			case 'InstancedMesh':

  				geometry = getGeometry( data.geometry );
  				material = getMaterial( data.material );
  				const count = data.count;
  				const instanceMatrix = data.instanceMatrix;

  				object = new InstancedMesh( geometry, material, count );
  				object.instanceMatrix = new BufferAttribute( new Float32Array( instanceMatrix.array ), 16 );

  				break;

  			case 'LOD':

  				object = new LOD();

  				break;

  			case 'Line':

  				object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode );

  				break;

  			case 'LineLoop':

  				object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) );

  				break;

  			case 'LineSegments':

  				object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) );

  				break;

  			case 'PointCloud':
  			case 'Points':

  				object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) );

  				break;

  			case 'Sprite':

  				object = new Sprite( getMaterial( data.material ) );

  				break;

  			case 'Group':

  				object = new Group();

  				break;

  			default:

  				object = new Object3D();

  		}

  		object.uuid = data.uuid;

  		if ( data.name !== undefined ) object.name = data.name;

  		if ( data.matrix !== undefined ) {

  			object.matrix.fromArray( data.matrix );

  			if ( data.matrixAutoUpdate !== undefined ) object.matrixAutoUpdate = data.matrixAutoUpdate;
  			if ( object.matrixAutoUpdate ) object.matrix.decompose( object.position, object.quaternion, object.scale );

  		} else {

  			if ( data.position !== undefined ) object.position.fromArray( data.position );
  			if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation );
  			if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion );
  			if ( data.scale !== undefined ) object.scale.fromArray( data.scale );

  		}

  		if ( data.castShadow !== undefined ) object.castShadow = data.castShadow;
  		if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow;

  		if ( data.shadow ) {

  			if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias;
  			if ( data.shadow.normalBias !== undefined ) object.shadow.normalBias = data.shadow.normalBias;
  			if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius;
  			if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize );
  			if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera );

  		}

  		if ( data.visible !== undefined ) object.visible = data.visible;
  		if ( data.frustumCulled !== undefined ) object.frustumCulled = data.frustumCulled;
  		if ( data.renderOrder !== undefined ) object.renderOrder = data.renderOrder;
  		if ( data.userData !== undefined ) object.userData = data.userData;
  		if ( data.layers !== undefined ) object.layers.mask = data.layers;

  		if ( data.children !== undefined ) {

  			const children = data.children;

  			for ( let i = 0; i < children.length; i ++ ) {

  				object.add( this.parseObject( children[ i ], geometries, materials ) );

  			}

  		}

  		if ( data.type === 'LOD' ) {

  			if ( data.autoUpdate !== undefined ) object.autoUpdate = data.autoUpdate;

  			const levels = data.levels;

  			for ( let l = 0; l < levels.length; l ++ ) {

  				const level = levels[ l ];
  				const child = object.getObjectByProperty( 'uuid', level.object );

  				if ( child !== undefined ) {

  					object.addLevel( child, level.distance );

  				}

  			}

  		}

  		return object;

  	}

  } );

  const TEXTURE_MAPPING = {
  	UVMapping: UVMapping,
  	CubeReflectionMapping: CubeReflectionMapping,
  	CubeRefractionMapping: CubeRefractionMapping,
  	EquirectangularReflectionMapping: EquirectangularReflectionMapping,
  	EquirectangularRefractionMapping: EquirectangularRefractionMapping,
  	CubeUVReflectionMapping: CubeUVReflectionMapping,
  	CubeUVRefractionMapping: CubeUVRefractionMapping
  };

  const TEXTURE_WRAPPING = {
  	RepeatWrapping: RepeatWrapping,
  	ClampToEdgeWrapping: ClampToEdgeWrapping,
  	MirroredRepeatWrapping: MirroredRepeatWrapping
  };

  const TEXTURE_FILTER = {
  	NearestFilter: NearestFilter,
  	NearestMipmapNearestFilter: NearestMipmapNearestFilter,
  	NearestMipmapLinearFilter: NearestMipmapLinearFilter,
  	LinearFilter: LinearFilter,
  	LinearMipmapNearestFilter: LinearMipmapNearestFilter,
  	LinearMipmapLinearFilter: LinearMipmapLinearFilter
  };

  /**
   * @author thespite / http://clicktorelease.com/
   */


  function ImageBitmapLoader( manager ) {

  	if ( typeof createImageBitmap === 'undefined' ) {

  		console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' );

  	}

  	if ( typeof fetch === 'undefined' ) {

  		console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' );

  	}

  	Loader.call( this, manager );

  	this.options = { premultiplyAlpha: 'none' };

  }

  ImageBitmapLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: ImageBitmapLoader,

  	isImageBitmapLoader: true,

  	setOptions: function setOptions( options ) {

  		this.options = options;

  		return this;

  	},

  	load: function ( url, onLoad, onProgress, onError ) {

  		if ( url === undefined ) url = '';

  		if ( this.path !== undefined ) url = this.path + url;

  		url = this.manager.resolveURL( url );

  		const scope = this;

  		const cached = Cache.get( url );

  		if ( cached !== undefined ) {

  			scope.manager.itemStart( url );

  			setTimeout( function () {

  				if ( onLoad ) onLoad( cached );

  				scope.manager.itemEnd( url );

  			}, 0 );

  			return cached;

  		}

  		fetch( url ).then( function ( res ) {

  			return res.blob();

  		} ).then( function ( blob ) {

  			return createImageBitmap( blob, scope.options );

  		} ).then( function ( imageBitmap ) {

  			Cache.add( url, imageBitmap );

  			if ( onLoad ) onLoad( imageBitmap );

  			scope.manager.itemEnd( url );

  		} ).catch( function ( e ) {

  			if ( onError ) onError( e );

  			scope.manager.itemError( url );
  			scope.manager.itemEnd( url );

  		} );

  		scope.manager.itemStart( url );

  	}

  } );

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * minimal class for proxing functions to Path. Replaces old "extractSubpaths()"
   **/

  function ShapePath() {

  	this.type = 'ShapePath';

  	this.color = new Color();

  	this.subPaths = [];
  	this.currentPath = null;

  }

  Object.assign( ShapePath.prototype, {

  	moveTo: function ( x, y ) {

  		this.currentPath = new Path();
  		this.subPaths.push( this.currentPath );
  		this.currentPath.moveTo( x, y );

  		return this;

  	},

  	lineTo: function ( x, y ) {

  		this.currentPath.lineTo( x, y );

  		return this;

  	},

  	quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

  		this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY );

  		return this;

  	},

  	bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

  		this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY );

  		return this;

  	},

  	splineThru: function ( pts ) {

  		this.currentPath.splineThru( pts );

  		return this;

  	},

  	toShapes: function ( isCCW, noHoles ) {

  		function toShapesNoHoles( inSubpaths ) {

  			const shapes = [];

  			for ( let i = 0, l = inSubpaths.length; i < l; i ++ ) {

  				const tmpPath = inSubpaths[ i ];

  				const tmpShape = new Shape();
  				tmpShape.curves = tmpPath.curves;

  				shapes.push( tmpShape );

  			}

  			return shapes;

  		}

  		function isPointInsidePolygon( inPt, inPolygon ) {

  			const polyLen = inPolygon.length;

  			// inPt on polygon contour => immediate success    or
  			// toggling of inside/outside at every single! intersection point of an edge
  			//  with the horizontal line through inPt, left of inPt
  			//  not counting lowerY endpoints of edges and whole edges on that line
  			let inside = false;
  			for ( let p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {

  				let edgeLowPt = inPolygon[ p ];
  				let edgeHighPt = inPolygon[ q ];

  				let edgeDx = edgeHighPt.x - edgeLowPt.x;
  				let edgeDy = edgeHighPt.y - edgeLowPt.y;

  				if ( Math.abs( edgeDy ) > Number.EPSILON ) {

  					// not parallel
  					if ( edgeDy < 0 ) {

  						edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx;
  						edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;

  					}

  					if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) 		continue;

  					if ( inPt.y === edgeLowPt.y ) {

  						if ( inPt.x === edgeLowPt.x )		return	true;		// inPt is on contour ?
  						// continue;				// no intersection or edgeLowPt => doesn't count !!!

  					} else {

  						const perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y );
  						if ( perpEdge === 0 )				return	true;		// inPt is on contour ?
  						if ( perpEdge < 0 ) 				continue;
  						inside = ! inside;		// true intersection left of inPt

  					}

  				} else {

  					// parallel or collinear
  					if ( inPt.y !== edgeLowPt.y ) 		continue;			// parallel
  					// edge lies on the same horizontal line as inPt
  					if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) ||
  						 ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) )		return	true;	// inPt: Point on contour !
  					// continue;

  				}

  			}

  			return	inside;

  		}

  		const isClockWise = ShapeUtils.isClockWise;

  		const subPaths = this.subPaths;
  		if ( subPaths.length === 0 ) return [];

  		if ( noHoles === true )	return	toShapesNoHoles( subPaths );


  		let solid, tmpPath, tmpShape, shapes = [];

  		if ( subPaths.length === 1 ) {

  			tmpPath = subPaths[ 0 ];
  			tmpShape = new Shape();
  			tmpShape.curves = tmpPath.curves;
  			shapes.push( tmpShape );
  			return shapes;

  		}

  		let holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() );
  		holesFirst = isCCW ? ! holesFirst : holesFirst;

  		// console.log("Holes first", holesFirst);

  		const betterShapeHoles = [];
  		const newShapes = [];
  		let newShapeHoles = [];
  		let mainIdx = 0;
  		let tmpPoints;

  		newShapes[ mainIdx ] = undefined;
  		newShapeHoles[ mainIdx ] = [];

  		for ( let i = 0, l = subPaths.length; i < l; i ++ ) {

  			tmpPath = subPaths[ i ];
  			tmpPoints = tmpPath.getPoints();
  			solid = isClockWise( tmpPoints );
  			solid = isCCW ? ! solid : solid;

  			if ( solid ) {

  				if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) )	mainIdx ++;

  				newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints };
  				newShapes[ mainIdx ].s.curves = tmpPath.curves;

  				if ( holesFirst )	mainIdx ++;
  				newShapeHoles[ mainIdx ] = [];

  				//console.log('cw', i);

  			} else {

  				newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );

  				//console.log('ccw', i);

  			}

  		}

  		// only Holes? -> probably all Shapes with wrong orientation
  		if ( ! newShapes[ 0 ] )	return	toShapesNoHoles( subPaths );


  		if ( newShapes.length > 1 ) {

  			let ambiguous = false;
  			const toChange = [];

  			for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

  				betterShapeHoles[ sIdx ] = [];

  			}

  			for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

  				const sho = newShapeHoles[ sIdx ];

  				for ( let hIdx = 0; hIdx < sho.length; hIdx ++ ) {

  					const ho = sho[ hIdx ];
  					let hole_unassigned = true;

  					for ( let s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {

  						if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {

  							if ( sIdx !== s2Idx )	toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } );
  							if ( hole_unassigned ) {

  								hole_unassigned = false;
  								betterShapeHoles[ s2Idx ].push( ho );

  							} else {

  								ambiguous = true;

  							}

  						}

  					}

  					if ( hole_unassigned ) {

  						betterShapeHoles[ sIdx ].push( ho );

  					}

  				}

  			}
  			// console.log("ambiguous: ", ambiguous);

  			if ( toChange.length > 0 ) {

  				// console.log("to change: ", toChange);
  				if ( ! ambiguous )	newShapeHoles = betterShapeHoles;

  			}

  		}

  		let tmpHoles;

  		for ( let i = 0, il = newShapes.length; i < il; i ++ ) {

  			tmpShape = newShapes[ i ].s;
  			shapes.push( tmpShape );
  			tmpHoles = newShapeHoles[ i ];

  			for ( let j = 0, jl = tmpHoles.length; j < jl; j ++ ) {

  				tmpShape.holes.push( tmpHoles[ j ].h );

  			}

  		}

  		//console.log("shape", shapes);

  		return shapes;

  	}

  } );

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * @author mrdoob / http://mrdoob.com/
   */


  function Font( data ) {

  	this.type = 'Font';

  	this.data = data;

  }

  Object.assign( Font.prototype, {

  	isFont: true,

  	generateShapes: function ( text, size ) {

  		if ( size === undefined ) size = 100;

  		const shapes = [];
  		const paths = createPaths( text, size, this.data );

  		for ( let p = 0, pl = paths.length; p < pl; p ++ ) {

  			Array.prototype.push.apply( shapes, paths[ p ].toShapes() );

  		}

  		return shapes;

  	}

  } );

  function createPaths( text, size, data ) {

  	const chars = Array.from ? Array.from( text ) : String( text ).split( '' ); // workaround for IE11, see #13988
  	const scale = size / data.resolution;
  	const line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale;

  	const paths = [];

  	let offsetX = 0, offsetY = 0;

  	for ( let i = 0; i < chars.length; i ++ ) {

  		const char = chars[ i ];

  		if ( char === '\n' ) {

  			offsetX = 0;
  			offsetY -= line_height;

  		} else {

  			const ret = createPath( char, scale, offsetX, offsetY, data );
  			offsetX += ret.offsetX;
  			paths.push( ret.path );

  		}

  	}

  	return paths;

  }

  function createPath( char, scale, offsetX, offsetY, data ) {

  	const glyph = data.glyphs[ char ] || data.glyphs[ '?' ];

  	if ( ! glyph ) {

  		console.error( 'THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.' );

  		return;

  	}

  	const path = new ShapePath();

  	let x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2;

  	if ( glyph.o ) {

  		const outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );

  		for ( let i = 0, l = outline.length; i < l; ) {

  			const action = outline[ i ++ ];

  			switch ( action ) {

  				case 'm': // moveTo

  					x = outline[ i ++ ] * scale + offsetX;
  					y = outline[ i ++ ] * scale + offsetY;

  					path.moveTo( x, y );

  					break;

  				case 'l': // lineTo

  					x = outline[ i ++ ] * scale + offsetX;
  					y = outline[ i ++ ] * scale + offsetY;

  					path.lineTo( x, y );

  					break;

  				case 'q': // quadraticCurveTo

  					cpx = outline[ i ++ ] * scale + offsetX;
  					cpy = outline[ i ++ ] * scale + offsetY;
  					cpx1 = outline[ i ++ ] * scale + offsetX;
  					cpy1 = outline[ i ++ ] * scale + offsetY;

  					path.quadraticCurveTo( cpx1, cpy1, cpx, cpy );

  					break;

  				case 'b': // bezierCurveTo

  					cpx = outline[ i ++ ] * scale + offsetX;
  					cpy = outline[ i ++ ] * scale + offsetY;
  					cpx1 = outline[ i ++ ] * scale + offsetX;
  					cpy1 = outline[ i ++ ] * scale + offsetY;
  					cpx2 = outline[ i ++ ] * scale + offsetX;
  					cpy2 = outline[ i ++ ] * scale + offsetY;

  					path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy );

  					break;

  			}

  		}

  	}

  	return { offsetX: glyph.ha * scale, path: path };

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function FontLoader( manager ) {

  	Loader.call( this, manager );

  }

  FontLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: FontLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		const scope = this;

  		const loader = new FileLoader( this.manager );
  		loader.setPath( this.path );
  		loader.load( url, function ( text ) {

  			let json;

  			try {

  				json = JSON.parse( text );

  			} catch ( e ) {

  				console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' );
  				json = JSON.parse( text.substring( 65, text.length - 2 ) );

  			}

  			const font = scope.parse( json );

  			if ( onLoad ) onLoad( font );

  		}, onProgress, onError );

  	},

  	parse: function ( json ) {

  		return new Font( json );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  let _context;

  const AudioContext = {

  	getContext: function () {

  		if ( _context === undefined ) {

  			_context = new ( window.AudioContext || window.webkitAudioContext )();

  		}

  		return _context;

  	},

  	setContext: function ( value ) {

  		_context = value;

  	}

  };

  /**
   * @author Reece Aaron Lecrivain / http://reecenotes.com/
   */

  function AudioLoader( manager ) {

  	Loader.call( this, manager );

  }

  AudioLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

  	constructor: AudioLoader,

  	load: function ( url, onLoad, onProgress, onError ) {

  		const scope = this;

  		const loader = new FileLoader( scope.manager );
  		loader.setResponseType( 'arraybuffer' );
  		loader.setPath( scope.path );
  		loader.load( url, function ( buffer ) {

  			try {

  				// Create a copy of the buffer. The `decodeAudioData` method
  				// detaches the buffer when complete, preventing reuse.
  				const bufferCopy = buffer.slice( 0 );

  				const context = AudioContext.getContext();
  				context.decodeAudioData( bufferCopy, function ( audioBuffer ) {

  					onLoad( audioBuffer );

  				} );

  			} catch ( e ) {

  				if ( onError ) {

  					onError( e );

  				} else {

  					console.error( e );

  				}

  				scope.manager.itemError( url );

  			}

  		}, onProgress, onError );

  	}

  } );

  /**
   * @author WestLangley / http://github.com/WestLangley
   */

  function HemisphereLightProbe( skyColor, groundColor, intensity ) {

  	LightProbe.call( this, undefined, intensity );

  	const color1 = new Color().set( skyColor );
  	const color2 = new Color().set( groundColor );

  	const sky = new Vector3( color1.r, color1.g, color1.b );
  	const ground = new Vector3( color2.r, color2.g, color2.b );

  	// without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );
  	const c0 = Math.sqrt( Math.PI );
  	const c1 = c0 * Math.sqrt( 0.75 );

  	this.sh.coefficients[ 0 ].copy( sky ).add( ground ).multiplyScalar( c0 );
  	this.sh.coefficients[ 1 ].copy( sky ).sub( ground ).multiplyScalar( c1 );

  }

  HemisphereLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), {

  	constructor: HemisphereLightProbe,

  	isHemisphereLightProbe: true,

  	copy: function ( source ) { // modifying colors not currently supported

  		LightProbe.prototype.copy.call( this, source );

  		return this;

  	},

  	toJSON: function ( meta ) {

  		const data = LightProbe.prototype.toJSON.call( this, meta );

  		// data.sh = this.sh.toArray(); // todo

  		return data;

  	}

  } );

  /**
   * @author WestLangley / http://github.com/WestLangley
   */

  function AmbientLightProbe( color, intensity ) {

  	LightProbe.call( this, undefined, intensity );

  	const color1 = new Color().set( color );

  	// without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );
  	this.sh.coefficients[ 0 ].set( color1.r, color1.g, color1.b ).multiplyScalar( 2 * Math.sqrt( Math.PI ) );

  }

  AmbientLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), {

  	constructor: AmbientLightProbe,

  	isAmbientLightProbe: true,

  	copy: function ( source ) { // modifying color not currently supported

  		LightProbe.prototype.copy.call( this, source );

  		return this;

  	},

  	toJSON: function ( meta ) {

  		const data = LightProbe.prototype.toJSON.call( this, meta );

  		// data.sh = this.sh.toArray(); // todo

  		return data;

  	}

  } );

  const _eyeRight = new Matrix4();
  const _eyeLeft = new Matrix4();

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function StereoCamera() {

  	this.type = 'StereoCamera';

  	this.aspect = 1;

  	this.eyeSep = 0.064;

  	this.cameraL = new PerspectiveCamera();
  	this.cameraL.layers.enable( 1 );
  	this.cameraL.matrixAutoUpdate = false;

  	this.cameraR = new PerspectiveCamera();
  	this.cameraR.layers.enable( 2 );
  	this.cameraR.matrixAutoUpdate = false;

  	this._cache = {
  		focus: null,
  		fov: null,
  		aspect: null,
  		near: null,
  		far: null,
  		zoom: null,
  		eyeSep: null
  	};

  }

  Object.assign( StereoCamera.prototype, {

  	update: function ( camera ) {

  		const cache = this._cache;

  		const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov ||
  			cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near ||
  			cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;

  		if ( needsUpdate ) {

  			cache.focus = camera.focus;
  			cache.fov = camera.fov;
  			cache.aspect = camera.aspect * this.aspect;
  			cache.near = camera.near;
  			cache.far = camera.far;
  			cache.zoom = camera.zoom;
  			cache.eyeSep = this.eyeSep;

  			// Off-axis stereoscopic effect based on
  			// http://paulbourke.net/stereographics/stereorender/

  			const projectionMatrix = camera.projectionMatrix.clone();
  			const eyeSepHalf = cache.eyeSep / 2;
  			const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
  			const ymax = ( cache.near * Math.tan( MathUtils.DEG2RAD * cache.fov * 0.5 ) ) / cache.zoom;
  			let xmin, xmax;

  			// translate xOffset

  			_eyeLeft.elements[ 12 ] = - eyeSepHalf;
  			_eyeRight.elements[ 12 ] = eyeSepHalf;

  			// for left eye

  			xmin = - ymax * cache.aspect + eyeSepOnProjection;
  			xmax = ymax * cache.aspect + eyeSepOnProjection;

  			projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin );
  			projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

  			this.cameraL.projectionMatrix.copy( projectionMatrix );

  			// for right eye

  			xmin = - ymax * cache.aspect - eyeSepOnProjection;
  			xmax = ymax * cache.aspect - eyeSepOnProjection;

  			projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin );
  			projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

  			this.cameraR.projectionMatrix.copy( projectionMatrix );

  		}

  		this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeLeft );
  		this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeRight );

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function Clock( autoStart ) {

  	this.autoStart = ( autoStart !== undefined ) ? autoStart : true;

  	this.startTime = 0;
  	this.oldTime = 0;
  	this.elapsedTime = 0;

  	this.running = false;

  }

  Object.assign( Clock.prototype, {

  	start: function () {

  		this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732

  		this.oldTime = this.startTime;
  		this.elapsedTime = 0;
  		this.running = true;

  	},

  	stop: function () {

  		this.getElapsedTime();
  		this.running = false;
  		this.autoStart = false;

  	},

  	getElapsedTime: function () {

  		this.getDelta();
  		return this.elapsedTime;

  	},

  	getDelta: function () {

  		let diff = 0;

  		if ( this.autoStart && ! this.running ) {

  			this.start();
  			return 0;

  		}

  		if ( this.running ) {

  			const newTime = ( typeof performance === 'undefined' ? Date : performance ).now();

  			diff = ( newTime - this.oldTime ) / 1000;
  			this.oldTime = newTime;

  			this.elapsedTime += diff;

  		}

  		return diff;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  const _position$2 = new Vector3();
  const _quaternion$3 = new Quaternion();
  const _scale$1 = new Vector3();
  const _orientation = new Vector3();

  function AudioListener() {

  	Object3D.call( this );

  	this.type = 'AudioListener';

  	this.context = AudioContext.getContext();

  	this.gain = this.context.createGain();
  	this.gain.connect( this.context.destination );

  	this.filter = null;

  	this.timeDelta = 0;

  	// private

  	this._clock = new Clock();

  }

  AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: AudioListener,

  	getInput: function () {

  		return this.gain;

  	},

  	removeFilter: function ( ) {

  		if ( this.filter !== null ) {

  			this.gain.disconnect( this.filter );
  			this.filter.disconnect( this.context.destination );
  			this.gain.connect( this.context.destination );
  			this.filter = null;

  		}

  		return this;

  	},

  	getFilter: function () {

  		return this.filter;

  	},

  	setFilter: function ( value ) {

  		if ( this.filter !== null ) {

  			this.gain.disconnect( this.filter );
  			this.filter.disconnect( this.context.destination );

  		} else {

  			this.gain.disconnect( this.context.destination );

  		}

  		this.filter = value;
  		this.gain.connect( this.filter );
  		this.filter.connect( this.context.destination );

  		return this;

  	},

  	getMasterVolume: function () {

  		return this.gain.gain.value;

  	},

  	setMasterVolume: function ( value ) {

  		this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );

  		return this;

  	},

  	updateMatrixWorld: function ( force ) {

  		Object3D.prototype.updateMatrixWorld.call( this, force );

  		const listener = this.context.listener;
  		const up = this.up;

  		this.timeDelta = this._clock.getDelta();

  		this.matrixWorld.decompose( _position$2, _quaternion$3, _scale$1 );

  		_orientation.set( 0, 0, - 1 ).applyQuaternion( _quaternion$3 );

  		if ( listener.positionX ) {

  			// code path for Chrome (see #14393)

  			const endTime = this.context.currentTime + this.timeDelta;

  			listener.positionX.linearRampToValueAtTime( _position$2.x, endTime );
  			listener.positionY.linearRampToValueAtTime( _position$2.y, endTime );
  			listener.positionZ.linearRampToValueAtTime( _position$2.z, endTime );
  			listener.forwardX.linearRampToValueAtTime( _orientation.x, endTime );
  			listener.forwardY.linearRampToValueAtTime( _orientation.y, endTime );
  			listener.forwardZ.linearRampToValueAtTime( _orientation.z, endTime );
  			listener.upX.linearRampToValueAtTime( up.x, endTime );
  			listener.upY.linearRampToValueAtTime( up.y, endTime );
  			listener.upZ.linearRampToValueAtTime( up.z, endTime );

  		} else {

  			listener.setPosition( _position$2.x, _position$2.y, _position$2.z );
  			listener.setOrientation( _orientation.x, _orientation.y, _orientation.z, up.x, up.y, up.z );

  		}

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Reece Aaron Lecrivain / http://reecenotes.com/
   */

  function Audio( listener ) {

  	Object3D.call( this );

  	this.type = 'Audio';

  	this.listener = listener;
  	this.context = listener.context;

  	this.gain = this.context.createGain();
  	this.gain.connect( listener.getInput() );

  	this.autoplay = false;

  	this.buffer = null;
  	this.detune = 0;
  	this.loop = false;
  	this.loopStart = 0;
  	this.loopEnd = 0;
  	this.offset = 0;
  	this.duration = undefined;
  	this.playbackRate = 1;
  	this.isPlaying = false;
  	this.hasPlaybackControl = true;
  	this.sourceType = 'empty';

  	this._startedAt = 0;
  	this._progress = 0;

  	this.filters = [];

  }

  Audio.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Audio,

  	getOutput: function () {

  		return this.gain;

  	},

  	setNodeSource: function ( audioNode ) {

  		this.hasPlaybackControl = false;
  		this.sourceType = 'audioNode';
  		this.source = audioNode;
  		this.connect();

  		return this;

  	},

  	setMediaElementSource: function ( mediaElement ) {

  		this.hasPlaybackControl = false;
  		this.sourceType = 'mediaNode';
  		this.source = this.context.createMediaElementSource( mediaElement );
  		this.connect();

  		return this;

  	},

  	setMediaStreamSource: function ( mediaStream ) {

  		this.hasPlaybackControl = false;
  		this.sourceType = 'mediaStreamNode';
  		this.source = this.context.createMediaStreamSource( mediaStream );
  		this.connect();

  		return this;

  	},

  	setBuffer: function ( audioBuffer ) {

  		this.buffer = audioBuffer;
  		this.sourceType = 'buffer';

  		if ( this.autoplay ) this.play();

  		return this;

  	},

  	play: function ( delay ) {

  		if ( delay === undefined ) delay = 0;

  		if ( this.isPlaying === true ) {

  			console.warn( 'THREE.Audio: Audio is already playing.' );
  			return;

  		}

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		this._startedAt = this.context.currentTime + delay;

  		const source = this.context.createBufferSource();
  		source.buffer = this.buffer;
  		source.loop = this.loop;
  		source.loopStart = this.loopStart;
  		source.loopEnd = this.loopEnd;
  		source.onended = this.onEnded.bind( this );
  		source.start( this._startedAt, this._progress + this.offset, this.duration );

  		this.isPlaying = true;

  		this.source = source;

  		this.setDetune( this.detune );
  		this.setPlaybackRate( this.playbackRate );

  		return this.connect();

  	},

  	pause: function () {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		if ( this.isPlaying === true ) {

  			// update current progress

  			this._progress += Math.max( this.context.currentTime - this._startedAt, 0 ) * this.playbackRate;

  			if ( this.loop === true ) {

  				// ensure _progress does not exceed duration with looped audios

  				this._progress = this._progress % ( this.duration || this.buffer.duration );

  			}

  			this.source.stop();
  			this.source.onended = null;

  			this.isPlaying = false;

  		}

  		return this;

  	},

  	stop: function () {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		this._progress = 0;

  		this.source.stop();
  		this.source.onended = null;
  		this.isPlaying = false;

  		return this;

  	},

  	connect: function () {

  		if ( this.filters.length > 0 ) {

  			this.source.connect( this.filters[ 0 ] );

  			for ( let i = 1, l = this.filters.length; i < l; i ++ ) {

  				this.filters[ i - 1 ].connect( this.filters[ i ] );

  			}

  			this.filters[ this.filters.length - 1 ].connect( this.getOutput() );

  		} else {

  			this.source.connect( this.getOutput() );

  		}

  		return this;

  	},

  	disconnect: function () {

  		if ( this.filters.length > 0 ) {

  			this.source.disconnect( this.filters[ 0 ] );

  			for ( let i = 1, l = this.filters.length; i < l; i ++ ) {

  				this.filters[ i - 1 ].disconnect( this.filters[ i ] );

  			}

  			this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() );

  		} else {

  			this.source.disconnect( this.getOutput() );

  		}

  		return this;

  	},

  	getFilters: function () {

  		return this.filters;

  	},

  	setFilters: function ( value ) {

  		if ( ! value ) value = [];

  		if ( this.isPlaying === true ) {

  			this.disconnect();
  			this.filters = value;
  			this.connect();

  		} else {

  			this.filters = value;

  		}

  		return this;

  	},

  	setDetune: function ( value ) {

  		this.detune = value;

  		if ( this.source.detune === undefined ) return; // only set detune when available

  		if ( this.isPlaying === true ) {

  			this.source.detune.setTargetAtTime( this.detune, this.context.currentTime, 0.01 );

  		}

  		return this;

  	},

  	getDetune: function () {

  		return this.detune;

  	},

  	getFilter: function () {

  		return this.getFilters()[ 0 ];

  	},

  	setFilter: function ( filter ) {

  		return this.setFilters( filter ? [ filter ] : [] );

  	},

  	setPlaybackRate: function ( value ) {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		this.playbackRate = value;

  		if ( this.isPlaying === true ) {

  			this.source.playbackRate.setTargetAtTime( this.playbackRate, this.context.currentTime, 0.01 );

  		}

  		return this;

  	},

  	getPlaybackRate: function () {

  		return this.playbackRate;

  	},

  	onEnded: function () {

  		this.isPlaying = false;

  	},

  	getLoop: function () {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return false;

  		}

  		return this.loop;

  	},

  	setLoop: function ( value ) {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		this.loop = value;

  		if ( this.isPlaying === true ) {

  			this.source.loop = this.loop;

  		}

  		return this;

  	},

  	setLoopStart: function ( value ) {

  		this.loopStart = value;

  		return this;

  	},

  	setLoopEnd: function ( value ) {

  		this.loopEnd = value;

  		return this;

  	},

  	getVolume: function () {

  		return this.gain.gain.value;

  	},

  	setVolume: function ( value ) {

  		this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  const _position$3 = new Vector3();
  const _quaternion$4 = new Quaternion();
  const _scale$2 = new Vector3();
  const _orientation$1 = new Vector3();

  function PositionalAudio( listener ) {

  	Audio.call( this, listener );

  	this.panner = this.context.createPanner();
  	this.panner.panningModel = 'HRTF';
  	this.panner.connect( this.gain );

  }

  PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), {

  	constructor: PositionalAudio,

  	getOutput: function () {

  		return this.panner;

  	},

  	getRefDistance: function () {

  		return this.panner.refDistance;

  	},

  	setRefDistance: function ( value ) {

  		this.panner.refDistance = value;

  		return this;

  	},

  	getRolloffFactor: function () {

  		return this.panner.rolloffFactor;

  	},

  	setRolloffFactor: function ( value ) {

  		this.panner.rolloffFactor = value;

  		return this;

  	},

  	getDistanceModel: function () {

  		return this.panner.distanceModel;

  	},

  	setDistanceModel: function ( value ) {

  		this.panner.distanceModel = value;

  		return this;

  	},

  	getMaxDistance: function () {

  		return this.panner.maxDistance;

  	},

  	setMaxDistance: function ( value ) {

  		this.panner.maxDistance = value;

  		return this;

  	},

  	setDirectionalCone: function ( coneInnerAngle, coneOuterAngle, coneOuterGain ) {

  		this.panner.coneInnerAngle = coneInnerAngle;
  		this.panner.coneOuterAngle = coneOuterAngle;
  		this.panner.coneOuterGain = coneOuterGain;

  		return this;

  	},

  	updateMatrixWorld: function ( force ) {

  		Object3D.prototype.updateMatrixWorld.call( this, force );

  		if ( this.hasPlaybackControl === true && this.isPlaying === false ) return;

  		this.matrixWorld.decompose( _position$3, _quaternion$4, _scale$2 );

  		_orientation$1.set( 0, 0, 1 ).applyQuaternion( _quaternion$4 );

  		const panner = this.panner;

  		if ( panner.positionX ) {

  			// code path for Chrome and Firefox (see #14393)

  			const endTime = this.context.currentTime + this.listener.timeDelta;

  			panner.positionX.linearRampToValueAtTime( _position$3.x, endTime );
  			panner.positionY.linearRampToValueAtTime( _position$3.y, endTime );
  			panner.positionZ.linearRampToValueAtTime( _position$3.z, endTime );
  			panner.orientationX.linearRampToValueAtTime( _orientation$1.x, endTime );
  			panner.orientationY.linearRampToValueAtTime( _orientation$1.y, endTime );
  			panner.orientationZ.linearRampToValueAtTime( _orientation$1.z, endTime );

  		} else {

  			panner.setPosition( _position$3.x, _position$3.y, _position$3.z );
  			panner.setOrientation( _orientation$1.x, _orientation$1.y, _orientation$1.z );

  		}

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function AudioAnalyser( audio, fftSize ) {

  	this.analyser = audio.context.createAnalyser();
  	this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048;

  	this.data = new Uint8Array( this.analyser.frequencyBinCount );

  	audio.getOutput().connect( this.analyser );

  }

  Object.assign( AudioAnalyser.prototype, {

  	getFrequencyData: function () {

  		this.analyser.getByteFrequencyData( this.data );

  		return this.data;

  	},

  	getAverageFrequency: function () {

  		let value = 0;
  		const data = this.getFrequencyData();

  		for ( let i = 0; i < data.length; i ++ ) {

  			value += data[ i ];

  		}

  		return value / data.length;

  	}

  } );

  /**
   *
   * Buffered scene graph property that allows weighted accumulation.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function PropertyMixer( binding, typeName, valueSize ) {

  	this.binding = binding;
  	this.valueSize = valueSize;

  	let mixFunction,
  		mixFunctionAdditive,
  		setIdentity;

  	// buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
  	//
  	// interpolators can use .buffer as their .result
  	// the data then goes to 'incoming'
  	//
  	// 'accu0' and 'accu1' are used frame-interleaved for
  	// the cumulative result and are compared to detect
  	// changes
  	//
  	// 'orig' stores the original state of the property
  	//
  	// 'add' is used for additive cumulative results
  	//
  	// 'work' is optional and is only present for quaternion types. It is used
  	// to store intermediate quaternion multiplication results

  	switch ( typeName ) {

  		case 'quaternion':
  			mixFunction = this._slerp;
  			mixFunctionAdditive = this._slerpAdditive;
  			setIdentity = this._setAdditiveIdentityQuaternion;

  			this.buffer = new Float64Array( valueSize * 6 );
  			this._workIndex = 5;
  			break;

  		case 'string':
  		case 'bool':
  			mixFunction = this._select;

  			// Use the regular mix function and for additive on these types,
  			// additive is not relevant for non-numeric types
  			mixFunctionAdditive = this._select;

  			setIdentity = this._setAdditiveIdentityOther;

  			this.buffer = new Array( valueSize * 5 );
  			break;

  		default:
  			mixFunction = this._lerp;
  			mixFunctionAdditive = this._lerpAdditive;
  			setIdentity = this._setAdditiveIdentityNumeric;

  			this.buffer = new Float64Array( valueSize * 5 );

  	}

  	this._mixBufferRegion = mixFunction;
  	this._mixBufferRegionAdditive = mixFunctionAdditive;
  	this._setIdentity = setIdentity;
  	this._origIndex = 3;
  	this._addIndex = 4;

  	this.cumulativeWeight = 0;
  	this.cumulativeWeightAdditive = 0;

  	this.useCount = 0;
  	this.referenceCount = 0;

  }

  Object.assign( PropertyMixer.prototype, {

  	// accumulate data in the 'incoming' region into 'accu<i>'
  	accumulate: function ( accuIndex, weight ) {

  		// note: happily accumulating nothing when weight = 0, the caller knows
  		// the weight and shouldn't have made the call in the first place

  		const buffer = this.buffer,
  			stride = this.valueSize,
  			offset = accuIndex * stride + stride;

  		let currentWeight = this.cumulativeWeight;

  		if ( currentWeight === 0 ) {

  			// accuN := incoming * weight

  			for ( let i = 0; i !== stride; ++ i ) {

  				buffer[ offset + i ] = buffer[ i ];

  			}

  			currentWeight = weight;

  		} else {

  			// accuN := accuN + incoming * weight

  			currentWeight += weight;
  			const mix = weight / currentWeight;
  			this._mixBufferRegion( buffer, offset, 0, mix, stride );

  		}

  		this.cumulativeWeight = currentWeight;

  	},

  	// accumulate data in the 'incoming' region into 'add'
  	accumulateAdditive: function ( weight ) {

  		const buffer = this.buffer,
  			stride = this.valueSize,
  			offset = stride * this._addIndex;

  		if ( this.cumulativeWeightAdditive === 0 ) {

  			// add = identity

  			this._setIdentity();

  		}

  		// add := add + incoming * weight

  		this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride );
  		this.cumulativeWeightAdditive += weight;

  	},

  	// apply the state of 'accu<i>' to the binding when accus differ
  	apply: function ( accuIndex ) {

  		const stride = this.valueSize,
  			buffer = this.buffer,
  			offset = accuIndex * stride + stride,

  			weight = this.cumulativeWeight,
  			weightAdditive = this.cumulativeWeightAdditive,

  			binding = this.binding;

  		this.cumulativeWeight = 0;
  		this.cumulativeWeightAdditive = 0;

  		if ( weight < 1 ) {

  			// accuN := accuN + original * ( 1 - cumulativeWeight )

  			const originalValueOffset = stride * this._origIndex;

  			this._mixBufferRegion(
  				buffer, offset, originalValueOffset, 1 - weight, stride );

  		}

  		if ( weightAdditive > 0 ) {

  			// accuN := accuN + additive accuN

  			this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride );

  		}

  		for ( let i = stride, e = stride + stride; i !== e; ++ i ) {

  			if ( buffer[ i ] !== buffer[ i + stride ] ) {

  				// value has changed -> update scene graph

  				binding.setValue( buffer, offset );
  				break;

  			}

  		}

  	},

  	// remember the state of the bound property and copy it to both accus
  	saveOriginalState: function () {

  		const binding = this.binding;

  		const buffer = this.buffer,
  			stride = this.valueSize,

  			originalValueOffset = stride * this._origIndex;

  		binding.getValue( buffer, originalValueOffset );

  		// accu[0..1] := orig -- initially detect changes against the original
  		for ( let i = stride, e = originalValueOffset; i !== e; ++ i ) {

  			buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];

  		}

  		// Add to identity for additive
  		this._setIdentity();

  		this.cumulativeWeight = 0;
  		this.cumulativeWeightAdditive = 0;

  	},

  	// apply the state previously taken via 'saveOriginalState' to the binding
  	restoreOriginalState: function () {

  		const originalValueOffset = this.valueSize * 3;
  		this.binding.setValue( this.buffer, originalValueOffset );

  	},

  	_setAdditiveIdentityNumeric: function () {

  		const startIndex = this._addIndex * this.valueSize;
  		const endIndex = startIndex + this.valueSize;

  		for ( let i = startIndex; i < endIndex; i ++ ) {

  			this.buffer[ i ] = 0;

  		}

  	},

  	_setAdditiveIdentityQuaternion: function () {

  		this._setAdditiveIdentityNumeric();
  		this.buffer[ this._addIndex * 4 + 3 ] = 1;

  	},

  	_setAdditiveIdentityOther: function () {

  		const startIndex = this._origIndex * this.valueSize;
  		const targetIndex = this._addIndex * this.valueSize;

  		for ( let i = 0; i < this.valueSize; i ++ ) {

  			this.buffer[ targetIndex + i ] = this.buffer[ startIndex + i ];

  		}

  	},


  	// mix functions

  	_select: function ( buffer, dstOffset, srcOffset, t, stride ) {

  		if ( t >= 0.5 ) {

  			for ( let i = 0; i !== stride; ++ i ) {

  				buffer[ dstOffset + i ] = buffer[ srcOffset + i ];

  			}

  		}

  	},

  	_slerp: function ( buffer, dstOffset, srcOffset, t ) {

  		Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t );

  	},

  	_slerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) {

  		const workOffset = this._workIndex * stride;

  		// Store result in intermediate buffer offset
  		Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset );

  		// Slerp to the intermediate result
  		Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t );

  	},

  	_lerp: function ( buffer, dstOffset, srcOffset, t, stride ) {

  		const s = 1 - t;

  		for ( let i = 0; i !== stride; ++ i ) {

  			const j = dstOffset + i;

  			buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;

  		}

  	},

  	_lerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) {

  		for ( let i = 0; i !== stride; ++ i ) {

  			const j = dstOffset + i;

  			buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t;

  		}

  	}

  } );

  /**
   *
   * A reference to a real property in the scene graph.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  // Characters [].:/ are reserved for track binding syntax.
  const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
  const _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' );

  // Attempts to allow node names from any language. ES5's `\w` regexp matches
  // only latin characters, and the unicode \p{L} is not yet supported. So
  // instead, we exclude reserved characters and match everything else.
  const _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
  const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']';

  // Parent directories, delimited by '/' or ':'. Currently unused, but must
  // be matched to parse the rest of the track name.
  const _directoryRe = /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar );

  // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
  const _nodeRe = /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot );

  // Object on target node, and accessor. May not contain reserved
  // characters. Accessor may contain any character except closing bracket.
  const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar );

  // Property and accessor. May not contain reserved characters. Accessor may
  // contain any non-bracket characters.
  const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar );

  const _trackRe = new RegExp( ''
  	+ '^'
  	+ _directoryRe
  	+ _nodeRe
  	+ _objectRe
  	+ _propertyRe
  	+ '$'
  );

  const _supportedObjectNames = [ 'material', 'materials', 'bones' ];

  function Composite( targetGroup, path, optionalParsedPath ) {

  	const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path );

  	this._targetGroup = targetGroup;
  	this._bindings = targetGroup.subscribe_( path, parsedPath );

  }

  Object.assign( Composite.prototype, {

  	getValue: function ( array, offset ) {

  		this.bind(); // bind all binding

  		const firstValidIndex = this._targetGroup.nCachedObjects_,
  			binding = this._bindings[ firstValidIndex ];

  		// and only call .getValue on the first
  		if ( binding !== undefined ) binding.getValue( array, offset );

  	},

  	setValue: function ( array, offset ) {

  		const bindings = this._bindings;

  		for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {

  			bindings[ i ].setValue( array, offset );

  		}

  	},

  	bind: function () {

  		const bindings = this._bindings;

  		for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {

  			bindings[ i ].bind();

  		}

  	},

  	unbind: function () {

  		const bindings = this._bindings;

  		for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {

  			bindings[ i ].unbind();

  		}

  	}

  } );


  function PropertyBinding( rootNode, path, parsedPath ) {

  	this.path = path;
  	this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path );

  	this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode;

  	this.rootNode = rootNode;

  }

  Object.assign( PropertyBinding, {

  	Composite: Composite,

  	create: function ( root, path, parsedPath ) {

  		if ( ! ( root && root.isAnimationObjectGroup ) ) {

  			return new PropertyBinding( root, path, parsedPath );

  		} else {

  			return new PropertyBinding.Composite( root, path, parsedPath );

  		}

  	},

  	/**
  	 * Replaces spaces with underscores and removes unsupported characters from
  	 * node names, to ensure compatibility with parseTrackName().
  	 *
  	 * @param {string} name Node name to be sanitized.
  	 * @return {string}
  	 */
  	sanitizeNodeName: function ( name ) {

  		return name.replace( /\s/g, '_' ).replace( _reservedRe, '' );

  	},

  	parseTrackName: function ( trackName ) {

  		const matches = _trackRe.exec( trackName );

  		if ( ! matches ) {

  			throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName );

  		}

  		const results = {
  			// directoryName: matches[ 1 ], // (tschw) currently unused
  			nodeName: matches[ 2 ],
  			objectName: matches[ 3 ],
  			objectIndex: matches[ 4 ],
  			propertyName: matches[ 5 ], // required
  			propertyIndex: matches[ 6 ]
  		};

  		const lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' );

  		if ( lastDot !== undefined && lastDot !== - 1 ) {

  			const objectName = results.nodeName.substring( lastDot + 1 );

  			// Object names must be checked against an allowlist. Otherwise, there
  			// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
  			// 'bar' could be the objectName, or part of a nodeName (which can
  			// include '.' characters).
  			if ( _supportedObjectNames.indexOf( objectName ) !== - 1 ) {

  				results.nodeName = results.nodeName.substring( 0, lastDot );
  				results.objectName = objectName;

  			}

  		}

  		if ( results.propertyName === null || results.propertyName.length === 0 ) {

  			throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName );

  		}

  		return results;

  	},

  	findNode: function ( root, nodeName ) {

  		if ( ! nodeName || nodeName === "" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) {

  			return root;

  		}

  		// search into skeleton bones.
  		if ( root.skeleton ) {

  			const bone = root.skeleton.getBoneByName( nodeName );

  			if ( bone !== undefined ) {

  				return bone;

  			}

  		}

  		// search into node subtree.
  		if ( root.children ) {

  			const searchNodeSubtree = function ( children ) {

  				for ( let i = 0; i < children.length; i ++ ) {

  					const childNode = children[ i ];

  					if ( childNode.name === nodeName || childNode.uuid === nodeName ) {

  						return childNode;

  					}

  					const result = searchNodeSubtree( childNode.children );

  					if ( result ) return result;

  				}

  				return null;

  			};

  			const subTreeNode = searchNodeSubtree( root.children );

  			if ( subTreeNode ) {

  				return subTreeNode;

  			}

  		}

  		return null;

  	}

  } );

  Object.assign( PropertyBinding.prototype, { // prototype, continued

  	// these are used to "bind" a nonexistent property
  	_getValue_unavailable: function () {},
  	_setValue_unavailable: function () {},

  	BindingType: {
  		Direct: 0,
  		EntireArray: 1,
  		ArrayElement: 2,
  		HasFromToArray: 3
  	},

  	Versioning: {
  		None: 0,
  		NeedsUpdate: 1,
  		MatrixWorldNeedsUpdate: 2
  	},

  	GetterByBindingType: [

  		function getValue_direct( buffer, offset ) {

  			buffer[ offset ] = this.node[ this.propertyName ];

  		},

  		function getValue_array( buffer, offset ) {

  			const source = this.resolvedProperty;

  			for ( let i = 0, n = source.length; i !== n; ++ i ) {

  				buffer[ offset ++ ] = source[ i ];

  			}

  		},

  		function getValue_arrayElement( buffer, offset ) {

  			buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];

  		},

  		function getValue_toArray( buffer, offset ) {

  			this.resolvedProperty.toArray( buffer, offset );

  		}

  	],

  	SetterByBindingTypeAndVersioning: [

  		[
  			// Direct

  			function setValue_direct( buffer, offset ) {

  				this.targetObject[ this.propertyName ] = buffer[ offset ];

  			},

  			function setValue_direct_setNeedsUpdate( buffer, offset ) {

  				this.targetObject[ this.propertyName ] = buffer[ offset ];
  				this.targetObject.needsUpdate = true;

  			},

  			function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {

  				this.targetObject[ this.propertyName ] = buffer[ offset ];
  				this.targetObject.matrixWorldNeedsUpdate = true;

  			}

  		], [

  			// EntireArray

  			function setValue_array( buffer, offset ) {

  				const dest = this.resolvedProperty;

  				for ( let i = 0, n = dest.length; i !== n; ++ i ) {

  					dest[ i ] = buffer[ offset ++ ];

  				}

  			},

  			function setValue_array_setNeedsUpdate( buffer, offset ) {

  				const dest = this.resolvedProperty;

  				for ( let i = 0, n = dest.length; i !== n; ++ i ) {

  					dest[ i ] = buffer[ offset ++ ];

  				}

  				this.targetObject.needsUpdate = true;

  			},

  			function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {

  				const dest = this.resolvedProperty;

  				for ( let i = 0, n = dest.length; i !== n; ++ i ) {

  					dest[ i ] = buffer[ offset ++ ];

  				}

  				this.targetObject.matrixWorldNeedsUpdate = true;

  			}

  		], [

  			// ArrayElement

  			function setValue_arrayElement( buffer, offset ) {

  				this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];

  			},

  			function setValue_arrayElement_setNeedsUpdate( buffer, offset ) {

  				this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
  				this.targetObject.needsUpdate = true;

  			},

  			function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {

  				this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
  				this.targetObject.matrixWorldNeedsUpdate = true;

  			}

  		], [

  			// HasToFromArray

  			function setValue_fromArray( buffer, offset ) {

  				this.resolvedProperty.fromArray( buffer, offset );

  			},

  			function setValue_fromArray_setNeedsUpdate( buffer, offset ) {

  				this.resolvedProperty.fromArray( buffer, offset );
  				this.targetObject.needsUpdate = true;

  			},

  			function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {

  				this.resolvedProperty.fromArray( buffer, offset );
  				this.targetObject.matrixWorldNeedsUpdate = true;

  			}

  		]

  	],

  	getValue: function getValue_unbound( targetArray, offset ) {

  		this.bind();
  		this.getValue( targetArray, offset );

  		// Note: This class uses a State pattern on a per-method basis:
  		// 'bind' sets 'this.getValue' / 'setValue' and shadows the
  		// prototype version of these methods with one that represents
  		// the bound state. When the property is not found, the methods
  		// become no-ops.

  	},

  	setValue: function getValue_unbound( sourceArray, offset ) {

  		this.bind();
  		this.setValue( sourceArray, offset );

  	},

  	// create getter / setter pair for a property in the scene graph
  	bind: function () {

  		let targetObject = this.node,
  			parsedPath = this.parsedPath,

  			objectName = parsedPath.objectName,
  			propertyName = parsedPath.propertyName,
  			propertyIndex = parsedPath.propertyIndex;

  		if ( ! targetObject ) {

  			targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode;

  			this.node = targetObject;

  		}

  		// set fail state so we can just 'return' on error
  		this.getValue = this._getValue_unavailable;
  		this.setValue = this._setValue_unavailable;

  		// ensure there is a value node
  		if ( ! targetObject ) {

  			console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' );
  			return;

  		}

  		if ( objectName ) {

  			let objectIndex = parsedPath.objectIndex;

  			// special cases were we need to reach deeper into the hierarchy to get the face materials....
  			switch ( objectName ) {

  				case 'materials':

  					if ( ! targetObject.material ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this );
  						return;

  					}

  					if ( ! targetObject.material.materials ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this );
  						return;

  					}

  					targetObject = targetObject.material.materials;

  					break;

  				case 'bones':

  					if ( ! targetObject.skeleton ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this );
  						return;

  					}

  					// potential future optimization: skip this if propertyIndex is already an integer
  					// and convert the integer string to a true integer.

  					targetObject = targetObject.skeleton.bones;

  					// support resolving morphTarget names into indices.
  					for ( let i = 0; i < targetObject.length; i ++ ) {

  						if ( targetObject[ i ].name === objectIndex ) {

  							objectIndex = i;
  							break;

  						}

  					}

  					break;

  				default:

  					if ( targetObject[ objectName ] === undefined ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this );
  						return;

  					}

  					targetObject = targetObject[ objectName ];

  			}


  			if ( objectIndex !== undefined ) {

  				if ( targetObject[ objectIndex ] === undefined ) {

  					console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject );
  					return;

  				}

  				targetObject = targetObject[ objectIndex ];

  			}

  		}

  		// resolve property
  		const nodeProperty = targetObject[ propertyName ];

  		if ( nodeProperty === undefined ) {

  			const nodeName = parsedPath.nodeName;

  			console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName +
  				'.' + propertyName + ' but it wasn\'t found.', targetObject );
  			return;

  		}

  		// determine versioning scheme
  		let versioning = this.Versioning.None;

  		this.targetObject = targetObject;

  		if ( targetObject.needsUpdate !== undefined ) { // material

  			versioning = this.Versioning.NeedsUpdate;

  		} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform

  			versioning = this.Versioning.MatrixWorldNeedsUpdate;

  		}

  		// determine how the property gets bound
  		let bindingType = this.BindingType.Direct;

  		if ( propertyIndex !== undefined ) {

  			// access a sub element of the property array (only primitives are supported right now)

  			if ( propertyName === "morphTargetInfluences" ) {

  				// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.

  				// support resolving morphTarget names into indices.
  				if ( ! targetObject.geometry ) {

  					console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this );
  					return;

  				}

  				if ( targetObject.geometry.isBufferGeometry ) {

  					if ( ! targetObject.geometry.morphAttributes ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this );
  						return;

  					}

  					if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) {

  						propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ];

  					}


  				} else {

  					console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this );
  					return;

  				}

  			}

  			bindingType = this.BindingType.ArrayElement;

  			this.resolvedProperty = nodeProperty;
  			this.propertyIndex = propertyIndex;

  		} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {

  			// must use copy for Object3D.Euler/Quaternion

  			bindingType = this.BindingType.HasFromToArray;

  			this.resolvedProperty = nodeProperty;

  		} else if ( Array.isArray( nodeProperty ) ) {

  			bindingType = this.BindingType.EntireArray;

  			this.resolvedProperty = nodeProperty;

  		} else {

  			this.propertyName = propertyName;

  		}

  		// select getter / setter
  		this.getValue = this.GetterByBindingType[ bindingType ];
  		this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];

  	},

  	unbind: function () {

  		this.node = null;

  		// back to the prototype version of getValue / setValue
  		// note: avoiding to mutate the shape of 'this' via 'delete'
  		this.getValue = this._getValue_unbound;
  		this.setValue = this._setValue_unbound;

  	}

  } );

  // DECLARE ALIAS AFTER assign prototype
  Object.assign( PropertyBinding.prototype, {

  	// initial state of these methods that calls 'bind'
  	_getValue_unbound: PropertyBinding.prototype.getValue,
  	_setValue_unbound: PropertyBinding.prototype.setValue,

  } );

  /**
   *
   * A group of objects that receives a shared animation state.
   *
   * Usage:
   *
   *  - Add objects you would otherwise pass as 'root' to the
   *    constructor or the .clipAction method of AnimationMixer.
   *
   *  - Instead pass this object as 'root'.
   *
   *  - You can also add and remove objects later when the mixer
   *    is running.
   *
   * Note:
   *
   *    Objects of this class appear as one object to the mixer,
   *    so cache control of the individual objects must be done
   *    on the group.
   *
   * Limitation:
   *
   *  - The animated properties must be compatible among the
   *    all objects in the group.
   *
   *  - A single property can either be controlled through a
   *    target group or directly, but not both.
   *
   * @author tschw
   */

  function AnimationObjectGroup() {

  	this.uuid = MathUtils.generateUUID();

  	// cached objects followed by the active ones
  	this._objects = Array.prototype.slice.call( arguments );

  	this.nCachedObjects_ = 0; // threshold
  	// note: read by PropertyBinding.Composite

  	const indices = {};
  	this._indicesByUUID = indices; // for bookkeeping

  	for ( let i = 0, n = arguments.length; i !== n; ++ i ) {

  		indices[ arguments[ i ].uuid ] = i;

  	}

  	this._paths = []; // inside: string
  	this._parsedPaths = []; // inside: { we don't care, here }
  	this._bindings = []; // inside: Array< PropertyBinding >
  	this._bindingsIndicesByPath = {}; // inside: indices in these arrays

  	const scope = this;

  	this.stats = {

  		objects: {
  			get total() {

  				return scope._objects.length;

  			},
  			get inUse() {

  				return this.total - scope.nCachedObjects_;

  			}
  		},
  		get bindingsPerObject() {

  			return scope._bindings.length;

  		}

  	};

  }

  Object.assign( AnimationObjectGroup.prototype, {

  	isAnimationObjectGroup: true,

  	add: function () {

  		const objects = this._objects,
  			indicesByUUID = this._indicesByUUID,
  			paths = this._paths,
  			parsedPaths = this._parsedPaths,
  			bindings = this._bindings,
  			nBindings = bindings.length;

  		let knownObject = undefined,
  			nObjects = objects.length,
  			nCachedObjects = this.nCachedObjects_;

  		for ( let i = 0, n = arguments.length; i !== n; ++ i ) {

  			const object = arguments[ i ],
  				uuid = object.uuid;
  			let index = indicesByUUID[ uuid ];

  			if ( index === undefined ) {

  				// unknown object -> add it to the ACTIVE region

  				index = nObjects ++;
  				indicesByUUID[ uuid ] = index;
  				objects.push( object );

  				// accounting is done, now do the same for all bindings

  				for ( let j = 0, m = nBindings; j !== m; ++ j ) {

  					bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) );

  				}

  			} else if ( index < nCachedObjects ) {

  				knownObject = objects[ index ];

  				// move existing object to the ACTIVE region

  				const firstActiveIndex = -- nCachedObjects,
  					lastCachedObject = objects[ firstActiveIndex ];

  				indicesByUUID[ lastCachedObject.uuid ] = index;
  				objects[ index ] = lastCachedObject;

  				indicesByUUID[ uuid ] = firstActiveIndex;
  				objects[ firstActiveIndex ] = object;

  				// accounting is done, now do the same for all bindings

  				for ( let j = 0, m = nBindings; j !== m; ++ j ) {

  					const bindingsForPath = bindings[ j ],
  						lastCached = bindingsForPath[ firstActiveIndex ];

  					let binding = bindingsForPath[ index ];

  					bindingsForPath[ index ] = lastCached;

  					if ( binding === undefined ) {

  						// since we do not bother to create new bindings
  						// for objects that are cached, the binding may
  						// or may not exist

  						binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] );

  					}

  					bindingsForPath[ firstActiveIndex ] = binding;

  				}

  			} else if ( objects[ index ] !== knownObject ) {

  				console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' +
  					'detected. Clean the caches or recreate your infrastructure when reloading scenes.' );

  			} // else the object is already where we want it to be

  		} // for arguments

  		this.nCachedObjects_ = nCachedObjects;

  	},

  	remove: function () {

  		const objects = this._objects,
  			indicesByUUID = this._indicesByUUID,
  			bindings = this._bindings,
  			nBindings = bindings.length;

  		let nCachedObjects = this.nCachedObjects_;

  		for ( let i = 0, n = arguments.length; i !== n; ++ i ) {

  			const object = arguments[ i ],
  				uuid = object.uuid,
  				index = indicesByUUID[ uuid ];

  			if ( index !== undefined && index >= nCachedObjects ) {

  				// move existing object into the CACHED region

  				const lastCachedIndex = nCachedObjects ++,
  					firstActiveObject = objects[ lastCachedIndex ];

  				indicesByUUID[ firstActiveObject.uuid ] = index;
  				objects[ index ] = firstActiveObject;

  				indicesByUUID[ uuid ] = lastCachedIndex;
  				objects[ lastCachedIndex ] = object;

  				// accounting is done, now do the same for all bindings

  				for ( let j = 0, m = nBindings; j !== m; ++ j ) {

  					const bindingsForPath = bindings[ j ],
  						firstActive = bindingsForPath[ lastCachedIndex ],
  						binding = bindingsForPath[ index ];

  					bindingsForPath[ index ] = firstActive;
  					bindingsForPath[ lastCachedIndex ] = binding;

  				}

  			}

  		} // for arguments

  		this.nCachedObjects_ = nCachedObjects;

  	},

  	// remove & forget
  	uncache: function () {

  		const objects = this._objects,
  			indicesByUUID = this._indicesByUUID,
  			bindings = this._bindings,
  			nBindings = bindings.length;

  		let nCachedObjects = this.nCachedObjects_,
  			nObjects = objects.length;

  		for ( let i = 0, n = arguments.length; i !== n; ++ i ) {

  			const object = arguments[ i ],
  				uuid = object.uuid,
  				index = indicesByUUID[ uuid ];

  			if ( index !== undefined ) {

  				delete indicesByUUID[ uuid ];

  				if ( index < nCachedObjects ) {

  					// object is cached, shrink the CACHED region

  					const firstActiveIndex = -- nCachedObjects,
  						lastCachedObject = objects[ firstActiveIndex ],
  						lastIndex = -- nObjects,
  						lastObject = objects[ lastIndex ];

  					// last cached object takes this object's place
  					indicesByUUID[ lastCachedObject.uuid ] = index;
  					objects[ index ] = lastCachedObject;

  					// last object goes to the activated slot and pop
  					indicesByUUID[ lastObject.uuid ] = firstActiveIndex;
  					objects[ firstActiveIndex ] = lastObject;
  					objects.pop();

  					// accounting is done, now do the same for all bindings

  					for ( let j = 0, m = nBindings; j !== m; ++ j ) {

  						const bindingsForPath = bindings[ j ],
  							lastCached = bindingsForPath[ firstActiveIndex ],
  							last = bindingsForPath[ lastIndex ];

  						bindingsForPath[ index ] = lastCached;
  						bindingsForPath[ firstActiveIndex ] = last;
  						bindingsForPath.pop();

  					}

  				} else {

  					// object is active, just swap with the last and pop

  					const lastIndex = -- nObjects,
  						lastObject = objects[ lastIndex ];

  					indicesByUUID[ lastObject.uuid ] = index;
  					objects[ index ] = lastObject;
  					objects.pop();

  					// accounting is done, now do the same for all bindings

  					for ( let j = 0, m = nBindings; j !== m; ++ j ) {

  						const bindingsForPath = bindings[ j ];

  						bindingsForPath[ index ] = bindingsForPath[ lastIndex ];
  						bindingsForPath.pop();

  					}

  				} // cached or active

  			} // if object is known

  		} // for arguments

  		this.nCachedObjects_ = nCachedObjects;

  	},

  	// Internal interface used by befriended PropertyBinding.Composite:

  	subscribe_: function ( path, parsedPath ) {

  		// returns an array of bindings for the given path that is changed
  		// according to the contained objects in the group

  		let indicesByPath = this._bindingsIndicesByPath,
  			index = indicesByPath[ path ],
  			bindings = this._bindings;

  		if ( index !== undefined ) return bindings[ index ];

  		const paths = this._paths,
  			parsedPaths = this._parsedPaths,
  			objects = this._objects,
  			nObjects = objects.length,
  			nCachedObjects = this.nCachedObjects_,
  			bindingsForPath = new Array( nObjects );

  		index = bindings.length;

  		indicesByPath[ path ] = index;

  		paths.push( path );
  		parsedPaths.push( parsedPath );
  		bindings.push( bindingsForPath );

  		for ( let i = nCachedObjects, n = objects.length; i !== n; ++ i ) {

  			const object = objects[ i ];
  			bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath );

  		}

  		return bindingsForPath;

  	},

  	unsubscribe_: function ( path ) {

  		// tells the group to forget about a property path and no longer
  		// update the array previously obtained with 'subscribe_'

  		const indicesByPath = this._bindingsIndicesByPath,
  			index = indicesByPath[ path ];

  		if ( index !== undefined ) {

  			const paths = this._paths,
  				parsedPaths = this._parsedPaths,
  				bindings = this._bindings,
  				lastBindingsIndex = bindings.length - 1,
  				lastBindings = bindings[ lastBindingsIndex ],
  				lastBindingsPath = path[ lastBindingsIndex ];

  			indicesByPath[ lastBindingsPath ] = index;

  			bindings[ index ] = lastBindings;
  			bindings.pop();

  			parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ];
  			parsedPaths.pop();

  			paths[ index ] = paths[ lastBindingsIndex ];
  			paths.pop();

  		}

  	}

  } );

  /**
   *
   * Action provided by AnimationMixer for scheduling clip playback on specific
   * objects.
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   *
   */

  function AnimationAction( mixer, clip, localRoot, blendMode ) {

  	this._mixer = mixer;
  	this._clip = clip;
  	this._localRoot = localRoot || null;
  	this.blendMode = blendMode || clip.blendMode;

  	const tracks = clip.tracks,
  		nTracks = tracks.length,
  		interpolants = new Array( nTracks );

  	const interpolantSettings = {
  		endingStart: ZeroCurvatureEnding,
  		endingEnd: ZeroCurvatureEnding
  	};

  	for ( let i = 0; i !== nTracks; ++ i ) {

  		const interpolant = tracks[ i ].createInterpolant( null );
  		interpolants[ i ] = interpolant;
  		interpolant.settings = interpolantSettings;

  	}

  	this._interpolantSettings = interpolantSettings;

  	this._interpolants = interpolants; // bound by the mixer

  	// inside: PropertyMixer (managed by the mixer)
  	this._propertyBindings = new Array( nTracks );

  	this._cacheIndex = null; // for the memory manager
  	this._byClipCacheIndex = null; // for the memory manager

  	this._timeScaleInterpolant = null;
  	this._weightInterpolant = null;

  	this.loop = LoopRepeat;
  	this._loopCount = - 1;

  	// global mixer time when the action is to be started
  	// it's set back to 'null' upon start of the action
  	this._startTime = null;

  	// scaled local time of the action
  	// gets clamped or wrapped to 0..clip.duration according to loop
  	this.time = 0;

  	this.timeScale = 1;
  	this._effectiveTimeScale = 1;

  	this.weight = 1;
  	this._effectiveWeight = 1;

  	this.repetitions = Infinity; // no. of repetitions when looping

  	this.paused = false; // true -> zero effective time scale
  	this.enabled = true; // false -> zero effective weight

  	this.clampWhenFinished = false;// keep feeding the last frame?

  	this.zeroSlopeAtStart = true;// for smooth interpolation w/o separate
  	this.zeroSlopeAtEnd = true;// clips for start, loop and end

  }

  Object.assign( AnimationAction.prototype, {

  	// State & Scheduling

  	play: function () {

  		this._mixer._activateAction( this );

  		return this;

  	},

  	stop: function () {

  		this._mixer._deactivateAction( this );

  		return this.reset();

  	},

  	reset: function () {

  		this.paused = false;
  		this.enabled = true;

  		this.time = 0; // restart clip
  		this._loopCount = - 1;// forget previous loops
  		this._startTime = null;// forget scheduling

  		return this.stopFading().stopWarping();

  	},

  	isRunning: function () {

  		return this.enabled && ! this.paused && this.timeScale !== 0 &&
  			this._startTime === null && this._mixer._isActiveAction( this );

  	},

  	// return true when play has been called
  	isScheduled: function () {

  		return this._mixer._isActiveAction( this );

  	},

  	startAt: function ( time ) {

  		this._startTime = time;

  		return this;

  	},

  	setLoop: function ( mode, repetitions ) {

  		this.loop = mode;
  		this.repetitions = repetitions;

  		return this;

  	},

  	// Weight

  	// set the weight stopping any scheduled fading
  	// although .enabled = false yields an effective weight of zero, this
  	// method does *not* change .enabled, because it would be confusing
  	setEffectiveWeight: function ( weight ) {

  		this.weight = weight;

  		// note: same logic as when updated at runtime
  		this._effectiveWeight = this.enabled ? weight : 0;

  		return this.stopFading();

  	},

  	// return the weight considering fading and .enabled
  	getEffectiveWeight: function () {

  		return this._effectiveWeight;

  	},

  	fadeIn: function ( duration ) {

  		return this._scheduleFading( duration, 0, 1 );

  	},

  	fadeOut: function ( duration ) {

  		return this._scheduleFading( duration, 1, 0 );

  	},

  	crossFadeFrom: function ( fadeOutAction, duration, warp ) {

  		fadeOutAction.fadeOut( duration );
  		this.fadeIn( duration );

  		if ( warp ) {

  			const fadeInDuration = this._clip.duration,
  				fadeOutDuration = fadeOutAction._clip.duration,

  				startEndRatio = fadeOutDuration / fadeInDuration,
  				endStartRatio = fadeInDuration / fadeOutDuration;

  			fadeOutAction.warp( 1.0, startEndRatio, duration );
  			this.warp( endStartRatio, 1.0, duration );

  		}

  		return this;

  	},

  	crossFadeTo: function ( fadeInAction, duration, warp ) {

  		return fadeInAction.crossFadeFrom( this, duration, warp );

  	},

  	stopFading: function () {

  		let weightInterpolant = this._weightInterpolant;

  		if ( weightInterpolant !== null ) {

  			this._weightInterpolant = null;
  			this._mixer._takeBackControlInterpolant( weightInterpolant );

  		}

  		return this;

  	},

  	// Time Scale Control

  	// set the time scale stopping any scheduled warping
  	// although .paused = true yields an effective time scale of zero, this
  	// method does *not* change .paused, because it would be confusing
  	setEffectiveTimeScale: function ( timeScale ) {

  		this.timeScale = timeScale;
  		this._effectiveTimeScale = this.paused ? 0 : timeScale;

  		return this.stopWarping();

  	},

  	// return the time scale considering warping and .paused
  	getEffectiveTimeScale: function () {

  		return this._effectiveTimeScale;

  	},

  	setDuration: function ( duration ) {

  		this.timeScale = this._clip.duration / duration;

  		return this.stopWarping();

  	},

  	syncWith: function ( action ) {

  		this.time = action.time;
  		this.timeScale = action.timeScale;

  		return this.stopWarping();

  	},

  	halt: function ( duration ) {

  		return this.warp( this._effectiveTimeScale, 0, duration );

  	},

  	warp: function ( startTimeScale, endTimeScale, duration ) {

  		const mixer = this._mixer,
  			now = mixer.time,
  			timeScale = this.timeScale;

  		let interpolant = this._timeScaleInterpolant;

  		if ( interpolant === null ) {

  			interpolant = mixer._lendControlInterpolant();
  			this._timeScaleInterpolant = interpolant;

  		}

  		const times = interpolant.parameterPositions,
  			values = interpolant.sampleValues;

  		times[ 0 ] = now;
  		times[ 1 ] = now + duration;

  		values[ 0 ] = startTimeScale / timeScale;
  		values[ 1 ] = endTimeScale / timeScale;

  		return this;

  	},

  	stopWarping: function () {

  		let timeScaleInterpolant = this._timeScaleInterpolant;

  		if ( timeScaleInterpolant !== null ) {

  			this._timeScaleInterpolant = null;
  			this._mixer._takeBackControlInterpolant( timeScaleInterpolant );

  		}

  		return this;

  	},

  	// Object Accessors

  	getMixer: function () {

  		return this._mixer;

  	},

  	getClip: function () {

  		return this._clip;

  	},

  	getRoot: function () {

  		return this._localRoot || this._mixer._root;

  	},

  	// Interna

  	_update: function ( time, deltaTime, timeDirection, accuIndex ) {

  		// called by the mixer

  		if ( ! this.enabled ) {

  			// call ._updateWeight() to update ._effectiveWeight

  			this._updateWeight( time );
  			return;

  		}

  		const startTime = this._startTime;

  		if ( startTime !== null ) {

  			// check for scheduled start of action

  			const timeRunning = ( time - startTime ) * timeDirection;
  			if ( timeRunning < 0 || timeDirection === 0 ) {

  				return; // yet to come / don't decide when delta = 0

  			}

  			// start

  			this._startTime = null; // unschedule
  			deltaTime = timeDirection * timeRunning;

  		}

  		// apply time scale and advance time

  		deltaTime *= this._updateTimeScale( time );
  		const clipTime = this._updateTime( deltaTime );

  		// note: _updateTime may disable the action resulting in
  		// an effective weight of 0

  		const weight = this._updateWeight( time );

  		if ( weight > 0 ) {

  			const interpolants = this._interpolants;
  			const propertyMixers = this._propertyBindings;

  			switch ( this.blendMode ) {

  				case AdditiveAnimationBlendMode:

  					for ( let j = 0, m = interpolants.length; j !== m; ++ j ) {

  						interpolants[ j ].evaluate( clipTime );
  						propertyMixers[ j ].accumulateAdditive( weight );

  					}

  					break;

  				case NormalAnimationBlendMode:
  				default:

  					for ( let j = 0, m = interpolants.length; j !== m; ++ j ) {

  						interpolants[ j ].evaluate( clipTime );
  						propertyMixers[ j ].accumulate( accuIndex, weight );

  					}

  			}

  		}

  	},

  	_updateWeight: function ( time ) {

  		let weight = 0;

  		if ( this.enabled ) {

  			weight = this.weight;
  			const interpolant = this._weightInterpolant;

  			if ( interpolant !== null ) {

  				const interpolantValue = interpolant.evaluate( time )[ 0 ];

  				weight *= interpolantValue;

  				if ( time > interpolant.parameterPositions[ 1 ] ) {

  					this.stopFading();

  					if ( interpolantValue === 0 ) {

  						// faded out, disable
  						this.enabled = false;

  					}

  				}

  			}

  		}

  		this._effectiveWeight = weight;
  		return weight;

  	},

  	_updateTimeScale: function ( time ) {

  		let timeScale = 0;

  		if ( ! this.paused ) {

  			timeScale = this.timeScale;

  			const interpolant = this._timeScaleInterpolant;

  			if ( interpolant !== null ) {

  				const interpolantValue = interpolant.evaluate( time )[ 0 ];

  				timeScale *= interpolantValue;

  				if ( time > interpolant.parameterPositions[ 1 ] ) {

  					this.stopWarping();

  					if ( timeScale === 0 ) {

  						// motion has halted, pause
  						this.paused = true;

  					} else {

  						// warp done - apply final time scale
  						this.timeScale = timeScale;

  					}

  				}

  			}

  		}

  		this._effectiveTimeScale = timeScale;
  		return timeScale;

  	},

  	_updateTime: function ( deltaTime ) {

  		const duration = this._clip.duration;
  		const loop = this.loop;

  		let time = this.time + deltaTime;
  		let loopCount = this._loopCount;

  		const pingPong = ( loop === LoopPingPong );

  		if ( deltaTime === 0 ) {

  			if ( loopCount === - 1 ) return time;

  			return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time;

  		}

  		if ( loop === LoopOnce ) {

  			if ( loopCount === - 1 ) {

  				// just started

  				this._loopCount = 0;
  				this._setEndings( true, true, false );

  			}

  			handle_stop: {

  				if ( time >= duration ) {

  					time = duration;

  				} else if ( time < 0 ) {

  					time = 0;

  				} else {

  					this.time = time;

  					break handle_stop;

  				}

  				if ( this.clampWhenFinished ) this.paused = true;
  				else this.enabled = false;

  				this.time = time;

  				this._mixer.dispatchEvent( {
  					type: 'finished', action: this,
  					direction: deltaTime < 0 ? - 1 : 1
  				} );

  			}

  		} else { // repetitive Repeat or PingPong

  			if ( loopCount === - 1 ) {

  				// just started

  				if ( deltaTime >= 0 ) {

  					loopCount = 0;

  					this._setEndings( true, this.repetitions === 0, pingPong );

  				} else {

  					// when looping in reverse direction, the initial
  					// transition through zero counts as a repetition,
  					// so leave loopCount at -1

  					this._setEndings( this.repetitions === 0, true, pingPong );

  				}

  			}

  			if ( time >= duration || time < 0 ) {

  				// wrap around

  				const loopDelta = Math.floor( time / duration ); // signed
  				time -= duration * loopDelta;

  				loopCount += Math.abs( loopDelta );

  				const pending = this.repetitions - loopCount;

  				if ( pending <= 0 ) {

  					// have to stop (switch state, clamp time, fire event)

  					if ( this.clampWhenFinished ) this.paused = true;
  					else this.enabled = false;

  					time = deltaTime > 0 ? duration : 0;

  					this.time = time;

  					this._mixer.dispatchEvent( {
  						type: 'finished', action: this,
  						direction: deltaTime > 0 ? 1 : - 1
  					} );

  				} else {

  					// keep running

  					if ( pending === 1 ) {

  						// entering the last round

  						const atStart = deltaTime < 0;
  						this._setEndings( atStart, ! atStart, pingPong );

  					} else {

  						this._setEndings( false, false, pingPong );

  					}

  					this._loopCount = loopCount;

  					this.time = time;

  					this._mixer.dispatchEvent( {
  						type: 'loop', action: this, loopDelta: loopDelta
  					} );

  				}

  			} else {

  				this.time = time;

  			}

  			if ( pingPong && ( loopCount & 1 ) === 1 ) {

  				// invert time for the "pong round"

  				return duration - time;

  			}

  		}

  		return time;

  	},

  	_setEndings: function ( atStart, atEnd, pingPong ) {

  		const settings = this._interpolantSettings;

  		if ( pingPong ) {

  			settings.endingStart = ZeroSlopeEnding;
  			settings.endingEnd = ZeroSlopeEnding;

  		} else {

  			// assuming for LoopOnce atStart == atEnd == true

  			if ( atStart ) {

  				settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;

  			} else {

  				settings.endingStart = WrapAroundEnding;

  			}

  			if ( atEnd ) {

  				settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;

  			} else {

  				settings.endingEnd 	 = WrapAroundEnding;

  			}

  		}

  	},

  	_scheduleFading: function ( duration, weightNow, weightThen ) {

  		const mixer = this._mixer, now = mixer.time;
  		let interpolant = this._weightInterpolant;

  		if ( interpolant === null ) {

  			interpolant = mixer._lendControlInterpolant();
  			this._weightInterpolant = interpolant;

  		}

  		const times = interpolant.parameterPositions,
  			values = interpolant.sampleValues;

  		times[ 0 ] = now;
  		values[ 0 ] = weightNow;
  		times[ 1 ] = now + duration;
  		values[ 1 ] = weightThen;

  		return this;

  	}

  } );

  /**
   *
   * Player for AnimationClips.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function AnimationMixer( root ) {

  	this._root = root;
  	this._initMemoryManager();
  	this._accuIndex = 0;

  	this.time = 0;

  	this.timeScale = 1.0;

  }

  AnimationMixer.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: AnimationMixer,

  	_bindAction: function ( action, prototypeAction ) {

  		const root = action._localRoot || this._root,
  			tracks = action._clip.tracks,
  			nTracks = tracks.length,
  			bindings = action._propertyBindings,
  			interpolants = action._interpolants,
  			rootUuid = root.uuid,
  			bindingsByRoot = this._bindingsByRootAndName;

  		let bindingsByName = bindingsByRoot[ rootUuid ];

  		if ( bindingsByName === undefined ) {

  			bindingsByName = {};
  			bindingsByRoot[ rootUuid ] = bindingsByName;

  		}

  		for ( let i = 0; i !== nTracks; ++ i ) {

  			const track = tracks[ i ],
  				trackName = track.name;

  			let binding = bindingsByName[ trackName ];

  			if ( binding !== undefined ) {

  				bindings[ i ] = binding;

  			} else {

  				binding = bindings[ i ];

  				if ( binding !== undefined ) {

  					// existing binding, make sure the cache knows

  					if ( binding._cacheIndex === null ) {

  						++ binding.referenceCount;
  						this._addInactiveBinding( binding, rootUuid, trackName );

  					}

  					continue;

  				}

  				const path = prototypeAction && prototypeAction.
  					_propertyBindings[ i ].binding.parsedPath;

  				binding = new PropertyMixer(
  					PropertyBinding.create( root, trackName, path ),
  					track.ValueTypeName, track.getValueSize() );

  				++ binding.referenceCount;
  				this._addInactiveBinding( binding, rootUuid, trackName );

  				bindings[ i ] = binding;

  			}

  			interpolants[ i ].resultBuffer = binding.buffer;

  		}

  	},

  	_activateAction: function ( action ) {

  		if ( ! this._isActiveAction( action ) ) {

  			if ( action._cacheIndex === null ) {

  				// this action has been forgotten by the cache, but the user
  				// appears to be still using it -> rebind

  				const rootUuid = ( action._localRoot || this._root ).uuid,
  					clipUuid = action._clip.uuid,
  					actionsForClip = this._actionsByClip[ clipUuid ];

  				this._bindAction( action,
  					actionsForClip && actionsForClip.knownActions[ 0 ] );

  				this._addInactiveAction( action, clipUuid, rootUuid );

  			}

  			const bindings = action._propertyBindings;

  			// increment reference counts / sort out state
  			for ( let i = 0, n = bindings.length; i !== n; ++ i ) {

  				const binding = bindings[ i ];

  				if ( binding.useCount ++ === 0 ) {

  					this._lendBinding( binding );
  					binding.saveOriginalState();

  				}

  			}

  			this._lendAction( action );

  		}

  	},

  	_deactivateAction: function ( action ) {

  		if ( this._isActiveAction( action ) ) {

  			const bindings = action._propertyBindings;

  			// decrement reference counts / sort out state
  			for ( let i = 0, n = bindings.length; i !== n; ++ i ) {

  				const binding = bindings[ i ];

  				if ( -- binding.useCount === 0 ) {

  					binding.restoreOriginalState();
  					this._takeBackBinding( binding );

  				}

  			}

  			this._takeBackAction( action );

  		}

  	},

  	// Memory manager

  	_initMemoryManager: function () {

  		this._actions = []; // 'nActiveActions' followed by inactive ones
  		this._nActiveActions = 0;

  		this._actionsByClip = {};
  		// inside:
  		// {
  		// 	knownActions: Array< AnimationAction > - used as prototypes
  		// 	actionByRoot: AnimationAction - lookup
  		// }


  		this._bindings = []; // 'nActiveBindings' followed by inactive ones
  		this._nActiveBindings = 0;

  		this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >


  		this._controlInterpolants = []; // same game as above
  		this._nActiveControlInterpolants = 0;

  		const scope = this;

  		this.stats = {

  			actions: {
  				get total() {

  					return scope._actions.length;

  				},
  				get inUse() {

  					return scope._nActiveActions;

  				}
  			},
  			bindings: {
  				get total() {

  					return scope._bindings.length;

  				},
  				get inUse() {

  					return scope._nActiveBindings;

  				}
  			},
  			controlInterpolants: {
  				get total() {

  					return scope._controlInterpolants.length;

  				},
  				get inUse() {

  					return scope._nActiveControlInterpolants;

  				}
  			}

  		};

  	},

  	// Memory management for AnimationAction objects

  	_isActiveAction: function ( action ) {

  		const index = action._cacheIndex;
  		return index !== null && index < this._nActiveActions;

  	},

  	_addInactiveAction: function ( action, clipUuid, rootUuid ) {

  		const actions = this._actions,
  			actionsByClip = this._actionsByClip;

  		let actionsForClip = actionsByClip[ clipUuid ];

  		if ( actionsForClip === undefined ) {

  			actionsForClip = {

  				knownActions: [ action ],
  				actionByRoot: {}

  			};

  			action._byClipCacheIndex = 0;

  			actionsByClip[ clipUuid ] = actionsForClip;

  		} else {

  			const knownActions = actionsForClip.knownActions;

  			action._byClipCacheIndex = knownActions.length;
  			knownActions.push( action );

  		}

  		action._cacheIndex = actions.length;
  		actions.push( action );

  		actionsForClip.actionByRoot[ rootUuid ] = action;

  	},

  	_removeInactiveAction: function ( action ) {

  		const actions = this._actions,
  			lastInactiveAction = actions[ actions.length - 1 ],
  			cacheIndex = action._cacheIndex;

  		lastInactiveAction._cacheIndex = cacheIndex;
  		actions[ cacheIndex ] = lastInactiveAction;
  		actions.pop();

  		action._cacheIndex = null;


  		const clipUuid = action._clip.uuid,
  			actionsByClip = this._actionsByClip,
  			actionsForClip = actionsByClip[ clipUuid ],
  			knownActionsForClip = actionsForClip.knownActions,

  			lastKnownAction =
  				knownActionsForClip[ knownActionsForClip.length - 1 ],

  			byClipCacheIndex = action._byClipCacheIndex;

  		lastKnownAction._byClipCacheIndex = byClipCacheIndex;
  		knownActionsForClip[ byClipCacheIndex ] = lastKnownAction;
  		knownActionsForClip.pop();

  		action._byClipCacheIndex = null;


  		const actionByRoot = actionsForClip.actionByRoot,
  			rootUuid = ( action._localRoot || this._root ).uuid;

  		delete actionByRoot[ rootUuid ];

  		if ( knownActionsForClip.length === 0 ) {

  			delete actionsByClip[ clipUuid ];

  		}

  		this._removeInactiveBindingsForAction( action );

  	},

  	_removeInactiveBindingsForAction: function ( action ) {

  		const bindings = action._propertyBindings;

  		for ( let i = 0, n = bindings.length; i !== n; ++ i ) {

  			const binding = bindings[ i ];

  			if ( -- binding.referenceCount === 0 ) {

  				this._removeInactiveBinding( binding );

  			}

  		}

  	},

  	_lendAction: function ( action ) {

  		// [ active actions |  inactive actions  ]
  		// [  active actions >| inactive actions ]
  		//                 s        a
  		//                  <-swap->
  		//                 a        s

  		const actions = this._actions,
  			prevIndex = action._cacheIndex,

  			lastActiveIndex = this._nActiveActions ++,

  			firstInactiveAction = actions[ lastActiveIndex ];

  		action._cacheIndex = lastActiveIndex;
  		actions[ lastActiveIndex ] = action;

  		firstInactiveAction._cacheIndex = prevIndex;
  		actions[ prevIndex ] = firstInactiveAction;

  	},

  	_takeBackAction: function ( action ) {

  		// [  active actions  | inactive actions ]
  		// [ active actions |< inactive actions  ]
  		//        a        s
  		//         <-swap->
  		//        s        a

  		const actions = this._actions,
  			prevIndex = action._cacheIndex,

  			firstInactiveIndex = -- this._nActiveActions,

  			lastActiveAction = actions[ firstInactiveIndex ];

  		action._cacheIndex = firstInactiveIndex;
  		actions[ firstInactiveIndex ] = action;

  		lastActiveAction._cacheIndex = prevIndex;
  		actions[ prevIndex ] = lastActiveAction;

  	},

  	// Memory management for PropertyMixer objects

  	_addInactiveBinding: function ( binding, rootUuid, trackName ) {

  		const bindingsByRoot = this._bindingsByRootAndName,
  			bindings = this._bindings;

  		let bindingByName = bindingsByRoot[ rootUuid ];

  		if ( bindingByName === undefined ) {

  			bindingByName = {};
  			bindingsByRoot[ rootUuid ] = bindingByName;

  		}

  		bindingByName[ trackName ] = binding;

  		binding._cacheIndex = bindings.length;
  		bindings.push( binding );

  	},

  	_removeInactiveBinding: function ( binding ) {

  		const bindings = this._bindings,
  			propBinding = binding.binding,
  			rootUuid = propBinding.rootNode.uuid,
  			trackName = propBinding.path,
  			bindingsByRoot = this._bindingsByRootAndName,
  			bindingByName = bindingsByRoot[ rootUuid ],

  			lastInactiveBinding = bindings[ bindings.length - 1 ],
  			cacheIndex = binding._cacheIndex;

  		lastInactiveBinding._cacheIndex = cacheIndex;
  		bindings[ cacheIndex ] = lastInactiveBinding;
  		bindings.pop();

  		delete bindingByName[ trackName ];

  		if ( Object.keys( bindingByName ).length === 0 ) {

  			delete bindingsByRoot[ rootUuid ];

  		}

  	},

  	_lendBinding: function ( binding ) {

  		const bindings = this._bindings,
  			prevIndex = binding._cacheIndex,

  			lastActiveIndex = this._nActiveBindings ++,

  			firstInactiveBinding = bindings[ lastActiveIndex ];

  		binding._cacheIndex = lastActiveIndex;
  		bindings[ lastActiveIndex ] = binding;

  		firstInactiveBinding._cacheIndex = prevIndex;
  		bindings[ prevIndex ] = firstInactiveBinding;

  	},

  	_takeBackBinding: function ( binding ) {

  		const bindings = this._bindings,
  			prevIndex = binding._cacheIndex,

  			firstInactiveIndex = -- this._nActiveBindings,

  			lastActiveBinding = bindings[ firstInactiveIndex ];

  		binding._cacheIndex = firstInactiveIndex;
  		bindings[ firstInactiveIndex ] = binding;

  		lastActiveBinding._cacheIndex = prevIndex;
  		bindings[ prevIndex ] = lastActiveBinding;

  	},


  	// Memory management of Interpolants for weight and time scale

  	_lendControlInterpolant: function () {

  		const interpolants = this._controlInterpolants,
  			lastActiveIndex = this._nActiveControlInterpolants ++;

  		let interpolant = interpolants[ lastActiveIndex ];

  		if ( interpolant === undefined ) {

  			interpolant = new LinearInterpolant(
  				new Float32Array( 2 ), new Float32Array( 2 ),
  				1, this._controlInterpolantsResultBuffer );

  			interpolant.__cacheIndex = lastActiveIndex;
  			interpolants[ lastActiveIndex ] = interpolant;

  		}

  		return interpolant;

  	},

  	_takeBackControlInterpolant: function ( interpolant ) {

  		const interpolants = this._controlInterpolants,
  			prevIndex = interpolant.__cacheIndex,

  			firstInactiveIndex = -- this._nActiveControlInterpolants,

  			lastActiveInterpolant = interpolants[ firstInactiveIndex ];

  		interpolant.__cacheIndex = firstInactiveIndex;
  		interpolants[ firstInactiveIndex ] = interpolant;

  		lastActiveInterpolant.__cacheIndex = prevIndex;
  		interpolants[ prevIndex ] = lastActiveInterpolant;

  	},

  	_controlInterpolantsResultBuffer: new Float32Array( 1 ),

  	// return an action for a clip optionally using a custom root target
  	// object (this method allocates a lot of dynamic memory in case a
  	// previously unknown clip/root combination is specified)
  	clipAction: function ( clip, optionalRoot, blendMode ) {

  		const root = optionalRoot || this._root,
  			rootUuid = root.uuid;

  		let clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip;

  		const clipUuid = clipObject !== null ? clipObject.uuid : clip;

  		let actionsForClip = this._actionsByClip[ clipUuid ],
  			prototypeAction = null;

  		if ( blendMode === undefined ) {

  			if ( clipObject !== null ) {

  				blendMode = clipObject.blendMode;

  			} else {

  				blendMode = NormalAnimationBlendMode;

  			}

  		}

  		if ( actionsForClip !== undefined ) {

  			const existingAction = actionsForClip.actionByRoot[ rootUuid ];

  			if ( existingAction !== undefined && existingAction.blendMode === blendMode ) {

  				return existingAction;

  			}

  			// we know the clip, so we don't have to parse all
  			// the bindings again but can just copy
  			prototypeAction = actionsForClip.knownActions[ 0 ];

  			// also, take the clip from the prototype action
  			if ( clipObject === null )
  				clipObject = prototypeAction._clip;

  		}

  		// clip must be known when specified via string
  		if ( clipObject === null ) return null;

  		// allocate all resources required to run it
  		const newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode );

  		this._bindAction( newAction, prototypeAction );

  		// and make the action known to the memory manager
  		this._addInactiveAction( newAction, clipUuid, rootUuid );

  		return newAction;

  	},

  	// get an existing action
  	existingAction: function ( clip, optionalRoot ) {

  		const root = optionalRoot || this._root,
  			rootUuid = root.uuid,

  			clipObject = typeof clip === 'string' ?
  				AnimationClip.findByName( root, clip ) : clip,

  			clipUuid = clipObject ? clipObject.uuid : clip,

  			actionsForClip = this._actionsByClip[ clipUuid ];

  		if ( actionsForClip !== undefined ) {

  			return actionsForClip.actionByRoot[ rootUuid ] || null;

  		}

  		return null;

  	},

  	// deactivates all previously scheduled actions
  	stopAllAction: function () {

  		const actions = this._actions,
  			nActions = this._nActiveActions;

  		for ( let i = nActions - 1; i >= 0; -- i ) {

  			actions[ i ].stop();

  		}

  		return this;

  	},

  	// advance the time and update apply the animation
  	update: function ( deltaTime ) {

  		deltaTime *= this.timeScale;

  		const actions = this._actions,
  			nActions = this._nActiveActions,

  			time = this.time += deltaTime,
  			timeDirection = Math.sign( deltaTime ),

  			accuIndex = this._accuIndex ^= 1;

  		// run active actions

  		for ( let i = 0; i !== nActions; ++ i ) {

  			const action = actions[ i ];

  			action._update( time, deltaTime, timeDirection, accuIndex );

  		}

  		// update scene graph

  		const bindings = this._bindings,
  			nBindings = this._nActiveBindings;

  		for ( let i = 0; i !== nBindings; ++ i ) {

  			bindings[ i ].apply( accuIndex );

  		}

  		return this;

  	},

  	// Allows you to seek to a specific time in an animation.
  	setTime: function ( timeInSeconds ) {

  		this.time = 0; // Zero out time attribute for AnimationMixer object;
  		for ( let i = 0; i < this._actions.length; i ++ ) {

  			this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects.

  		}

  		return this.update( timeInSeconds ); // Update used to set exact time. Returns "this" AnimationMixer object.

  	},

  	// return this mixer's root target object
  	getRoot: function () {

  		return this._root;

  	},

  	// free all resources specific to a particular clip
  	uncacheClip: function ( clip ) {

  		const actions = this._actions,
  			clipUuid = clip.uuid,
  			actionsByClip = this._actionsByClip,
  			actionsForClip = actionsByClip[ clipUuid ];

  		if ( actionsForClip !== undefined ) {

  			// note: just calling _removeInactiveAction would mess up the
  			// iteration state and also require updating the state we can
  			// just throw away

  			const actionsToRemove = actionsForClip.knownActions;

  			for ( let i = 0, n = actionsToRemove.length; i !== n; ++ i ) {

  				const action = actionsToRemove[ i ];

  				this._deactivateAction( action );

  				const cacheIndex = action._cacheIndex,
  					lastInactiveAction = actions[ actions.length - 1 ];

  				action._cacheIndex = null;
  				action._byClipCacheIndex = null;

  				lastInactiveAction._cacheIndex = cacheIndex;
  				actions[ cacheIndex ] = lastInactiveAction;
  				actions.pop();

  				this._removeInactiveBindingsForAction( action );

  			}

  			delete actionsByClip[ clipUuid ];

  		}

  	},

  	// free all resources specific to a particular root target object
  	uncacheRoot: function ( root ) {

  		const rootUuid = root.uuid,
  			actionsByClip = this._actionsByClip;

  		for ( const clipUuid in actionsByClip ) {

  			const actionByRoot = actionsByClip[ clipUuid ].actionByRoot,
  				action = actionByRoot[ rootUuid ];

  			if ( action !== undefined ) {

  				this._deactivateAction( action );
  				this._removeInactiveAction( action );

  			}

  		}

  		const bindingsByRoot = this._bindingsByRootAndName,
  			bindingByName = bindingsByRoot[ rootUuid ];

  		if ( bindingByName !== undefined ) {

  			for ( const trackName in bindingByName ) {

  				const binding = bindingByName[ trackName ];
  				binding.restoreOriginalState();
  				this._removeInactiveBinding( binding );

  			}

  		}

  	},

  	// remove a targeted clip from the cache
  	uncacheAction: function ( clip, optionalRoot ) {

  		const action = this.existingAction( clip, optionalRoot );

  		if ( action !== null ) {

  			this._deactivateAction( action );
  			this._removeInactiveAction( action );

  		}

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function Uniform( value ) {

  	if ( typeof value === 'string' ) {

  		console.warn( 'THREE.Uniform: Type parameter is no longer needed.' );
  		value = arguments[ 1 ];

  	}

  	this.value = value;

  }

  Uniform.prototype.clone = function () {

  	return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() );

  };

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) {

  	InterleavedBuffer.call( this, array, stride );

  	this.meshPerAttribute = meshPerAttribute || 1;

  }

  InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), {

  	constructor: InstancedInterleavedBuffer,

  	isInstancedInterleavedBuffer: true,

  	copy: function ( source ) {

  		InterleavedBuffer.prototype.copy.call( this, source );

  		this.meshPerAttribute = source.meshPerAttribute;

  		return this;

  	},

  	clone: function ( data ) {

  		const ib = InterleavedBuffer.prototype.clone.call( this, data );

  		ib.meshPerAttribute = this.meshPerAttribute;

  		return ib;

  	},

  	toJSON: function ( data ) {

  		const json = InterleavedBuffer.prototype.toJSON.call( this, data );

  		json.isInstancedInterleavedBuffer = true;
  		json.meshPerAttribute = this.meshPerAttribute;

  		return json;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author bhouston / http://clara.io/
   * @author stephomi / http://stephaneginier.com/
   */

  function Raycaster( origin, direction, near, far ) {

  	this.ray = new Ray( origin, direction );
  	// direction is assumed to be normalized (for accurate distance calculations)

  	this.near = near || 0;
  	this.far = far || Infinity;
  	this.camera = null;
  	this.layers = new Layers();

  	this.params = {
  		Mesh: {},
  		Line: { threshold: 1 },
  		LOD: {},
  		Points: { threshold: 1 },
  		Sprite: {}
  	};

  	Object.defineProperties( this.params, {
  		PointCloud: {
  			get: function () {

  				console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
  				return this.Points;

  			}
  		}
  	} );

  }

  function ascSort( a, b ) {

  	return a.distance - b.distance;

  }

  function intersectObject( object, raycaster, intersects, recursive ) {

  	if ( object.layers.test( raycaster.layers ) ) {

  		object.raycast( raycaster, intersects );

  	}

  	if ( recursive === true ) {

  		const children = object.children;

  		for ( let i = 0, l = children.length; i < l; i ++ ) {

  			intersectObject( children[ i ], raycaster, intersects, true );

  		}

  	}

  }

  Object.assign( Raycaster.prototype, {

  	set: function ( origin, direction ) {

  		// direction is assumed to be normalized (for accurate distance calculations)

  		this.ray.set( origin, direction );

  	},

  	setFromCamera: function ( coords, camera ) {

  		if ( ( camera && camera.isPerspectiveCamera ) ) {

  			this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
  			this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();
  			this.camera = camera;

  		} else if ( ( camera && camera.isOrthographicCamera ) ) {

  			this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera
  			this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );
  			this.camera = camera;

  		} else {

  			console.error( 'THREE.Raycaster: Unsupported camera type.' );

  		}

  	},

  	intersectObject: function ( object, recursive, optionalTarget ) {

  		const intersects = optionalTarget || [];

  		intersectObject( object, this, intersects, recursive );

  		intersects.sort( ascSort );

  		return intersects;

  	},

  	intersectObjects: function ( objects, recursive, optionalTarget ) {

  		const intersects = optionalTarget || [];

  		if ( Array.isArray( objects ) === false ) {

  			console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
  			return intersects;

  		}

  		for ( let i = 0, l = objects.length; i < l; i ++ ) {

  			intersectObject( objects[ i ], this, intersects, recursive );

  		}

  		intersects.sort( ascSort );

  		return intersects;

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   * @author WestLangley / http://github.com/WestLangley
   *
   * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
   *
   * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.
   * The azimuthal angle (theta) is measured from the positive z-axis.
   */

  function Spherical( radius, phi, theta ) {

  	this.radius = ( radius !== undefined ) ? radius : 1.0;
  	this.phi = ( phi !== undefined ) ? phi : 0; // polar angle
  	this.theta = ( theta !== undefined ) ? theta : 0; // azimuthal angle

  	return this;

  }

  Object.assign( Spherical.prototype, {

  	set: function ( radius, phi, theta ) {

  		this.radius = radius;
  		this.phi = phi;
  		this.theta = theta;

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( other ) {

  		this.radius = other.radius;
  		this.phi = other.phi;
  		this.theta = other.theta;

  		return this;

  	},

  	// restrict phi to be betwee EPS and PI-EPS
  	makeSafe: function () {

  		const EPS = 0.000001;
  		this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );

  		return this;

  	},

  	setFromVector3: function ( v ) {

  		return this.setFromCartesianCoords( v.x, v.y, v.z );

  	},

  	setFromCartesianCoords: function ( x, y, z ) {

  		this.radius = Math.sqrt( x * x + y * y + z * z );

  		if ( this.radius === 0 ) {

  			this.theta = 0;
  			this.phi = 0;

  		} else {

  			this.theta = Math.atan2( x, z );
  			this.phi = Math.acos( MathUtils.clamp( y / this.radius, - 1, 1 ) );

  		}

  		return this;

  	}

  } );

  /**
   * @author Mugen87 / https://github.com/Mugen87
   *
   * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
   *
   */

  function Cylindrical( radius, theta, y ) {

  	this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane
  	this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
  	this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane

  	return this;

  }

  Object.assign( Cylindrical.prototype, {

  	set: function ( radius, theta, y ) {

  		this.radius = radius;
  		this.theta = theta;
  		this.y = y;

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( other ) {

  		this.radius = other.radius;
  		this.theta = other.theta;
  		this.y = other.y;

  		return this;

  	},

  	setFromVector3: function ( v ) {

  		return this.setFromCartesianCoords( v.x, v.y, v.z );

  	},

  	setFromCartesianCoords: function ( x, y, z ) {

  		this.radius = Math.sqrt( x * x + z * z );
  		this.theta = Math.atan2( x, z );
  		this.y = y;

  		return this;

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   */

  const _vector$7 = new Vector2();

  function Box2( min, max ) {

  	this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity );
  	this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity );

  }

  Object.assign( Box2.prototype, {

  	set: function ( min, max ) {

  		this.min.copy( min );
  		this.max.copy( max );

  		return this;

  	},

  	setFromPoints: function ( points ) {

  		this.makeEmpty();

  		for ( let i = 0, il = points.length; i < il; i ++ ) {

  			this.expandByPoint( points[ i ] );

  		}

  		return this;

  	},

  	setFromCenterAndSize: function ( center, size ) {

  		const halfSize = _vector$7.copy( size ).multiplyScalar( 0.5 );
  		this.min.copy( center ).sub( halfSize );
  		this.max.copy( center ).add( halfSize );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( box ) {

  		this.min.copy( box.min );
  		this.max.copy( box.max );

  		return this;

  	},

  	makeEmpty: function () {

  		this.min.x = this.min.y = + Infinity;
  		this.max.x = this.max.y = - Infinity;

  		return this;

  	},

  	isEmpty: function () {

  		// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

  		return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );

  	},

  	getCenter: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box2: .getCenter() target is now required' );
  			target = new Vector2();

  		}

  		return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

  	},

  	getSize: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box2: .getSize() target is now required' );
  			target = new Vector2();

  		}

  		return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min );

  	},

  	expandByPoint: function ( point ) {

  		this.min.min( point );
  		this.max.max( point );

  		return this;

  	},

  	expandByVector: function ( vector ) {

  		this.min.sub( vector );
  		this.max.add( vector );

  		return this;

  	},

  	expandByScalar: function ( scalar ) {

  		this.min.addScalar( - scalar );
  		this.max.addScalar( scalar );

  		return this;

  	},

  	containsPoint: function ( point ) {

  		return point.x < this.min.x || point.x > this.max.x ||
  			point.y < this.min.y || point.y > this.max.y ? false : true;

  	},

  	containsBox: function ( box ) {

  		return this.min.x <= box.min.x && box.max.x <= this.max.x &&
  			this.min.y <= box.min.y && box.max.y <= this.max.y;

  	},

  	getParameter: function ( point, target ) {

  		// This can potentially have a divide by zero if the box
  		// has a size dimension of 0.

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box2: .getParameter() target is now required' );
  			target = new Vector2();

  		}

  		return target.set(
  			( point.x - this.min.x ) / ( this.max.x - this.min.x ),
  			( point.y - this.min.y ) / ( this.max.y - this.min.y )
  		);

  	},

  	intersectsBox: function ( box ) {

  		// using 4 splitting planes to rule out intersections

  		return box.max.x < this.min.x || box.min.x > this.max.x ||
  			box.max.y < this.min.y || box.min.y > this.max.y ? false : true;

  	},

  	clampPoint: function ( point, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box2: .clampPoint() target is now required' );
  			target = new Vector2();

  		}

  		return target.copy( point ).clamp( this.min, this.max );

  	},

  	distanceToPoint: function ( point ) {

  		const clampedPoint = _vector$7.copy( point ).clamp( this.min, this.max );
  		return clampedPoint.sub( point ).length();

  	},

  	intersect: function ( box ) {

  		this.min.max( box.min );
  		this.max.min( box.max );

  		return this;

  	},

  	union: function ( box ) {

  		this.min.min( box.min );
  		this.max.max( box.max );

  		return this;

  	},

  	translate: function ( offset ) {

  		this.min.add( offset );
  		this.max.add( offset );

  		return this;

  	},

  	equals: function ( box ) {

  		return box.min.equals( this.min ) && box.max.equals( this.max );

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   */

  const _startP = new Vector3();
  const _startEnd = new Vector3();

  function Line3( start, end ) {

  	this.start = ( start !== undefined ) ? start : new Vector3();
  	this.end = ( end !== undefined ) ? end : new Vector3();

  }

  Object.assign( Line3.prototype, {

  	set: function ( start, end ) {

  		this.start.copy( start );
  		this.end.copy( end );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( line ) {

  		this.start.copy( line.start );
  		this.end.copy( line.end );

  		return this;

  	},

  	getCenter: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Line3: .getCenter() target is now required' );
  			target = new Vector3();

  		}

  		return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );

  	},

  	delta: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Line3: .delta() target is now required' );
  			target = new Vector3();

  		}

  		return target.subVectors( this.end, this.start );

  	},

  	distanceSq: function () {

  		return this.start.distanceToSquared( this.end );

  	},

  	distance: function () {

  		return this.start.distanceTo( this.end );

  	},

  	at: function ( t, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Line3: .at() target is now required' );
  			target = new Vector3();

  		}

  		return this.delta( target ).multiplyScalar( t ).add( this.start );

  	},

  	closestPointToPointParameter: function ( point, clampToLine ) {

  		_startP.subVectors( point, this.start );
  		_startEnd.subVectors( this.end, this.start );

  		const startEnd2 = _startEnd.dot( _startEnd );
  		const startEnd_startP = _startEnd.dot( _startP );

  		let t = startEnd_startP / startEnd2;

  		if ( clampToLine ) {

  			t = MathUtils.clamp( t, 0, 1 );

  		}

  		return t;

  	},

  	closestPointToPoint: function ( point, clampToLine, target ) {

  		const t = this.closestPointToPointParameter( point, clampToLine );

  		if ( target === undefined ) {

  			console.warn( 'THREE.Line3: .closestPointToPoint() target is now required' );
  			target = new Vector3();

  		}

  		return this.delta( target ).multiplyScalar( t ).add( this.start );

  	},

  	applyMatrix4: function ( matrix ) {

  		this.start.applyMatrix4( matrix );
  		this.end.applyMatrix4( matrix );

  		return this;

  	},

  	equals: function ( line ) {

  		return line.start.equals( this.start ) && line.end.equals( this.end );

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function ImmediateRenderObject( material ) {

  	Object3D.call( this );

  	this.material = material;
  	this.render = function ( /* renderCallback */ ) {};

  	this.hasPositions = false;
  	this.hasNormals = false;
  	this.hasColors = false;
  	this.hasUvs = false;

  	this.positionArray = null;
  	this.normalArray = null;
  	this.colorArray = null;
  	this.uvArray = null;

  	this.count = 0;

  }

  ImmediateRenderObject.prototype = Object.create( Object3D.prototype );
  ImmediateRenderObject.prototype.constructor = ImmediateRenderObject;

  ImmediateRenderObject.prototype.isImmediateRenderObject = true;

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  const _vector$8 = new Vector3();

  function SpotLightHelper( light, color ) {

  	Object3D.call( this );

  	this.light = light;
  	this.light.updateMatrixWorld();

  	this.matrix = light.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.color = color;

  	const geometry = new BufferGeometry();

  	const positions = [
  		0, 0, 0, 	0, 0, 1,
  		0, 0, 0, 	1, 0, 1,
  		0, 0, 0,	- 1, 0, 1,
  		0, 0, 0, 	0, 1, 1,
  		0, 0, 0, 	0, - 1, 1
  	];

  	for ( let i = 0, j = 1, l = 32; i < l; i ++, j ++ ) {

  		const p1 = ( i / l ) * Math.PI * 2;
  		const p2 = ( j / l ) * Math.PI * 2;

  		positions.push(
  			Math.cos( p1 ), Math.sin( p1 ), 1,
  			Math.cos( p2 ), Math.sin( p2 ), 1
  		);

  	}

  	geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

  	const material = new LineBasicMaterial( { fog: false, toneMapped: false } );

  	this.cone = new LineSegments( geometry, material );
  	this.add( this.cone );

  	this.update();

  }

  SpotLightHelper.prototype = Object.create( Object3D.prototype );
  SpotLightHelper.prototype.constructor = SpotLightHelper;

  SpotLightHelper.prototype.dispose = function () {

  	this.cone.geometry.dispose();
  	this.cone.material.dispose();

  };

  SpotLightHelper.prototype.update = function () {

  	this.light.updateMatrixWorld();

  	const coneLength = this.light.distance ? this.light.distance : 1000;
  	const coneWidth = coneLength * Math.tan( this.light.angle );

  	this.cone.scale.set( coneWidth, coneWidth, coneLength );

  	_vector$8.setFromMatrixPosition( this.light.target.matrixWorld );

  	this.cone.lookAt( _vector$8 );

  	if ( this.color !== undefined ) {

  		this.cone.material.color.set( this.color );

  	} else {

  		this.cone.material.color.copy( this.light.color );

  	}

  };

  /**
   * @author Sean Griffin / http://twitter.com/sgrif
   * @author Michael Guerrero / http://realitymeltdown.com
   * @author mrdoob / http://mrdoob.com/
   * @author ikerr / http://verold.com
   * @author Mugen87 / https://github.com/Mugen87
   */

  const _vector$9 = new Vector3();
  const _boneMatrix = new Matrix4();
  const _matrixWorldInv = new Matrix4();

  function getBoneList( object ) {

  	const boneList = [];

  	if ( object && object.isBone ) {

  		boneList.push( object );

  	}

  	for ( let i = 0; i < object.children.length; i ++ ) {

  		boneList.push.apply( boneList, getBoneList( object.children[ i ] ) );

  	}

  	return boneList;

  }

  function SkeletonHelper( object ) {

  	const bones = getBoneList( object );

  	const geometry = new BufferGeometry();

  	const vertices = [];
  	const colors = [];

  	const color1 = new Color( 0, 0, 1 );
  	const color2 = new Color( 0, 1, 0 );

  	for ( let i = 0; i < bones.length; i ++ ) {

  		const bone = bones[ i ];

  		if ( bone.parent && bone.parent.isBone ) {

  			vertices.push( 0, 0, 0 );
  			vertices.push( 0, 0, 0 );
  			colors.push( color1.r, color1.g, color1.b );
  			colors.push( color2.r, color2.g, color2.b );

  		}

  	}

  	geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	const material = new LineBasicMaterial( { vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true } );

  	LineSegments.call( this, geometry, material );

  	this.type = 'SkeletonHelper';

  	this.root = object;
  	this.bones = bones;

  	this.matrix = object.matrixWorld;
  	this.matrixAutoUpdate = false;

  }

  SkeletonHelper.prototype = Object.create( LineSegments.prototype );
  SkeletonHelper.prototype.constructor = SkeletonHelper;

  SkeletonHelper.prototype.isSkeletonHelper = true;

  SkeletonHelper.prototype.updateMatrixWorld = function ( force ) {

  	const bones = this.bones;

  	const geometry = this.geometry;
  	const position = geometry.getAttribute( 'position' );

  	_matrixWorldInv.getInverse( this.root.matrixWorld );

  	for ( let i = 0, j = 0; i < bones.length; i ++ ) {

  		const bone = bones[ i ];

  		if ( bone.parent && bone.parent.isBone ) {

  			_boneMatrix.multiplyMatrices( _matrixWorldInv, bone.matrixWorld );
  			_vector$9.setFromMatrixPosition( _boneMatrix );
  			position.setXYZ( j, _vector$9.x, _vector$9.y, _vector$9.z );

  			_boneMatrix.multiplyMatrices( _matrixWorldInv, bone.parent.matrixWorld );
  			_vector$9.setFromMatrixPosition( _boneMatrix );
  			position.setXYZ( j + 1, _vector$9.x, _vector$9.y, _vector$9.z );

  			j += 2;

  		}

  	}

  	geometry.getAttribute( 'position' ).needsUpdate = true;

  	Object3D.prototype.updateMatrixWorld.call( this, force );

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   */

  function PointLightHelper( light, sphereSize, color ) {

  	this.light = light;
  	this.light.updateMatrixWorld();

  	this.color = color;

  	const geometry = new SphereBufferGeometry( sphereSize, 4, 2 );
  	const material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } );

  	Mesh.call( this, geometry, material );

  	this.type = 'PointLightHelper';

  	this.matrix = this.light.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.update();


  	/*
  	const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 );
  	const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );

  	this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
  	this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );

  	const d = light.distance;

  	if ( d === 0.0 ) {

  		this.lightDistance.visible = false;

  	} else {

  		this.lightDistance.scale.set( d, d, d );

  	}

  	this.add( this.lightDistance );
  	*/

  }

  PointLightHelper.prototype = Object.create( Mesh.prototype );
  PointLightHelper.prototype.constructor = PointLightHelper;

  PointLightHelper.prototype.dispose = function () {

  	this.geometry.dispose();
  	this.material.dispose();

  };

  PointLightHelper.prototype.update = function () {

  	if ( this.color !== undefined ) {

  		this.material.color.set( this.color );

  	} else {

  		this.material.color.copy( this.light.color );

  	}

  	/*
  	const d = this.light.distance;

  	if ( d === 0.0 ) {

  		this.lightDistance.visible = false;

  	} else {

  		this.lightDistance.visible = true;
  		this.lightDistance.scale.set( d, d, d );

  	}
  	*/

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  const _vector$a = new Vector3();
  const _color1 = new Color();
  const _color2 = new Color();

  function HemisphereLightHelper( light, size, color ) {

  	Object3D.call( this );

  	this.light = light;
  	this.light.updateMatrixWorld();

  	this.matrix = light.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.color = color;

  	const geometry = new OctahedronBufferGeometry( size );
  	geometry.rotateY( Math.PI * 0.5 );

  	this.material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } );
  	if ( this.color === undefined ) this.material.vertexColors = true;

  	const position = geometry.getAttribute( 'position' );
  	const colors = new Float32Array( position.count * 3 );

  	geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) );

  	this.add( new Mesh( geometry, this.material ) );

  	this.update();

  }

  HemisphereLightHelper.prototype = Object.create( Object3D.prototype );
  HemisphereLightHelper.prototype.constructor = HemisphereLightHelper;

  HemisphereLightHelper.prototype.dispose = function () {

  	this.children[ 0 ].geometry.dispose();
  	this.children[ 0 ].material.dispose();

  };

  HemisphereLightHelper.prototype.update = function () {

  	const mesh = this.children[ 0 ];

  	if ( this.color !== undefined ) {

  		this.material.color.set( this.color );

  	} else {

  		const colors = mesh.geometry.getAttribute( 'color' );

  		_color1.copy( this.light.color );
  		_color2.copy( this.light.groundColor );

  		for ( let i = 0, l = colors.count; i < l; i ++ ) {

  			const color = ( i < ( l / 2 ) ) ? _color1 : _color2;

  			colors.setXYZ( i, color.r, color.g, color.b );

  		}

  		colors.needsUpdate = true;

  	}

  	mesh.lookAt( _vector$a.setFromMatrixPosition( this.light.matrixWorld ).negate() );

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function GridHelper( size, divisions, color1, color2 ) {

  	size = size || 10;
  	divisions = divisions || 10;
  	color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
  	color2 = new Color( color2 !== undefined ? color2 : 0x888888 );

  	const center = divisions / 2;
  	const step = size / divisions;
  	const halfSize = size / 2;

  	const vertices = [], colors = [];

  	for ( let i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) {

  		vertices.push( - halfSize, 0, k, halfSize, 0, k );
  		vertices.push( k, 0, - halfSize, k, 0, halfSize );

  		const color = i === center ? color1 : color2;

  		color.toArray( colors, j ); j += 3;
  		color.toArray( colors, j ); j += 3;
  		color.toArray( colors, j ); j += 3;
  		color.toArray( colors, j ); j += 3;

  	}

  	const geometry = new BufferGeometry();
  	geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );

  	LineSegments.call( this, geometry, material );

  	this.type = 'GridHelper';

  }

  GridHelper.prototype = Object.assign( Object.create( LineSegments.prototype ), {

  	constructor: GridHelper,

  	copy: function ( source ) {

  		LineSegments.prototype.copy.call( this, source );

  		this.geometry.copy( source.geometry );
  		this.material.copy( source.material );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / http://github.com/Mugen87
   * @author Hectate / http://www.github.com/Hectate
   */

  function PolarGridHelper( radius, radials, circles, divisions, color1, color2 ) {

  	radius = radius || 10;
  	radials = radials || 16;
  	circles = circles || 8;
  	divisions = divisions || 64;
  	color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
  	color2 = new Color( color2 !== undefined ? color2 : 0x888888 );

  	const vertices = [];
  	const colors = [];

  	// create the radials

  	for ( let i = 0; i <= radials; i ++ ) {

  		const v = ( i / radials ) * ( Math.PI * 2 );

  		const x = Math.sin( v ) * radius;
  		const z = Math.cos( v ) * radius;

  		vertices.push( 0, 0, 0 );
  		vertices.push( x, 0, z );

  		const color = ( i & 1 ) ? color1 : color2;

  		colors.push( color.r, color.g, color.b );
  		colors.push( color.r, color.g, color.b );

  	}

  	// create the circles

  	for ( let i = 0; i <= circles; i ++ ) {

  		const color = ( i & 1 ) ? color1 : color2;

  		const r = radius - ( radius / circles * i );

  		for ( let j = 0; j < divisions; j ++ ) {

  			// first vertex

  			let v = ( j / divisions ) * ( Math.PI * 2 );

  			let x = Math.sin( v ) * r;
  			let z = Math.cos( v ) * r;

  			vertices.push( x, 0, z );
  			colors.push( color.r, color.g, color.b );

  			// second vertex

  			v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 );

  			x = Math.sin( v ) * r;
  			z = Math.cos( v ) * r;

  			vertices.push( x, 0, z );
  			colors.push( color.r, color.g, color.b );

  		}

  	}

  	const geometry = new BufferGeometry();
  	geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );

  	LineSegments.call( this, geometry, material );

  	this.type = 'PolarGridHelper';

  }

  PolarGridHelper.prototype = Object.create( LineSegments.prototype );
  PolarGridHelper.prototype.constructor = PolarGridHelper;

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  const _v1$5 = new Vector3();
  const _v2$3 = new Vector3();
  const _v3$1 = new Vector3();

  function DirectionalLightHelper( light, size, color ) {

  	Object3D.call( this );

  	this.light = light;
  	this.light.updateMatrixWorld();

  	this.matrix = light.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.color = color;

  	if ( size === undefined ) size = 1;

  	let geometry = new BufferGeometry();
  	geometry.setAttribute( 'position', new Float32BufferAttribute( [
  		- size, size, 0,
  		size, size, 0,
  		size, - size, 0,
  		- size, - size, 0,
  		- size, size, 0
  	], 3 ) );

  	const material = new LineBasicMaterial( { fog: false, toneMapped: false } );

  	this.lightPlane = new Line( geometry, material );
  	this.add( this.lightPlane );

  	geometry = new BufferGeometry();
  	geometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) );

  	this.targetLine = new Line( geometry, material );
  	this.add( this.targetLine );

  	this.update();

  }

  DirectionalLightHelper.prototype = Object.create( Object3D.prototype );
  DirectionalLightHelper.prototype.constructor = DirectionalLightHelper;

  DirectionalLightHelper.prototype.dispose = function () {

  	this.lightPlane.geometry.dispose();
  	this.lightPlane.material.dispose();
  	this.targetLine.geometry.dispose();
  	this.targetLine.material.dispose();

  };

  DirectionalLightHelper.prototype.update = function () {

  	_v1$5.setFromMatrixPosition( this.light.matrixWorld );
  	_v2$3.setFromMatrixPosition( this.light.target.matrixWorld );
  	_v3$1.subVectors( _v2$3, _v1$5 );

  	this.lightPlane.lookAt( _v2$3 );

  	if ( this.color !== undefined ) {

  		this.lightPlane.material.color.set( this.color );
  		this.targetLine.material.color.set( this.color );

  	} else {

  		this.lightPlane.material.color.copy( this.light.color );
  		this.targetLine.material.color.copy( this.light.color );

  	}

  	this.targetLine.lookAt( _v2$3 );
  	this.targetLine.scale.z = _v3$1.length();

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author Mugen87 / https://github.com/Mugen87
   *
   *	- shows frustum, line of sight and up of the camera
   *	- suitable for fast updates
   * 	- based on frustum visualization in lightgl.js shadowmap example
   *		http://evanw.github.com/lightgl.js/tests/shadowmap.html
   */

  const _vector$b = new Vector3();
  const _camera = new Camera();

  function CameraHelper( camera ) {

  	const geometry = new BufferGeometry();
  	const material = new LineBasicMaterial( { color: 0xffffff, vertexColors: true, toneMapped: false } );

  	const vertices = [];
  	const colors = [];

  	const pointMap = {};

  	// colors

  	const colorFrustum = new Color( 0xffaa00 );
  	const colorCone = new Color( 0xff0000 );
  	const colorUp = new Color( 0x00aaff );
  	const colorTarget = new Color( 0xffffff );
  	const colorCross = new Color( 0x333333 );

  	// near

  	addLine( 'n1', 'n2', colorFrustum );
  	addLine( 'n2', 'n4', colorFrustum );
  	addLine( 'n4', 'n3', colorFrustum );
  	addLine( 'n3', 'n1', colorFrustum );

  	// far

  	addLine( 'f1', 'f2', colorFrustum );
  	addLine( 'f2', 'f4', colorFrustum );
  	addLine( 'f4', 'f3', colorFrustum );
  	addLine( 'f3', 'f1', colorFrustum );

  	// sides

  	addLine( 'n1', 'f1', colorFrustum );
  	addLine( 'n2', 'f2', colorFrustum );
  	addLine( 'n3', 'f3', colorFrustum );
  	addLine( 'n4', 'f4', colorFrustum );

  	// cone

  	addLine( 'p', 'n1', colorCone );
  	addLine( 'p', 'n2', colorCone );
  	addLine( 'p', 'n3', colorCone );
  	addLine( 'p', 'n4', colorCone );

  	// up

  	addLine( 'u1', 'u2', colorUp );
  	addLine( 'u2', 'u3', colorUp );
  	addLine( 'u3', 'u1', colorUp );

  	// target

  	addLine( 'c', 't', colorTarget );
  	addLine( 'p', 'c', colorCross );

  	// cross

  	addLine( 'cn1', 'cn2', colorCross );
  	addLine( 'cn3', 'cn4', colorCross );

  	addLine( 'cf1', 'cf2', colorCross );
  	addLine( 'cf3', 'cf4', colorCross );

  	function addLine( a, b, color ) {

  		addPoint( a, color );
  		addPoint( b, color );

  	}

  	function addPoint( id, color ) {

  		vertices.push( 0, 0, 0 );
  		colors.push( color.r, color.g, color.b );

  		if ( pointMap[ id ] === undefined ) {

  			pointMap[ id ] = [];

  		}

  		pointMap[ id ].push( ( vertices.length / 3 ) - 1 );

  	}

  	geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	LineSegments.call( this, geometry, material );

  	this.type = 'CameraHelper';

  	this.camera = camera;
  	if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix();

  	this.matrix = camera.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.pointMap = pointMap;

  	this.update();

  }

  CameraHelper.prototype = Object.create( LineSegments.prototype );
  CameraHelper.prototype.constructor = CameraHelper;

  CameraHelper.prototype.update = function () {

  	const geometry = this.geometry;
  	const pointMap = this.pointMap;

  	const w = 1, h = 1;

  	// we need just camera projection matrix inverse
  	// world matrix must be identity

  	_camera.projectionMatrixInverse.copy( this.camera.projectionMatrixInverse );

  	// center / target

  	setPoint( 'c', pointMap, geometry, _camera, 0, 0, - 1 );
  	setPoint( 't', pointMap, geometry, _camera, 0, 0, 1 );

  	// near

  	setPoint( 'n1', pointMap, geometry, _camera, - w, - h, - 1 );
  	setPoint( 'n2', pointMap, geometry, _camera, w, - h, - 1 );
  	setPoint( 'n3', pointMap, geometry, _camera, - w, h, - 1 );
  	setPoint( 'n4', pointMap, geometry, _camera, w, h, - 1 );

  	// far

  	setPoint( 'f1', pointMap, geometry, _camera, - w, - h, 1 );
  	setPoint( 'f2', pointMap, geometry, _camera, w, - h, 1 );
  	setPoint( 'f3', pointMap, geometry, _camera, - w, h, 1 );
  	setPoint( 'f4', pointMap, geometry, _camera, w, h, 1 );

  	// up

  	setPoint( 'u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, - 1 );
  	setPoint( 'u2', pointMap, geometry, _camera, - w * 0.7, h * 1.1, - 1 );
  	setPoint( 'u3', pointMap, geometry, _camera, 0, h * 2, - 1 );

  	// cross

  	setPoint( 'cf1', pointMap, geometry, _camera, - w, 0, 1 );
  	setPoint( 'cf2', pointMap, geometry, _camera, w, 0, 1 );
  	setPoint( 'cf3', pointMap, geometry, _camera, 0, - h, 1 );
  	setPoint( 'cf4', pointMap, geometry, _camera, 0, h, 1 );

  	setPoint( 'cn1', pointMap, geometry, _camera, - w, 0, - 1 );
  	setPoint( 'cn2', pointMap, geometry, _camera, w, 0, - 1 );
  	setPoint( 'cn3', pointMap, geometry, _camera, 0, - h, - 1 );
  	setPoint( 'cn4', pointMap, geometry, _camera, 0, h, - 1 );

  	geometry.getAttribute( 'position' ).needsUpdate = true;

  };

  function setPoint( point, pointMap, geometry, camera, x, y, z ) {

  	_vector$b.set( x, y, z ).unproject( camera );

  	const points = pointMap[ point ];

  	if ( points !== undefined ) {

  		const position = geometry.getAttribute( 'position' );

  		for ( let i = 0, l = points.length; i < l; i ++ ) {

  			position.setXYZ( points[ i ], _vector$b.x, _vector$b.y, _vector$b.z );

  		}

  	}

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / http://github.com/Mugen87
   */

  const _box$3 = new Box3();

  function BoxHelper( object, color ) {

  	this.object = object;

  	if ( color === undefined ) color = 0xffff00;

  	const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
  	const positions = new Float32Array( 8 * 3 );

  	const geometry = new BufferGeometry();
  	geometry.setIndex( new BufferAttribute( indices, 1 ) );
  	geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );

  	LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );

  	this.type = 'BoxHelper';

  	this.matrixAutoUpdate = false;

  	this.update();

  }

  BoxHelper.prototype = Object.create( LineSegments.prototype );
  BoxHelper.prototype.constructor = BoxHelper;

  BoxHelper.prototype.update = function ( object ) {

  	if ( object !== undefined ) {

  		console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' );

  	}

  	if ( this.object !== undefined ) {

  		_box$3.setFromObject( this.object );

  	}

  	if ( _box$3.isEmpty() ) return;

  	const min = _box$3.min;
  	const max = _box$3.max;

  	/*
  	  5____4
  	1/___0/|
  	| 6__|_7
  	2/___3/

  	0: max.x, max.y, max.z
  	1: min.x, max.y, max.z
  	2: min.x, min.y, max.z
  	3: max.x, min.y, max.z
  	4: max.x, max.y, min.z
  	5: min.x, max.y, min.z
  	6: min.x, min.y, min.z
  	7: max.x, min.y, min.z
  	*/

  	const position = this.geometry.attributes.position;
  	const array = position.array;

  	array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z;
  	array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z;
  	array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z;
  	array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z;
  	array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z;
  	array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z;
  	array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z;
  	array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;

  	position.needsUpdate = true;

  	this.geometry.computeBoundingSphere();


  };

  BoxHelper.prototype.setFromObject = function ( object ) {

  	this.object = object;
  	this.update();

  	return this;

  };

  BoxHelper.prototype.copy = function ( source ) {

  	LineSegments.prototype.copy.call( this, source );

  	this.object = source.object;

  	return this;

  };

  BoxHelper.prototype.clone = function () {

  	return new this.constructor().copy( this );

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   */

  function Box3Helper( box, color ) {

  	this.type = 'Box3Helper';

  	this.box = box;

  	color = color || 0xffff00;

  	const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );

  	const positions = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, - 1, - 1, - 1, 1, - 1, - 1 ];

  	const geometry = new BufferGeometry();

  	geometry.setIndex( new BufferAttribute( indices, 1 ) );

  	geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

  	LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );

  	this.type = 'Box3Helper';

  	this.geometry.computeBoundingSphere();

  }

  Box3Helper.prototype = Object.create( LineSegments.prototype );
  Box3Helper.prototype.constructor = Box3Helper;

  Box3Helper.prototype.updateMatrixWorld = function ( force ) {

  	const box = this.box;

  	if ( box.isEmpty() ) return;

  	box.getCenter( this.position );

  	box.getSize( this.scale );

  	this.scale.multiplyScalar( 0.5 );

  	Object3D.prototype.updateMatrixWorld.call( this, force );

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   */

  function PlaneHelper( plane, size, hex ) {

  	this.plane = plane;

  	this.size = ( size === undefined ) ? 1 : size;

  	const color = ( hex !== undefined ) ? hex : 0xffff00;

  	const positions = [ 1, - 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 ];

  	const geometry = new BufferGeometry();
  	geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
  	geometry.computeBoundingSphere();

  	Line.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );

  	this.type = 'PlaneHelper';

  	//

  	const positions2 = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, - 1, 1 ];

  	const geometry2 = new BufferGeometry();
  	geometry2.setAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) );
  	geometry2.computeBoundingSphere();

  	this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false } ) ) );

  }

  PlaneHelper.prototype = Object.create( Line.prototype );
  PlaneHelper.prototype.constructor = PlaneHelper;

  PlaneHelper.prototype.updateMatrixWorld = function ( force ) {

  	let scale = - this.plane.constant;

  	if ( Math.abs( scale ) < 1e-8 ) scale = 1e-8; // sign does not matter

  	this.scale.set( 0.5 * this.size, 0.5 * this.size, scale );

  	this.children[ 0 ].material.side = ( scale < 0 ) ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here

  	this.lookAt( this.plane.normal );

  	Object3D.prototype.updateMatrixWorld.call( this, force );

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   * @author zz85 / http://github.com/zz85
   * @author bhouston / http://clara.io
   *
   * Creates an arrow for visualizing directions
   *
   * Parameters:
   *  dir - Vector3
   *  origin - Vector3
   *  length - Number
   *  color - color in hex value
   *  headLength - Number
   *  headWidth - Number
   */

  const _axis = new Vector3();
  let _lineGeometry, _coneGeometry;

  function ArrowHelper( dir, origin, length, color, headLength, headWidth ) {

  	// dir is assumed to be normalized

  	Object3D.call( this );

  	this.type = 'ArrowHelper';

  	if ( dir === undefined ) dir = new Vector3( 0, 0, 1 );
  	if ( origin === undefined ) origin = new Vector3( 0, 0, 0 );
  	if ( length === undefined ) length = 1;
  	if ( color === undefined ) color = 0xffff00;
  	if ( headLength === undefined ) headLength = 0.2 * length;
  	if ( headWidth === undefined ) headWidth = 0.2 * headLength;

  	if ( _lineGeometry === undefined ) {

  		_lineGeometry = new BufferGeometry();
  		_lineGeometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) );

  		_coneGeometry = new CylinderBufferGeometry( 0, 0.5, 1, 5, 1 );
  		_coneGeometry.translate( 0, - 0.5, 0 );

  	}

  	this.position.copy( origin );

  	this.line = new Line( _lineGeometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
  	this.line.matrixAutoUpdate = false;
  	this.add( this.line );

  	this.cone = new Mesh( _coneGeometry, new MeshBasicMaterial( { color: color, toneMapped: false } ) );
  	this.cone.matrixAutoUpdate = false;
  	this.add( this.cone );

  	this.setDirection( dir );
  	this.setLength( length, headLength, headWidth );

  }

  ArrowHelper.prototype = Object.create( Object3D.prototype );
  ArrowHelper.prototype.constructor = ArrowHelper;

  ArrowHelper.prototype.setDirection = function ( dir ) {

  	// dir is assumed to be normalized

  	if ( dir.y > 0.99999 ) {

  		this.quaternion.set( 0, 0, 0, 1 );

  	} else if ( dir.y < - 0.99999 ) {

  		this.quaternion.set( 1, 0, 0, 0 );

  	} else {

  		_axis.set( dir.z, 0, - dir.x ).normalize();

  		const radians = Math.acos( dir.y );

  		this.quaternion.setFromAxisAngle( _axis, radians );

  	}

  };

  ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) {

  	if ( headLength === undefined ) headLength = 0.2 * length;
  	if ( headWidth === undefined ) headWidth = 0.2 * headLength;

  	this.line.scale.set( 1, Math.max( 0.0001, length - headLength ), 1 ); // see #17458
  	this.line.updateMatrix();

  	this.cone.scale.set( headWidth, headLength, headWidth );
  	this.cone.position.y = length;
  	this.cone.updateMatrix();

  };

  ArrowHelper.prototype.setColor = function ( color ) {

  	this.line.material.color.set( color );
  	this.cone.material.color.set( color );

  };

  ArrowHelper.prototype.copy = function ( source ) {

  	Object3D.prototype.copy.call( this, source, false );

  	this.line.copy( source.line );
  	this.cone.copy( source.cone );

  	return this;

  };

  ArrowHelper.prototype.clone = function () {

  	return new this.constructor().copy( this );

  };

  /**
   * @author sroucheray / http://sroucheray.org/
   * @author mrdoob / http://mrdoob.com/
   */

  function AxesHelper( size ) {

  	size = size || 1;

  	const vertices = [
  		0, 0, 0,	size, 0, 0,
  		0, 0, 0,	0, size, 0,
  		0, 0, 0,	0, 0, size
  	];

  	const colors = [
  		1, 0, 0,	1, 0.6, 0,
  		0, 1, 0,	0.6, 1, 0,
  		0, 0, 1,	0, 0.6, 1
  	];

  	const geometry = new BufferGeometry();
  	geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );

  	LineSegments.call( this, geometry, material );

  	this.type = 'AxesHelper';

  }

  AxesHelper.prototype = Object.create( LineSegments.prototype );
  AxesHelper.prototype.constructor = AxesHelper;

  /**
   * @author Emmett Lalish / elalish
   *
   * This class generates a Prefiltered, Mipmapped Radiance Environment Map
   * (PMREM) from a cubeMap environment texture. This allows different levels of
   * blur to be quickly accessed based on material roughness. It is packed into a
   * special CubeUV format that allows us to perform custom interpolation so that
   * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
   * chain, it only goes down to the LOD_MIN level (above), and then creates extra
   * even more filtered 'mips' at the same LOD_MIN resolution, associated with
   * higher roughness levels. In this way we maintain resolution to smoothly
   * interpolate diffuse lighting while limiting sampling computation.
   */

  const LOD_MIN = 4;
  const LOD_MAX = 8;

  // The standard deviations (radians) associated with the extra mips. These are
  // chosen to approximate a Trowbridge-Reitz distribution function times the
  // geometric shadowing function. These sigma values squared must match the
  // variance #defines in cube_uv_reflection_fragment.glsl.js.
  const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];

  const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;

  const _flatCamera = new OrthographicCamera();
  const { _lodPlanes, _sizeLods, _sigmas } = _createPlanes();

  function _createPlanes() {

  	const _lodPlanes = [];
  	const _sizeLods = [];
  	const _sigmas = [];

  	let lod = LOD_MAX;

  	for ( let i = 0; i < TOTAL_LODS; i ++ ) {

  		const sizeLod = Math.pow( 2, lod );
  		_sizeLods.push( sizeLod );
  		let sigma = 1.0 / sizeLod;

  		if ( i > LOD_MAX - LOD_MIN ) {

  			sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ];

  		} else if ( i == 0 ) {

  			sigma = 0;

  		}

  		_sigmas.push( sigma );

  		const texelSize = 1.0 / ( sizeLod - 1 );
  		const min = - texelSize / 2;
  		const max = 1 + texelSize / 2;
  		const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];

  		const cubeFaces = 6;
  		const vertices = 6;
  		const positionSize = 3;
  		const uvSize = 2;
  		const faceIndexSize = 1;

  		const position = new Float32Array( positionSize * vertices * cubeFaces );
  		const uv = new Float32Array( uvSize * vertices * cubeFaces );
  		const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );

  		for ( let face = 0; face < cubeFaces; face ++ ) {

  			const x = ( face % 3 ) * 2 / 3 - 1;
  			const y = face > 2 ? 0 : - 1;
  			const coordinates = [
  				x, y, 0,
  				x + 2 / 3, y, 0,
  				x + 2 / 3, y + 1, 0,
  				x, y, 0,
  				x + 2 / 3, y + 1, 0,
  				x, y + 1, 0
  			];
  			position.set( coordinates, positionSize * vertices * face );
  			uv.set( uv1, uvSize * vertices * face );
  			const fill = [ face, face, face, face, face, face ];
  			faceIndex.set( fill, faceIndexSize * vertices * face );

  		}

  		const planes = new BufferGeometry();
  		planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
  		planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
  		planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
  		_lodPlanes.push( planes );

  		if ( lod > LOD_MIN ) {

  			lod --;

  		}

  	}

  	return { _lodPlanes, _sizeLods, _sigmas };

  }

  //

  Curve.create = function ( construct, getPoint ) {

  	console.log( 'THREE.Curve.create() has been deprecated' );

  	construct.prototype = Object.create( Curve.prototype );
  	construct.prototype.constructor = construct;
  	construct.prototype.getPoint = getPoint;

  	return construct;

  };

  //

  Object.assign( CurvePath.prototype, {

  	createPointsGeometry: function ( divisions ) {

  		console.warn( 'THREE.CurvePath: .createPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

  		// generate geometry from path points (for Line or Points objects)

  		const pts = this.getPoints( divisions );
  		return this.createGeometry( pts );

  	},

  	createSpacedPointsGeometry: function ( divisions ) {

  		console.warn( 'THREE.CurvePath: .createSpacedPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

  		// generate geometry from equidistant sampling along the path

  		const pts = this.getSpacedPoints( divisions );
  		return this.createGeometry( pts );

  	},

  	createGeometry: function ( points ) {

  		console.warn( 'THREE.CurvePath: .createGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

  		const geometry = new Geometry();

  		for ( let i = 0, l = points.length; i < l; i ++ ) {

  			const point = points[ i ];
  			geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );

  		}

  		return geometry;

  	}

  } );

  //

  Object.assign( Path.prototype, {

  	fromPoints: function ( points ) {

  		console.warn( 'THREE.Path: .fromPoints() has been renamed to .setFromPoints().' );
  		return this.setFromPoints( points );

  	}

  } );

  //

  function Spline( points ) {

  	console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' );

  	CatmullRomCurve3.call( this, points );
  	this.type = 'catmullrom';

  }

  Spline.prototype = Object.create( CatmullRomCurve3.prototype );

  Object.assign( Spline.prototype, {

  	initFromArray: function ( /* a */ ) {

  		console.error( 'THREE.Spline: .initFromArray() has been removed.' );

  	},
  	getControlPointsArray: function ( /* optionalTarget */ ) {

  		console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' );

  	},
  	reparametrizeByArcLength: function ( /* samplingCoef */ ) {

  		console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' );

  	}

  } );

  GridHelper.prototype.setColors = function () {

  	console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' );

  };

  SkeletonHelper.prototype.update = function () {

  	console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' );

  };

  //

  Object.assign( Loader.prototype, {

  	extractUrlBase: function ( url ) {

  		console.warn( 'THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.' );
  		return LoaderUtils.extractUrlBase( url );

  	}

  } );

  Loader.Handlers = {

  	add: function ( /* regex, loader */ ) {

  		console.error( 'THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.' );

  	},

  	get: function ( /* file */ ) {

  		console.error( 'THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.' );

  	}

  };

  Object.assign( ObjectLoader.prototype, {

  	setTexturePath: function ( value ) {

  		console.warn( 'THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().' );
  		return this.setResourcePath( value );

  	}

  } );

  //

  Object.assign( Box2.prototype, {

  	center: function ( optionalTarget ) {

  		console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' );
  		return this.getCenter( optionalTarget );

  	},
  	empty: function () {

  		console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' );
  		return this.isEmpty();

  	},
  	isIntersectionBox: function ( box ) {

  		console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' );
  		return this.intersectsBox( box );

  	},
  	size: function ( optionalTarget ) {

  		console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' );
  		return this.getSize( optionalTarget );

  	}
  } );

  Object.assign( Box3.prototype, {

  	center: function ( optionalTarget ) {

  		console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' );
  		return this.getCenter( optionalTarget );

  	},
  	empty: function () {

  		console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' );
  		return this.isEmpty();

  	},
  	isIntersectionBox: function ( box ) {

  		console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' );
  		return this.intersectsBox( box );

  	},
  	isIntersectionSphere: function ( sphere ) {

  		console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
  		return this.intersectsSphere( sphere );

  	},
  	size: function ( optionalTarget ) {

  		console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' );
  		return this.getSize( optionalTarget );

  	}
  } );

  Object.assign( Sphere.prototype, {

  	empty: function () {

  		console.warn( 'THREE.Sphere: .empty() has been renamed to .isEmpty().' );
  		return this.isEmpty();

  	},

  } );

  Frustum.prototype.setFromMatrix = function ( m ) {

  	console.warn( 'THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().' );
  	return this.setFromProjectionMatrix( m );

  };

  Line3.prototype.center = function ( optionalTarget ) {

  	console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' );
  	return this.getCenter( optionalTarget );

  };

  Object.assign( MathUtils, {

  	random16: function () {

  		console.warn( 'THREE.Math: .random16() has been deprecated. Use Math.random() instead.' );
  		return Math.random();

  	},

  	nearestPowerOfTwo: function ( value ) {

  		console.warn( 'THREE.Math: .nearestPowerOfTwo() has been renamed to .floorPowerOfTwo().' );
  		return MathUtils.floorPowerOfTwo( value );

  	},

  	nextPowerOfTwo: function ( value ) {

  		console.warn( 'THREE.Math: .nextPowerOfTwo() has been renamed to .ceilPowerOfTwo().' );
  		return MathUtils.ceilPowerOfTwo( value );

  	}

  } );

  Object.assign( Matrix3.prototype, {

  	flattenToArrayOffset: function ( array, offset ) {

  		console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
  		return this.toArray( array, offset );

  	},
  	multiplyVector3: function ( vector ) {

  		console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' );
  		return vector.applyMatrix3( this );

  	},
  	multiplyVector3Array: function ( /* a */ ) {

  		console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.' );

  	},
  	applyToBufferAttribute: function ( attribute ) {

  		console.warn( 'THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.' );
  		return attribute.applyMatrix3( this );

  	},
  	applyToVector3Array: function ( /* array, offset, length */ ) {

  		console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' );

  	}

  } );

  Object.assign( Matrix4.prototype, {

  	extractPosition: function ( m ) {

  		console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' );
  		return this.copyPosition( m );

  	},
  	flattenToArrayOffset: function ( array, offset ) {

  		console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
  		return this.toArray( array, offset );

  	},
  	getPosition: function () {

  		console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
  		return new Vector3().setFromMatrixColumn( this, 3 );

  	},
  	setRotationFromQuaternion: function ( q ) {

  		console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' );
  		return this.makeRotationFromQuaternion( q );

  	},
  	multiplyToArray: function () {

  		console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' );

  	},
  	multiplyVector3: function ( vector ) {

  		console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
  		return vector.applyMatrix4( this );

  	},
  	multiplyVector4: function ( vector ) {

  		console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
  		return vector.applyMatrix4( this );

  	},
  	multiplyVector3Array: function ( /* a */ ) {

  		console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.' );

  	},
  	rotateAxis: function ( v ) {

  		console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' );
  		v.transformDirection( this );

  	},
  	crossVector: function ( vector ) {

  		console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
  		return vector.applyMatrix4( this );

  	},
  	translate: function () {

  		console.error( 'THREE.Matrix4: .translate() has been removed.' );

  	},
  	rotateX: function () {

  		console.error( 'THREE.Matrix4: .rotateX() has been removed.' );

  	},
  	rotateY: function () {

  		console.error( 'THREE.Matrix4: .rotateY() has been removed.' );

  	},
  	rotateZ: function () {

  		console.error( 'THREE.Matrix4: .rotateZ() has been removed.' );

  	},
  	rotateByAxis: function () {

  		console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' );

  	},
  	applyToBufferAttribute: function ( attribute ) {

  		console.warn( 'THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.' );
  		return attribute.applyMatrix4( this );

  	},
  	applyToVector3Array: function ( /* array, offset, length */ ) {

  		console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' );

  	},
  	makeFrustum: function ( left, right, bottom, top, near, far ) {

  		console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' );
  		return this.makePerspective( left, right, top, bottom, near, far );

  	}

  } );

  Plane.prototype.isIntersectionLine = function ( line ) {

  	console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' );
  	return this.intersectsLine( line );

  };

  Quaternion.prototype.multiplyVector3 = function ( vector ) {

  	console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' );
  	return vector.applyQuaternion( this );

  };

  Object.assign( Ray.prototype, {

  	isIntersectionBox: function ( box ) {

  		console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' );
  		return this.intersectsBox( box );

  	},
  	isIntersectionPlane: function ( plane ) {

  		console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' );
  		return this.intersectsPlane( plane );

  	},
  	isIntersectionSphere: function ( sphere ) {

  		console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
  		return this.intersectsSphere( sphere );

  	}

  } );

  Object.assign( Triangle.prototype, {

  	area: function () {

  		console.warn( 'THREE.Triangle: .area() has been renamed to .getArea().' );
  		return this.getArea();

  	},
  	barycoordFromPoint: function ( point, target ) {

  		console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' );
  		return this.getBarycoord( point, target );

  	},
  	midpoint: function ( target ) {

  		console.warn( 'THREE.Triangle: .midpoint() has been renamed to .getMidpoint().' );
  		return this.getMidpoint( target );

  	},
  	normal: function ( target ) {

  		console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' );
  		return this.getNormal( target );

  	},
  	plane: function ( target ) {

  		console.warn( 'THREE.Triangle: .plane() has been renamed to .getPlane().' );
  		return this.getPlane( target );

  	}

  } );

  Object.assign( Triangle, {

  	barycoordFromPoint: function ( point, a, b, c, target ) {

  		console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' );
  		return Triangle.getBarycoord( point, a, b, c, target );

  	},
  	normal: function ( a, b, c, target ) {

  		console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' );
  		return Triangle.getNormal( a, b, c, target );

  	}

  } );

  Object.assign( Shape.prototype, {

  	extractAllPoints: function ( divisions ) {

  		console.warn( 'THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.' );
  		return this.extractPoints( divisions );

  	},
  	extrude: function ( options ) {

  		console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' );
  		return new ExtrudeGeometry( this, options );

  	},
  	makeGeometry: function ( options ) {

  		console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' );
  		return new ShapeGeometry( this, options );

  	}

  } );

  Object.assign( Vector2.prototype, {

  	fromAttribute: function ( attribute, index, offset ) {

  		console.warn( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' );
  		return this.fromBufferAttribute( attribute, index, offset );

  	},
  	distanceToManhattan: function ( v ) {

  		console.warn( 'THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' );
  		return this.manhattanDistanceTo( v );

  	},
  	lengthManhattan: function () {

  		console.warn( 'THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().' );
  		return this.manhattanLength();

  	}

  } );

  Object.assign( Vector3.prototype, {

  	setEulerFromRotationMatrix: function () {

  		console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' );

  	},
  	setEulerFromQuaternion: function () {

  		console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' );

  	},
  	getPositionFromMatrix: function ( m ) {

  		console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' );
  		return this.setFromMatrixPosition( m );

  	},
  	getScaleFromMatrix: function ( m ) {

  		console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' );
  		return this.setFromMatrixScale( m );

  	},
  	getColumnFromMatrix: function ( index, matrix ) {

  		console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' );
  		return this.setFromMatrixColumn( matrix, index );

  	},
  	applyProjection: function ( m ) {

  		console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' );
  		return this.applyMatrix4( m );

  	},
  	fromAttribute: function ( attribute, index, offset ) {

  		console.warn( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' );
  		return this.fromBufferAttribute( attribute, index, offset );

  	},
  	distanceToManhattan: function ( v ) {

  		console.warn( 'THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' );
  		return this.manhattanDistanceTo( v );

  	},
  	lengthManhattan: function () {

  		console.warn( 'THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().' );
  		return this.manhattanLength();

  	}

  } );

  Object.assign( Vector4.prototype, {

  	fromAttribute: function ( attribute, index, offset ) {

  		console.warn( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' );
  		return this.fromBufferAttribute( attribute, index, offset );

  	},
  	lengthManhattan: function () {

  		console.warn( 'THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().' );
  		return this.manhattanLength();

  	}

  } );

  //

  Object.assign( Geometry.prototype, {

  	computeTangents: function () {

  		console.error( 'THREE.Geometry: .computeTangents() has been removed.' );

  	},
  	computeLineDistances: function () {

  		console.error( 'THREE.Geometry: .computeLineDistances() has been removed. Use THREE.Line.computeLineDistances() instead.' );

  	},
  	applyMatrix: function ( matrix ) {

  		console.warn( 'THREE.Geometry: .applyMatrix() has been renamed to .applyMatrix4().' );
  		return this.applyMatrix4( matrix );

  	}

  } );

  Object.assign( Object3D.prototype, {

  	getChildByName: function ( name ) {

  		console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' );
  		return this.getObjectByName( name );

  	},
  	renderDepth: function () {

  		console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' );

  	},
  	translate: function ( distance, axis ) {

  		console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' );
  		return this.translateOnAxis( axis, distance );

  	},
  	getWorldRotation: function () {

  		console.error( 'THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.' );

  	},
  	applyMatrix: function ( matrix ) {

  		console.warn( 'THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().' );
  		return this.applyMatrix4( matrix );

  	}

  } );

  Object.defineProperties( Object3D.prototype, {

  	eulerOrder: {
  		get: function () {

  			console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
  			return this.rotation.order;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
  			this.rotation.order = value;

  		}
  	},
  	useQuaternion: {
  		get: function () {

  			console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

  		},
  		set: function () {

  			console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

  		}
  	}

  } );

  Object.assign( Mesh.prototype, {

  	setDrawMode: function () {

  		console.error( 'THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' );

  	},

  } );

  Object.defineProperties( Mesh.prototype, {

  	drawMode: {
  		get: function () {

  			console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.' );
  			return TrianglesDrawMode;

  		},
  		set: function () {

  			console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' );

  		}
  	}

  } );

  Object.defineProperties( LOD.prototype, {

  	objects: {
  		get: function () {

  			console.warn( 'THREE.LOD: .objects has been renamed to .levels.' );
  			return this.levels;

  		}
  	}

  } );

  Object.defineProperty( Skeleton.prototype, 'useVertexTexture', {

  	get: function () {

  		console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

  	},
  	set: function () {

  		console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

  	}

  } );

  SkinnedMesh.prototype.initBones = function () {

  	console.error( 'THREE.SkinnedMesh: initBones() has been removed.' );

  };

  Object.defineProperty( Curve.prototype, '__arcLengthDivisions', {

  	get: function () {

  		console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
  		return this.arcLengthDivisions;

  	},
  	set: function ( value ) {

  		console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
  		this.arcLengthDivisions = value;

  	}

  } );

  //

  PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) {

  	console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " +
  			"Use .setFocalLength and .filmGauge for a photographic setup." );

  	if ( filmGauge !== undefined ) this.filmGauge = filmGauge;
  	this.setFocalLength( focalLength );

  };

  //

  Object.defineProperties( Light.prototype, {
  	onlyShadow: {
  		set: function () {

  			console.warn( 'THREE.Light: .onlyShadow has been removed.' );

  		}
  	},
  	shadowCameraFov: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' );
  			this.shadow.camera.fov = value;

  		}
  	},
  	shadowCameraLeft: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' );
  			this.shadow.camera.left = value;

  		}
  	},
  	shadowCameraRight: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' );
  			this.shadow.camera.right = value;

  		}
  	},
  	shadowCameraTop: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' );
  			this.shadow.camera.top = value;

  		}
  	},
  	shadowCameraBottom: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' );
  			this.shadow.camera.bottom = value;

  		}
  	},
  	shadowCameraNear: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' );
  			this.shadow.camera.near = value;

  		}
  	},
  	shadowCameraFar: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' );
  			this.shadow.camera.far = value;

  		}
  	},
  	shadowCameraVisible: {
  		set: function () {

  			console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' );

  		}
  	},
  	shadowBias: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' );
  			this.shadow.bias = value;

  		}
  	},
  	shadowDarkness: {
  		set: function () {

  			console.warn( 'THREE.Light: .shadowDarkness has been removed.' );

  		}
  	},
  	shadowMapWidth: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' );
  			this.shadow.mapSize.width = value;

  		}
  	},
  	shadowMapHeight: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' );
  			this.shadow.mapSize.height = value;

  		}
  	}
  } );

  //

  Object.defineProperties( BufferAttribute.prototype, {

  	length: {
  		get: function () {

  			console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' );
  			return this.array.length;

  		}
  	},
  	dynamic: {
  		get: function () {

  			console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' );
  			return this.usage === DynamicDrawUsage;

  		},
  		set: function ( /* value */ ) {

  			console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' );
  			this.setUsage( DynamicDrawUsage );

  		}
  	}

  } );

  Object.assign( BufferAttribute.prototype, {
  	setDynamic: function ( value ) {

  		console.warn( 'THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.' );
  		this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage );
  		return this;

  	},
  	copyIndicesArray: function ( /* indices */ ) {

  		console.error( 'THREE.BufferAttribute: .copyIndicesArray() has been removed.' );

  	},
  	setArray: function ( /* array */ ) {

  		console.error( 'THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' );

  	}
  } );

  Object.assign( BufferGeometry.prototype, {

  	addIndex: function ( index ) {

  		console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' );
  		this.setIndex( index );

  	},
  	addAttribute: function ( name, attribute ) {

  		console.warn( 'THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().' );

  		if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) {

  			console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );

  			return this.setAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );

  		}

  		if ( name === 'index' ) {

  			console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
  			this.setIndex( attribute );

  			return this;

  		}

  		return this.setAttribute( name, attribute );

  	},
  	addDrawCall: function ( start, count, indexOffset ) {

  		if ( indexOffset !== undefined ) {

  			console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' );

  		}

  		console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' );
  		this.addGroup( start, count );

  	},
  	clearDrawCalls: function () {

  		console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' );
  		this.clearGroups();

  	},
  	computeTangents: function () {

  		console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' );

  	},
  	computeOffsets: function () {

  		console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' );

  	},
  	removeAttribute: function ( name ) {

  		console.warn( 'THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().' );

  		return this.deleteAttribute( name );

  	},
  	applyMatrix: function ( matrix ) {

  		console.warn( 'THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().' );
  		return this.applyMatrix4( matrix );

  	}

  } );

  Object.defineProperties( BufferGeometry.prototype, {

  	drawcalls: {
  		get: function () {

  			console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' );
  			return this.groups;

  		}
  	},
  	offsets: {
  		get: function () {

  			console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' );
  			return this.groups;

  		}
  	}

  } );

  Object.defineProperties( InstancedBufferGeometry.prototype, {

  	maxInstancedCount: {
  		get: function () {

  			console.warn( 'THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.' );
  			return this.instanceCount;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.' );
  			this.instanceCount = value;

  		}
  	}

  } );

  Object.defineProperties( Raycaster.prototype, {

  	linePrecision: {
  		get: function () {

  			console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' );
  			return this.params.Line.threshold;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' );
  			this.params.Line.threshold = value;

  		}
  	}

  } );

  Object.defineProperties( InterleavedBuffer.prototype, {

  	dynamic: {
  		get: function () {

  			console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' );
  			return this.usage === DynamicDrawUsage;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' );
  			this.setUsage( value );

  		}
  	}

  } );

  Object.assign( InterleavedBuffer.prototype, {
  	setDynamic: function ( value ) {

  		console.warn( 'THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.' );
  		this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage );
  		return this;

  	},
  	setArray: function ( /* array */ ) {

  		console.error( 'THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' );

  	}
  } );

  //

  Object.assign( ExtrudeBufferGeometry.prototype, {

  	getArrays: function () {

  		console.error( 'THREE.ExtrudeBufferGeometry: .getArrays() has been removed.' );

  	},

  	addShapeList: function () {

  		console.error( 'THREE.ExtrudeBufferGeometry: .addShapeList() has been removed.' );

  	},

  	addShape: function () {

  		console.error( 'THREE.ExtrudeBufferGeometry: .addShape() has been removed.' );

  	}

  } );

  //

  Object.defineProperties( Uniform.prototype, {

  	dynamic: {
  		set: function () {

  			console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' );

  		}
  	},
  	onUpdate: {
  		value: function () {

  			console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' );
  			return this;

  		}
  	}

  } );

  //

  Object.defineProperties( Material.prototype, {

  	wrapAround: {
  		get: function () {

  			console.warn( 'THREE.Material: .wrapAround has been removed.' );

  		},
  		set: function () {

  			console.warn( 'THREE.Material: .wrapAround has been removed.' );

  		}
  	},

  	overdraw: {
  		get: function () {

  			console.warn( 'THREE.Material: .overdraw has been removed.' );

  		},
  		set: function () {

  			console.warn( 'THREE.Material: .overdraw has been removed.' );

  		}
  	},

  	wrapRGB: {
  		get: function () {

  			console.warn( 'THREE.Material: .wrapRGB has been removed.' );
  			return new Color();

  		}
  	},

  	shading: {
  		get: function () {

  			console.error( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
  			this.flatShading = ( value === FlatShading );

  		}
  	},

  	stencilMask: {
  		get: function () {

  			console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' );
  			return this.stencilFuncMask;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' );
  			this.stencilFuncMask = value;

  		}
  	}

  } );

  Object.defineProperties( MeshPhongMaterial.prototype, {

  	metal: {
  		get: function () {

  			console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' );
  			return false;

  		},
  		set: function () {

  			console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' );

  		}
  	}

  } );

  Object.defineProperties( ShaderMaterial.prototype, {

  	derivatives: {
  		get: function () {

  			console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
  			return this.extensions.derivatives;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
  			this.extensions.derivatives = value;

  		}
  	}

  } );

  //

  Object.assign( WebGLRenderer.prototype, {

  	clearTarget: function ( renderTarget, color, depth, stencil ) {

  		console.warn( 'THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.' );
  		this.setRenderTarget( renderTarget );
  		this.clear( color, depth, stencil );

  	},
  	animate: function ( callback ) {

  		console.warn( 'THREE.WebGLRenderer: .animate() is now .setAnimationLoop().' );
  		this.setAnimationLoop( callback );

  	},
  	getCurrentRenderTarget: function () {

  		console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' );
  		return this.getRenderTarget();

  	},
  	getMaxAnisotropy: function () {

  		console.warn( 'THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().' );
  		return this.capabilities.getMaxAnisotropy();

  	},
  	getPrecision: function () {

  		console.warn( 'THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.' );
  		return this.capabilities.precision;

  	},
  	resetGLState: function () {

  		console.warn( 'THREE.WebGLRenderer: .resetGLState() is now .state.reset().' );
  		return this.state.reset();

  	},
  	supportsFloatTextures: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' );
  		return this.extensions.get( 'OES_texture_float' );

  	},
  	supportsHalfFloatTextures: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' );
  		return this.extensions.get( 'OES_texture_half_float' );

  	},
  	supportsStandardDerivatives: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' );
  		return this.extensions.get( 'OES_standard_derivatives' );

  	},
  	supportsCompressedTextureS3TC: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' );
  		return this.extensions.get( 'WEBGL_compressed_texture_s3tc' );

  	},
  	supportsCompressedTexturePVRTC: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' );
  		return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' );

  	},
  	supportsBlendMinMax: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' );
  		return this.extensions.get( 'EXT_blend_minmax' );

  	},
  	supportsVertexTextures: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' );
  		return this.capabilities.vertexTextures;

  	},
  	supportsInstancedArrays: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' );
  		return this.extensions.get( 'ANGLE_instanced_arrays' );

  	},
  	enableScissorTest: function ( boolean ) {

  		console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' );
  		this.setScissorTest( boolean );

  	},
  	initMaterial: function () {

  		console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' );

  	},
  	addPrePlugin: function () {

  		console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' );

  	},
  	addPostPlugin: function () {

  		console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' );

  	},
  	updateShadowMap: function () {

  		console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' );

  	},
  	setFaceCulling: function () {

  		console.warn( 'THREE.WebGLRenderer: .setFaceCulling() has been removed.' );

  	},
  	allocTextureUnit: function () {

  		console.warn( 'THREE.WebGLRenderer: .allocTextureUnit() has been removed.' );

  	},
  	setTexture: function () {

  		console.warn( 'THREE.WebGLRenderer: .setTexture() has been removed.' );

  	},
  	setTexture2D: function () {

  		console.warn( 'THREE.WebGLRenderer: .setTexture2D() has been removed.' );

  	},
  	setTextureCube: function () {

  		console.warn( 'THREE.WebGLRenderer: .setTextureCube() has been removed.' );

  	},
  	getActiveMipMapLevel: function () {

  		console.warn( 'THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().' );
  		return this.getActiveMipmapLevel();

  	}

  } );

  Object.defineProperties( WebGLRenderer.prototype, {

  	shadowMapEnabled: {
  		get: function () {

  			return this.shadowMap.enabled;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' );
  			this.shadowMap.enabled = value;

  		}
  	},
  	shadowMapType: {
  		get: function () {

  			return this.shadowMap.type;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' );
  			this.shadowMap.type = value;

  		}
  	},
  	shadowMapCullFace: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' );
  			return undefined;

  		},
  		set: function ( /* value */ ) {

  			console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' );

  		}
  	},
  	context: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.' );
  			return this.getContext();

  		}
  	},
  	vr: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .vr has been renamed to .xr' );
  			return this.xr;

  		}
  	},
  	gammaInput: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' );
  			return false;

  		},
  		set: function () {

  			console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' );

  		}
  	},
  	gammaOutput: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' );
  			return false;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' );
  			this.outputEncoding = ( value === true ) ? sRGBEncoding : LinearEncoding;

  		}
  	},
  	toneMappingWhitePoint: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' );
  			return 1.0;

  		},
  		set: function () {

  			console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' );

  		}
  	},

  } );

  Object.defineProperties( WebGLShadowMap.prototype, {

  	cullFace: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' );
  			return undefined;

  		},
  		set: function ( /* cullFace */ ) {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' );

  		}
  	},
  	renderReverseSided: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' );
  			return undefined;

  		},
  		set: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' );

  		}
  	},
  	renderSingleSided: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' );
  			return undefined;

  		},
  		set: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' );

  		}
  	}

  } );

  //

  Object.defineProperties( WebGLRenderTarget.prototype, {

  	wrapS: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
  			return this.texture.wrapS;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
  			this.texture.wrapS = value;

  		}
  	},
  	wrapT: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
  			return this.texture.wrapT;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
  			this.texture.wrapT = value;

  		}
  	},
  	magFilter: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
  			return this.texture.magFilter;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
  			this.texture.magFilter = value;

  		}
  	},
  	minFilter: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
  			return this.texture.minFilter;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
  			this.texture.minFilter = value;

  		}
  	},
  	anisotropy: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
  			return this.texture.anisotropy;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
  			this.texture.anisotropy = value;

  		}
  	},
  	offset: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
  			return this.texture.offset;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
  			this.texture.offset = value;

  		}
  	},
  	repeat: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
  			return this.texture.repeat;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
  			this.texture.repeat = value;

  		}
  	},
  	format: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
  			return this.texture.format;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
  			this.texture.format = value;

  		}
  	},
  	type: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
  			return this.texture.type;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
  			this.texture.type = value;

  		}
  	},
  	generateMipmaps: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
  			return this.texture.generateMipmaps;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
  			this.texture.generateMipmaps = value;

  		}
  	}

  } );

  //

  Object.defineProperties( Audio.prototype, {

  	load: {
  		value: function ( file ) {

  			console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' );
  			const scope = this;
  			const audioLoader = new AudioLoader();
  			audioLoader.load( file, function ( buffer ) {

  				scope.setBuffer( buffer );

  			} );
  			return this;

  		}
  	},
  	startTime: {
  		set: function () {

  			console.warn( 'THREE.Audio: .startTime is now .play( delay ).' );

  		}
  	}

  } );

  AudioAnalyser.prototype.getData = function () {

  	console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' );
  	return this.getFrequencyData();

  };

  //

  CubeCamera.prototype.updateCubeMap = function ( renderer, scene ) {

  	console.warn( 'THREE.CubeCamera: .updateCubeMap() is now .update().' );
  	return this.update( renderer, scene );

  };

  ImageUtils.crossOrigin = undefined;

  ImageUtils.loadTexture = function ( url, mapping, onLoad, onError ) {

  	console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' );

  	const loader = new TextureLoader();
  	loader.setCrossOrigin( this.crossOrigin );

  	const texture = loader.load( url, onLoad, undefined, onError );

  	if ( mapping ) texture.mapping = mapping;

  	return texture;

  };

  ImageUtils.loadTextureCube = function ( urls, mapping, onLoad, onError ) {

  	console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' );

  	const loader = new CubeTextureLoader();
  	loader.setCrossOrigin( this.crossOrigin );

  	const texture = loader.load( urls, onLoad, undefined, onError );

  	if ( mapping ) texture.mapping = mapping;

  	return texture;

  };

  ImageUtils.loadCompressedTexture = function () {

  	console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' );

  };

  ImageUtils.loadCompressedTextureCube = function () {

  	console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' );

  };

  if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {

  	/* eslint-disable no-undef */
  	__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: {
  		revision: REVISION,
  	} } ) );
  	/* eslint-enable no-undef */

  }

  /*
   * @author zz85 / https://github.com/zz85
   * @author mrdoob / http://mrdoob.com
   * Running this will allow you to drag three.js objects around the screen.
   */

  function DragControls(_objects, _camera, _domElement) {

    if (_objects.isCamera) {

      console.warn('THREE.DragControls: Constructor now expects ( objects, camera, domElement )');
      var temp = _objects;
      _objects = _camera;
      _camera = temp;

    }

    var _plane = new Plane();
    var _raycaster = new Raycaster();

    var _mouse = new Vector2();
    var _offset = new Vector3();
    var _intersection = new Vector3();

    var _selected = null,
      _hovered = null;

    //

    var scope = this;

    function activate() {

      _domElement.addEventListener('mousemove', onDocumentMouseMove, false);
      _domElement.addEventListener('mousedown', onDocumentMouseDown, false);
      _domElement.addEventListener('mouseup', onDocumentMouseCancel, false);
      _domElement.addEventListener('mouseleave', onDocumentMouseCancel, false);
      _domElement.addEventListener('touchmove', onDocumentTouchMove, false);
      _domElement.addEventListener('touchstart', onDocumentTouchStart, false);
      _domElement.addEventListener('touchend', onDocumentTouchEnd, false);

    }

    function deactivate() {

      _domElement.removeEventListener('mousemove', onDocumentMouseMove, false);
      _domElement.removeEventListener('mousedown', onDocumentMouseDown, false);
      _domElement.removeEventListener('mouseup', onDocumentMouseCancel, false);
      _domElement.removeEventListener('mouseleave', onDocumentMouseCancel, false);
      _domElement.removeEventListener('touchmove', onDocumentTouchMove, false);
      _domElement.removeEventListener('touchstart', onDocumentTouchStart, false);
      _domElement.removeEventListener('touchend', onDocumentTouchEnd, false);

    }

    function dispose() {

      deactivate();

    }

    function onDocumentMouseMove(event) {

      event.preventDefault();

      var rect = _domElement.getBoundingClientRect();

      _mouse.x = ((event.clientX - rect.left) / rect.width) * 2 - 1;
      _mouse.y = -((event.clientY - rect.top) / rect.height) * 2 + 1;

      _raycaster.setFromCamera(_mouse, _camera);

      if (_selected && scope.enabled) {

        if (_raycaster.ray.intersectPlane(_plane, _intersection)) {

          _selected.position.copy(_intersection.sub(_offset));

        }

        scope.dispatchEvent({
          type: 'drag',
          object: _selected
        });

        return;

      }

      _raycaster.setFromCamera(_mouse, _camera);

      var intersects = _raycaster.intersectObjects(_objects);

      if (intersects.length > 0) {

        var object = intersects[0].object;

        _plane.setFromNormalAndCoplanarPoint(_camera.getWorldDirection(_plane.normal), object.position);

        if (_hovered !== object) {

          scope.dispatchEvent({
            type: 'hoveron',
            object: object
          });

          _domElement.style.cursor = 'pointer';
          _hovered = object;

        }

      } else {

        if (_hovered !== null) {

          scope.dispatchEvent({
            type: 'hoveroff',
            object: _hovered
          });

          _domElement.style.cursor = 'auto';
          _hovered = null;

        }

      }

    }

    function onDocumentMouseDown(event) {

      event.preventDefault();

      _raycaster.setFromCamera(_mouse, _camera);

      var intersects = _raycaster.intersectObjects(_objects);

      if (intersects.length > 0) {

        _selected = intersects[0].object;

        if (_raycaster.ray.intersectPlane(_plane, _intersection)) {

          _offset.copy(_intersection).sub(_selected.position);

        }

        _domElement.style.cursor = 'move';

        scope.dispatchEvent({
          type: 'dragstart',
          object: _selected
        });

      }


    }

    function onDocumentMouseCancel(event) {

      event.preventDefault();

      if (_selected) {

        scope.dispatchEvent({
          type: 'dragend',
          object: _selected
        });

        _selected = null;

      }

      _domElement.style.cursor = 'auto';

    }

    function onDocumentTouchMove(event) {

      event.preventDefault();
      event = event.changedTouches[0];

      var rect = _domElement.getBoundingClientRect();

      _mouse.x = ((event.clientX - rect.left) / rect.width) * 2 - 1;
      _mouse.y = -((event.clientY - rect.top) / rect.height) * 2 + 1;

      _raycaster.setFromCamera(_mouse, _camera);

      if (_selected && scope.enabled) {

        if (_raycaster.ray.intersectPlane(_plane, _intersection)) {

          _selected.position.copy(_intersection.sub(_offset));

        }

        scope.dispatchEvent({
          type: 'drag',
          object: _selected
        });

        return;

      }

    }

    function onDocumentTouchStart(event) {

      event.preventDefault();
      event = event.changedTouches[0];

      var rect = _domElement.getBoundingClientRect();

      _mouse.x = ((event.clientX - rect.left) / rect.width) * 2 - 1;
      _mouse.y = -((event.clientY - rect.top) / rect.height) * 2 + 1;

      _raycaster.setFromCamera(_mouse, _camera);

      var intersects = _raycaster.intersectObjects(_objects);

      if (intersects.length > 0) {

        _selected = intersects[0].object;

        _plane.setFromNormalAndCoplanarPoint(_camera.getWorldDirection(_plane.normal), _selected.position);

        if (_raycaster.ray.intersectPlane(_plane, _intersection)) {

          _offset.copy(_intersection).sub(_selected.position);

        }

        _domElement.style.cursor = 'move';

        scope.dispatchEvent({
          type: 'dragstart',
          object: _selected
        });

      }


    }

    function onDocumentTouchEnd(event) {

      event.preventDefault();

      if (_selected) {

        scope.dispatchEvent({
          type: 'dragend',
          object: _selected
        });

        _selected = null;

      }

      _domElement.style.cursor = 'auto';

    }

    activate();

    // API

    this.enabled = true;

    this.activate = activate;
    this.deactivate = deactivate;
    this.dispose = dispose;

    // Backward compatibility

    this.setObjects = function() {

      console.error('THREE.DragControls: setObjects() has been removed.');

    };

    this.on = function(type, listener) {

      console.warn('THREE.DragControls: on() has been deprecated. Use addEventListener() instead.');
      scope.addEventListener(type, listener);

    };

    this.off = function(type, listener) {

      console.warn('THREE.DragControls: off() has been deprecated. Use removeEventListener() instead.');
      scope.removeEventListener(type, listener);

    };

    this.notify = function(type) {

      console.error('THREE.DragControls: notify() has been deprecated. Use dispatchEvent() instead.');
      scope.dispatchEvent({
        type: type
      });

    };

  }

  DragControls.prototype = Object.create(EventDispatcher.prototype);
  DragControls.prototype.constructor = DragControls;

  function forceCenter(x, y, z) {
    var nodes;

    if (x == null) x = 0;
    if (y == null) y = 0;
    if (z == null) z = 0;

    function force() {
      var i,
          n = nodes.length,
          node,
          sx = 0,
          sy = 0,
          sz = 0;

      for (i = 0; i < n; ++i) {
        node = nodes[i], sx += node.x || 0, sy += node.y || 0, sz += node.z || 0;
      }

      for (sx = sx / n - x, sy = sy / n - y, sz = sz / n - z, i = 0; i < n; ++i) {
        node = nodes[i];
        if (sx) { node.x -= sx; }
        if (sy) { node.y -= sy; }
        if (sz) { node.z -= sz; }
      }
    }

    force.initialize = function(_) {
      nodes = _;
    };

    force.x = function(_) {
      return arguments.length ? (x = +_, force) : x;
    };

    force.y = function(_) {
      return arguments.length ? (y = +_, force) : y;
    };

    force.z = function(_) {
      return arguments.length ? (z = +_, force) : z;
    };

    return force;
  }

  function tree_add(d) {
    var x = +this._x.call(null, d);
    return add(this.cover(x), x, d);
  }

  function add(tree, x, d) {
    if (isNaN(x)) return tree; // ignore invalid points

    var parent,
        node = tree._root,
        leaf = {data: d},
        x0 = tree._x0,
        x1 = tree._x1,
        xm,
        xp,
        right,
        i,
        j;

    // If the tree is empty, initialize the root as a leaf.
    if (!node) return tree._root = leaf, tree;

    // Find the existing leaf for the new point, or add it.
    while (node.length) {
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (parent = node, !(node = node[i = +right])) return parent[i] = leaf, tree;
    }

    // Is the new point is exactly coincident with the existing point?
    xp = +tree._x.call(null, node.data);
    if (x === xp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree;

    // Otherwise, split the leaf node until the old and new point are separated.
    do {
      parent = parent ? parent[i] = new Array(2) : tree._root = new Array(2);
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
    } while ((i = +right) === (j = +(xp >= xm)));
    return parent[j] = node, parent[i] = leaf, tree;
  }

  function addAll(data) {
    var i, n = data.length,
        x,
        xz = new Array(n),
        x0 = Infinity,
        x1 = -Infinity;

    // Compute the points and their extent.
    for (i = 0; i < n; ++i) {
      if (isNaN(x = +this._x.call(null, data[i]))) continue;
      xz[i] = x;
      if (x < x0) x0 = x;
      if (x > x1) x1 = x;
    }

    // If there were no (valid) points, inherit the existing extent.
    if (x1 < x0) x0 = this._x0, x1 = this._x1;

    // Expand the tree to cover the new points.
    this.cover(x0).cover(x1);

    // Add the new points.
    for (i = 0; i < n; ++i) {
      add(this, xz[i], data[i]);
    }

    return this;
  }

  function tree_cover(x) {
    if (isNaN(x = +x)) return this; // ignore invalid points

    var x0 = this._x0,
        x1 = this._x1;

    // If the binarytree has no extent, initialize them.
    // Integer extent are necessary so that if we later double the extent,
    // the existing half boundaries don’t change due to floating point error!
    if (isNaN(x0)) {
      x1 = (x0 = Math.floor(x)) + 1;
    }

    // Otherwise, double repeatedly to cover.
    else if (x0 > x || x > x1) {
      var z = x1 - x0,
          node = this._root,
          parent,
          i;

      switch (i = +(x < (x0 + x1) / 2)) {
        case 0: {
          do parent = new Array(2), parent[i] = node, node = parent;
          while (z *= 2, x1 = x0 + z, x > x1);
          break;
        }
        case 1: {
          do parent = new Array(2), parent[i] = node, node = parent;
          while (z *= 2, x0 = x1 - z, x0 > x);
          break;
        }
      }

      if (this._root && this._root.length) this._root = node;
    }

    // If the binarytree covers the point already, just return.
    else return this;

    this._x0 = x0;
    this._x1 = x1;
    return this;
  }

  function tree_data() {
    var data = [];
    this.visit(function(node) {
      if (!node.length) do data.push(node.data); while (node = node.next)
    });
    return data;
  }

  function tree_extent(_) {
    return arguments.length
        ? this.cover(+_[0][0]).cover(+_[1][0])
        : isNaN(this._x0) ? undefined : [[this._x0], [this._x1]];
  }

  function Half(node, x0, x1) {
    this.node = node;
    this.x0 = x0;
    this.x1 = x1;
  }

  function tree_find(x, radius) {
    var data,
        x0 = this._x0,
        x1,
        x2,
        x3 = this._x1,
        halves = [],
        node = this._root,
        q,
        i;

    if (node) halves.push(new Half(node, x0, x3));
    if (radius == null) radius = Infinity;
    else {
      x0 = x - radius;
      x3 = x + radius;
    }

    while (q = halves.pop()) {

      // Stop searching if this half can’t contain a closer node.
      if (!(node = q.node)
          || (x1 = q.x0) > x3
          || (x2 = q.x1) < x0) continue;

      // Bisect the current half.
      if (node.length) {
        var xm = (x1 + x2) / 2;

        halves.push(
          new Half(node[1], xm, x2),
          new Half(node[0], x1, xm)
        );

        // Visit the closest half first.
        if (i = +(x >= xm)) {
          q = halves[halves.length - 1];
          halves[halves.length - 1] = halves[halves.length - 1 - i];
          halves[halves.length - 1 - i] = q;
        }
      }

      // Visit this point. (Visiting coincident points isn’t necessary!)
      else {
        var d = Math.abs(x - +this._x.call(null, node.data));
        if (d < radius) {
          radius = d;
          x0 = x - d;
          x3 = x + d;
          data = node.data;
        }
      }
    }

    return data;
  }

  function tree_remove(d) {
    if (isNaN(x = +this._x.call(null, d))) return this; // ignore invalid points

    var parent,
        node = this._root,
        retainer,
        previous,
        next,
        x0 = this._x0,
        x1 = this._x1,
        x,
        xm,
        right,
        i,
        j;

    // If the tree is empty, initialize the root as a leaf.
    if (!node) return this;

    // Find the leaf node for the point.
    // While descending, also retain the deepest parent with a non-removed sibling.
    if (node.length) while (true) {
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (!(parent = node, node = node[i = +right])) return this;
      if (!node.length) break;
      if (parent[(i + 1) & 1]) retainer = parent, j = i;
    }

    // Find the point to remove.
    while (node.data !== d) if (!(previous = node, node = node.next)) return this;
    if (next = node.next) delete node.next;

    // If there are multiple coincident points, remove just the point.
    if (previous) return (next ? previous.next = next : delete previous.next), this;

    // If this is the root point, remove it.
    if (!parent) return this._root = next, this;

    // Remove this leaf.
    next ? parent[i] = next : delete parent[i];

    // If the parent now contains exactly one leaf, collapse superfluous parents.
    if ((node = parent[0] || parent[1])
        && node === (parent[1] || parent[0])
        && !node.length) {
      if (retainer) retainer[j] = node;
      else this._root = node;
    }

    return this;
  }

  function removeAll(data) {
    for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]);
    return this;
  }

  function tree_root() {
    return this._root;
  }

  function tree_size() {
    var size = 0;
    this.visit(function(node) {
      if (!node.length) do ++size; while (node = node.next)
    });
    return size;
  }

  function tree_visit(callback) {
    var halves = [], q, node = this._root, child, x0, x1;
    if (node) halves.push(new Half(node, this._x0, this._x1));
    while (q = halves.pop()) {
      if (!callback(node = q.node, x0 = q.x0, x1 = q.x1) && node.length) {
        var xm = (x0 + x1) / 2;
        if (child = node[1]) halves.push(new Half(child, xm, x1));
        if (child = node[0]) halves.push(new Half(child, x0, xm));
      }
    }
    return this;
  }

  function tree_visitAfter(callback) {
    var halves = [], next = [], q;
    if (this._root) halves.push(new Half(this._root, this._x0, this._x1));
    while (q = halves.pop()) {
      var node = q.node;
      if (node.length) {
        var child, x0 = q.x0, x1 = q.x1, xm = (x0 + x1) / 2;
        if (child = node[0]) halves.push(new Half(child, x0, xm));
        if (child = node[1]) halves.push(new Half(child, xm, x1));
      }
      next.push(q);
    }
    while (q = next.pop()) {
      callback(q.node, q.x0, q.x1);
    }
    return this;
  }

  function defaultX(d) {
    return d[0];
  }

  function tree_x(_) {
    return arguments.length ? (this._x = _, this) : this._x;
  }

  function binarytree(nodes, x) {
    var tree = new Binarytree(x == null ? defaultX : x, NaN, NaN);
    return nodes == null ? tree : tree.addAll(nodes);
  }

  function Binarytree(x, x0, x1) {
    this._x = x;
    this._x0 = x0;
    this._x1 = x1;
    this._root = undefined;
  }

  function leaf_copy(leaf) {
    var copy = {data: leaf.data}, next = copy;
    while (leaf = leaf.next) next = next.next = {data: leaf.data};
    return copy;
  }

  var treeProto = binarytree.prototype = Binarytree.prototype;

  treeProto.copy = function() {
    var copy = new Binarytree(this._x, this._x0, this._x1),
        node = this._root,
        nodes,
        child;

    if (!node) return copy;

    if (!node.length) return copy._root = leaf_copy(node), copy;

    nodes = [{source: node, target: copy._root = new Array(2)}];
    while (node = nodes.pop()) {
      for (var i = 0; i < 2; ++i) {
        if (child = node.source[i]) {
          if (child.length) nodes.push({source: child, target: node.target[i] = new Array(2)});
          else node.target[i] = leaf_copy(child);
        }
      }
    }

    return copy;
  };

  treeProto.add = tree_add;
  treeProto.addAll = addAll;
  treeProto.cover = tree_cover;
  treeProto.data = tree_data;
  treeProto.extent = tree_extent;
  treeProto.find = tree_find;
  treeProto.remove = tree_remove;
  treeProto.removeAll = removeAll;
  treeProto.root = tree_root;
  treeProto.size = tree_size;
  treeProto.visit = tree_visit;
  treeProto.visitAfter = tree_visitAfter;
  treeProto.x = tree_x;

  function tree_add$1(d) {
    var x = +this._x.call(null, d),
        y = +this._y.call(null, d);
    return add$1(this.cover(x, y), x, y, d);
  }

  function add$1(tree, x, y, d) {
    if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points

    var parent,
        node = tree._root,
        leaf = {data: d},
        x0 = tree._x0,
        y0 = tree._y0,
        x1 = tree._x1,
        y1 = tree._y1,
        xm,
        ym,
        xp,
        yp,
        right,
        bottom,
        i,
        j;

    // If the tree is empty, initialize the root as a leaf.
    if (!node) return tree._root = leaf, tree;

    // Find the existing leaf for the new point, or add it.
    while (node.length) {
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
      if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree;
    }

    // Is the new point is exactly coincident with the existing point?
    xp = +tree._x.call(null, node.data);
    yp = +tree._y.call(null, node.data);
    if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree;

    // Otherwise, split the leaf node until the old and new point are separated.
    do {
      parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4);
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
    } while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm)));
    return parent[j] = node, parent[i] = leaf, tree;
  }

  function addAll$1(data) {
    var d, i, n = data.length,
        x,
        y,
        xz = new Array(n),
        yz = new Array(n),
        x0 = Infinity,
        y0 = Infinity,
        x1 = -Infinity,
        y1 = -Infinity;

    // Compute the points and their extent.
    for (i = 0; i < n; ++i) {
      if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue;
      xz[i] = x;
      yz[i] = y;
      if (x < x0) x0 = x;
      if (x > x1) x1 = x;
      if (y < y0) y0 = y;
      if (y > y1) y1 = y;
    }

    // If there were no (valid) points, abort.
    if (x0 > x1 || y0 > y1) return this;

    // Expand the tree to cover the new points.
    this.cover(x0, y0).cover(x1, y1);

    // Add the new points.
    for (i = 0; i < n; ++i) {
      add$1(this, xz[i], yz[i], data[i]);
    }

    return this;
  }

  function tree_cover$1(x, y) {
    if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points

    var x0 = this._x0,
        y0 = this._y0,
        x1 = this._x1,
        y1 = this._y1;

    // If the quadtree has no extent, initialize them.
    // Integer extent are necessary so that if we later double the extent,
    // the existing quadrant boundaries don’t change due to floating point error!
    if (isNaN(x0)) {
      x1 = (x0 = Math.floor(x)) + 1;
      y1 = (y0 = Math.floor(y)) + 1;
    }

    // Otherwise, double repeatedly to cover.
    else {
      var z = x1 - x0,
          node = this._root,
          parent,
          i;

      while (x0 > x || x >= x1 || y0 > y || y >= y1) {
        i = (y < y0) << 1 | (x < x0);
        parent = new Array(4), parent[i] = node, node = parent, z *= 2;
        switch (i) {
          case 0: x1 = x0 + z, y1 = y0 + z; break;
          case 1: x0 = x1 - z, y1 = y0 + z; break;
          case 2: x1 = x0 + z, y0 = y1 - z; break;
          case 3: x0 = x1 - z, y0 = y1 - z; break;
        }
      }

      if (this._root && this._root.length) this._root = node;
    }

    this._x0 = x0;
    this._y0 = y0;
    this._x1 = x1;
    this._y1 = y1;
    return this;
  }

  function tree_data$1() {
    var data = [];
    this.visit(function(node) {
      if (!node.length) do data.push(node.data); while (node = node.next)
    });
    return data;
  }

  function tree_extent$1(_) {
    return arguments.length
        ? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1])
        : isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]];
  }

  function Quad(node, x0, y0, x1, y1) {
    this.node = node;
    this.x0 = x0;
    this.y0 = y0;
    this.x1 = x1;
    this.y1 = y1;
  }

  function tree_find$1(x, y, radius) {
    var data,
        x0 = this._x0,
        y0 = this._y0,
        x1,
        y1,
        x2,
        y2,
        x3 = this._x1,
        y3 = this._y1,
        quads = [],
        node = this._root,
        q,
        i;

    if (node) quads.push(new Quad(node, x0, y0, x3, y3));
    if (radius == null) radius = Infinity;
    else {
      x0 = x - radius, y0 = y - radius;
      x3 = x + radius, y3 = y + radius;
      radius *= radius;
    }

    while (q = quads.pop()) {

      // Stop searching if this quadrant can’t contain a closer node.
      if (!(node = q.node)
          || (x1 = q.x0) > x3
          || (y1 = q.y0) > y3
          || (x2 = q.x1) < x0
          || (y2 = q.y1) < y0) continue;

      // Bisect the current quadrant.
      if (node.length) {
        var xm = (x1 + x2) / 2,
            ym = (y1 + y2) / 2;

        quads.push(
          new Quad(node[3], xm, ym, x2, y2),
          new Quad(node[2], x1, ym, xm, y2),
          new Quad(node[1], xm, y1, x2, ym),
          new Quad(node[0], x1, y1, xm, ym)
        );

        // Visit the closest quadrant first.
        if (i = (y >= ym) << 1 | (x >= xm)) {
          q = quads[quads.length - 1];
          quads[quads.length - 1] = quads[quads.length - 1 - i];
          quads[quads.length - 1 - i] = q;
        }
      }

      // Visit this point. (Visiting coincident points isn’t necessary!)
      else {
        var dx = x - +this._x.call(null, node.data),
            dy = y - +this._y.call(null, node.data),
            d2 = dx * dx + dy * dy;
        if (d2 < radius) {
          var d = Math.sqrt(radius = d2);
          x0 = x - d, y0 = y - d;
          x3 = x + d, y3 = y + d;
          data = node.data;
        }
      }
    }

    return data;
  }

  function tree_remove$1(d) {
    if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points

    var parent,
        node = this._root,
        retainer,
        previous,
        next,
        x0 = this._x0,
        y0 = this._y0,
        x1 = this._x1,
        y1 = this._y1,
        x,
        y,
        xm,
        ym,
        right,
        bottom,
        i,
        j;

    // If the tree is empty, initialize the root as a leaf.
    if (!node) return this;

    // Find the leaf node for the point.
    // While descending, also retain the deepest parent with a non-removed sibling.
    if (node.length) while (true) {
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
      if (!(parent = node, node = node[i = bottom << 1 | right])) return this;
      if (!node.length) break;
      if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i;
    }

    // Find the point to remove.
    while (node.data !== d) if (!(previous = node, node = node.next)) return this;
    if (next = node.next) delete node.next;

    // If there are multiple coincident points, remove just the point.
    if (previous) return (next ? previous.next = next : delete previous.next), this;

    // If this is the root point, remove it.
    if (!parent) return this._root = next, this;

    // Remove this leaf.
    next ? parent[i] = next : delete parent[i];

    // If the parent now contains exactly one leaf, collapse superfluous parents.
    if ((node = parent[0] || parent[1] || parent[2] || parent[3])
        && node === (parent[3] || parent[2] || parent[1] || parent[0])
        && !node.length) {
      if (retainer) retainer[j] = node;
      else this._root = node;
    }

    return this;
  }

  function removeAll$1(data) {
    for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]);
    return this;
  }

  function tree_root$1() {
    return this._root;
  }

  function tree_size$1() {
    var size = 0;
    this.visit(function(node) {
      if (!node.length) do ++size; while (node = node.next)
    });
    return size;
  }

  function tree_visit$1(callback) {
    var quads = [], q, node = this._root, child, x0, y0, x1, y1;
    if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1));
    while (q = quads.pop()) {
      if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) {
        var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
        if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
        if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
        if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
        if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
      }
    }
    return this;
  }

  function tree_visitAfter$1(callback) {
    var quads = [], next = [], q;
    if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1));
    while (q = quads.pop()) {
      var node = q.node;
      if (node.length) {
        var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
        if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
        if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
        if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
        if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
      }
      next.push(q);
    }
    while (q = next.pop()) {
      callback(q.node, q.x0, q.y0, q.x1, q.y1);
    }
    return this;
  }

  function defaultX$1(d) {
    return d[0];
  }

  function tree_x$1(_) {
    return arguments.length ? (this._x = _, this) : this._x;
  }

  function defaultY(d) {
    return d[1];
  }

  function tree_y(_) {
    return arguments.length ? (this._y = _, this) : this._y;
  }

  function quadtree(nodes, x, y) {
    var tree = new Quadtree(x == null ? defaultX$1 : x, y == null ? defaultY : y, NaN, NaN, NaN, NaN);
    return nodes == null ? tree : tree.addAll(nodes);
  }

  function Quadtree(x, y, x0, y0, x1, y1) {
    this._x = x;
    this._y = y;
    this._x0 = x0;
    this._y0 = y0;
    this._x1 = x1;
    this._y1 = y1;
    this._root = undefined;
  }

  function leaf_copy$1(leaf) {
    var copy = {data: leaf.data}, next = copy;
    while (leaf = leaf.next) next = next.next = {data: leaf.data};
    return copy;
  }

  var treeProto$1 = quadtree.prototype = Quadtree.prototype;

  treeProto$1.copy = function() {
    var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1),
        node = this._root,
        nodes,
        child;

    if (!node) return copy;

    if (!node.length) return copy._root = leaf_copy$1(node), copy;

    nodes = [{source: node, target: copy._root = new Array(4)}];
    while (node = nodes.pop()) {
      for (var i = 0; i < 4; ++i) {
        if (child = node.source[i]) {
          if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)});
          else node.target[i] = leaf_copy$1(child);
        }
      }
    }

    return copy;
  };

  treeProto$1.add = tree_add$1;
  treeProto$1.addAll = addAll$1;
  treeProto$1.cover = tree_cover$1;
  treeProto$1.data = tree_data$1;
  treeProto$1.extent = tree_extent$1;
  treeProto$1.find = tree_find$1;
  treeProto$1.remove = tree_remove$1;
  treeProto$1.removeAll = removeAll$1;
  treeProto$1.root = tree_root$1;
  treeProto$1.size = tree_size$1;
  treeProto$1.visit = tree_visit$1;
  treeProto$1.visitAfter = tree_visitAfter$1;
  treeProto$1.x = tree_x$1;
  treeProto$1.y = tree_y;

  function tree_add$2(d) {
    var x = +this._x.call(null, d),
        y = +this._y.call(null, d),
        z = +this._z.call(null, d);
    return add$2(this.cover(x, y, z), x, y, z, d);
  }

  function add$2(tree, x, y, z, d) {
    if (isNaN(x) || isNaN(y) || isNaN(z)) return tree; // ignore invalid points

    var parent,
        node = tree._root,
        leaf = {data: d},
        x0 = tree._x0,
        y0 = tree._y0,
        z0 = tree._z0,
        x1 = tree._x1,
        y1 = tree._y1,
        z1 = tree._z1,
        xm,
        ym,
        zm,
        xp,
        yp,
        zp,
        right,
        bottom,
        deep,
        i,
        j;

    // If the tree is empty, initialize the root as a leaf.
    if (!node) return tree._root = leaf, tree;

    // Find the existing leaf for the new point, or add it.
    while (node.length) {
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
      if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm;
      if (parent = node, !(node = node[i = deep << 2 | bottom << 1 | right])) return parent[i] = leaf, tree;
    }

    // Is the new point is exactly coincident with the existing point?
    xp = +tree._x.call(null, node.data);
    yp = +tree._y.call(null, node.data);
    zp = +tree._z.call(null, node.data);
    if (x === xp && y === yp && z === zp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree;

    // Otherwise, split the leaf node until the old and new point are separated.
    do {
      parent = parent ? parent[i] = new Array(8) : tree._root = new Array(8);
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
      if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm;
    } while ((i = deep << 2 | bottom << 1 | right) === (j = (zp >= zm) << 2 | (yp >= ym) << 1 | (xp >= xm)));
    return parent[j] = node, parent[i] = leaf, tree;
  }

  function addAll$2(data) {
    var d, i, n = data.length,
        x,
        y,
        z,
        xz = new Array(n),
        yz = new Array(n),
        zz = new Array(n),
        x0 = Infinity,
        y0 = Infinity,
        z0 = Infinity,
        x1 = -Infinity,
        y1 = -Infinity,
        z1 = -Infinity;

    // Compute the points and their extent.
    for (i = 0; i < n; ++i) {
      if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) continue;
      xz[i] = x;
      yz[i] = y;
      zz[i] = z;
      if (x < x0) x0 = x;
      if (x > x1) x1 = x;
      if (y < y0) y0 = y;
      if (y > y1) y1 = y;
      if (z < z0) z0 = z;
      if (z > z1) z1 = z;
    }

    // If there were no (valid) points, inherit the existing extent.
    if (x1 < x0) x0 = this._x0, x1 = this._x1;
    if (y1 < y0) y0 = this._y0, y1 = this._y1;
    if (z1 < z0) z0 = this._z0, z1 = this._z1;

    // Expand the tree to cover the new points.
    this.cover(x0, y0, z0).cover(x1, y1, z1);

    // Add the new points.
    for (i = 0; i < n; ++i) {
      add$2(this, xz[i], yz[i], zz[i], data[i]);
    }

    return this;
  }

  function tree_cover$2(x, y, z) {
    if (isNaN(x = +x) || isNaN(y = +y) || isNaN(z = +z)) return this; // ignore invalid points

    var x0 = this._x0,
        y0 = this._y0,
        z0 = this._z0,
        x1 = this._x1,
        y1 = this._y1,
        z1 = this._z1;

    // If the octree has no extent, initialize them.
    // Integer extent are necessary so that if we later double the extent,
    // the existing octant boundaries don’t change due to floating point error!
    if (isNaN(x0)) {
      x1 = (x0 = Math.floor(x)) + 1;
      y1 = (y0 = Math.floor(y)) + 1;
      z1 = (z0 = Math.floor(z)) + 1;
    }

    // Otherwise, double repeatedly to cover.
    else if (x0 > x || x > x1 || y0 > y || y > y1 || z0 > z || z > z1) {
      var t = x1 - x0,
          node = this._root,
          parent,
          i;

      switch (i = (z < (z0 + z1) / 2) << 2 | (y < (y0 + y1) / 2) << 1 | (x < (x0 + x1) / 2)) {
        case 0: {
          do parent = new Array(8), parent[i] = node, node = parent;
          while (t *= 2, x1 = x0 + t, y1 = y0 + t, z1 = z0 + t, x > x1 || y > y1 || z > z1);
          break;
        }
        case 1: {
          do parent = new Array(8), parent[i] = node, node = parent;
          while (t *= 2, x0 = x1 - t, y1 = y0 + t, z1 = z0 + t, x0 > x || y > y1 || z > z1);
          break;
        }
        case 2: {
          do parent = new Array(8), parent[i] = node, node = parent;
          while (t *= 2, x1 = x0 + t, y0 = y1 - t, z1 = z0 + t, x > x1 || y0 > y || z > z1);
          break;
        }
        case 3: {
          do parent = new Array(8), parent[i] = node, node = parent;
          while (t *= 2, x0 = x1 - t, y0 = y1 - t, z1 = z0 + t, x0 > x || y0 > y || z > z1);
          break;
        }
        case 4: {
          do parent = new Array(8), parent[i] = node, node = parent;
          while (t *= 2, x1 = x0 + t, y1 = y0 + t, z0 = z1 - t, x > x1 || y > y1 || z0 > z);
          break;
        }
        case 5: {
          do parent = new Array(8), parent[i] = node, node = parent;
          while (t *= 2, x0 = x1 - t, y1 = y0 + t, z0 = z1 - t, x0 > x || y > y1 || z0 > z);
          break;
        }
        case 6: {
          do parent = new Array(8), parent[i] = node, node = parent;
          while (t *= 2, x1 = x0 + t, y0 = y1 - t, z0 = z1 - t, x > x1 || y0 > y || z0 > z);
          break;
        }
        case 7: {
          do parent = new Array(8), parent[i] = node, node = parent;
          while (t *= 2, x0 = x1 - t, y0 = y1 - t, z0 = z1 - t, x0 > x || y0 > y || z0 > z);
          break;
        }
      }

      if (this._root && this._root.length) this._root = node;
    }

    // If the octree covers the point already, just return.
    else return this;

    this._x0 = x0;
    this._y0 = y0;
    this._z0 = z0;
    this._x1 = x1;
    this._y1 = y1;
    this._z1 = z1;
    return this;
  }

  function tree_data$2() {
    var data = [];
    this.visit(function(node) {
      if (!node.length) do data.push(node.data); while (node = node.next)
    });
    return data;
  }

  function tree_extent$2(_) {
    return arguments.length
        ? this.cover(+_[0][0], +_[0][1], +_[0][2]).cover(+_[1][0], +_[1][1], +_[1][2])
        : isNaN(this._x0) ? undefined : [[this._x0, this._y0, this._z0], [this._x1, this._y1, this._z1]];
  }

  function Octant(node, x0, y0, z0, x1, y1, z1) {
    this.node = node;
    this.x0 = x0;
    this.y0 = y0;
    this.z0 = z0;
    this.x1 = x1;
    this.y1 = y1;
    this.z1 = z1;
  }

  function tree_find$2(x, y, z, radius) {
    var data,
        x0 = this._x0,
        y0 = this._y0,
        z0 = this._z0,
        x1,
        y1,
        z1,
        x2,
        y2,
        z2,
        x3 = this._x1,
        y3 = this._y1,
        z3 = this._z1,
        octs = [],
        node = this._root,
        q,
        i;

    if (node) octs.push(new Octant(node, x0, y0, z0, x3, y3, z3));
    if (radius == null) radius = Infinity;
    else {
      x0 = x - radius, y0 = y - radius, z0 = z - radius;
      x3 = x + radius, y3 = y + radius, z3 = z + radius;
      radius *= radius;
    }

    while (q = octs.pop()) {

      // Stop searching if this octant can’t contain a closer node.
      if (!(node = q.node)
          || (x1 = q.x0) > x3
          || (y1 = q.y0) > y3
          || (z1 = q.z0) > z3
          || (x2 = q.x1) < x0
          || (y2 = q.y1) < y0
          || (z2 = q.z1) < z0) continue;

      // Bisect the current octant.
      if (node.length) {
        var xm = (x1 + x2) / 2,
            ym = (y1 + y2) / 2,
            zm = (z1 + z2) / 2;

        octs.push(
          new Octant(node[7], xm, ym, zm, x2, y2, z2),
          new Octant(node[6], x1, ym, zm, xm, y2, z2),
          new Octant(node[5], xm, y1, zm, x2, ym, z2),
          new Octant(node[4], x1, y1, zm, xm, ym, z2),
          new Octant(node[3], xm, ym, z1, x2, y2, zm),
          new Octant(node[2], x1, ym, z1, xm, y2, zm),
          new Octant(node[1], xm, y1, z1, x2, ym, zm),
          new Octant(node[0], x1, y1, z1, xm, ym, zm)
        );

        // Visit the closest octant first.
        if (i = (z >= zm) << 2 | (y >= ym) << 1 | (x >= xm)) {
          q = octs[octs.length - 1];
          octs[octs.length - 1] = octs[octs.length - 1 - i];
          octs[octs.length - 1 - i] = q;
        }
      }

      // Visit this point. (Visiting coincident points isn’t necessary!)
      else {
        var dx = x - +this._x.call(null, node.data),
            dy = y - +this._y.call(null, node.data),
            dz = z - +this._z.call(null, node.data),
            d2 = dx * dx + dy * dy + dz * dz;
        if (d2 < radius) {
          var d = Math.sqrt(radius = d2);
          x0 = x - d, y0 = y - d, z0 = z - d;
          x3 = x + d, y3 = y + d, z3 = z + d;
          data = node.data;
        }
      }
    }

    return data;
  }

  function tree_remove$2(d) {
    if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) return this; // ignore invalid points

    var parent,
        node = this._root,
        retainer,
        previous,
        next,
        x0 = this._x0,
        y0 = this._y0,
        z0 = this._z0,
        x1 = this._x1,
        y1 = this._y1,
        z1 = this._z1,
        x,
        y,
        z,
        xm,
        ym,
        zm,
        right,
        bottom,
        deep,
        i,
        j;

    // If the tree is empty, initialize the root as a leaf.
    if (!node) return this;

    // Find the leaf node for the point.
    // While descending, also retain the deepest parent with a non-removed sibling.
    if (node.length) while (true) {
      if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
      if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
      if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm;
      if (!(parent = node, node = node[i = deep << 2 | bottom << 1 | right])) return this;
      if (!node.length) break;
      if (parent[(i + 1) & 7] || parent[(i + 2) & 7] || parent[(i + 3) & 7] || parent[(i + 4) & 7] || parent[(i + 5) & 7] || parent[(i + 6) & 7] || parent[(i + 7) & 7]) retainer = parent, j = i;
    }

    // Find the point to remove.
    while (node.data !== d) if (!(previous = node, node = node.next)) return this;
    if (next = node.next) delete node.next;

    // If there are multiple coincident points, remove just the point.
    if (previous) return (next ? previous.next = next : delete previous.next), this;

    // If this is the root point, remove it.
    if (!parent) return this._root = next, this;

    // Remove this leaf.
    next ? parent[i] = next : delete parent[i];

    // If the parent now contains exactly one leaf, collapse superfluous parents.
    if ((node = parent[0] || parent[1] || parent[2] || parent[3] || parent[4] || parent[5] || parent[6] || parent[7])
        && node === (parent[7] || parent[6] || parent[5] || parent[4] || parent[3] || parent[2] || parent[1] || parent[0])
        && !node.length) {
      if (retainer) retainer[j] = node;
      else this._root = node;
    }

    return this;
  }

  function removeAll$2(data) {
    for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]);
    return this;
  }

  function tree_root$2() {
    return this._root;
  }

  function tree_size$2() {
    var size = 0;
    this.visit(function(node) {
      if (!node.length) do ++size; while (node = node.next)
    });
    return size;
  }

  function tree_visit$2(callback) {
    var octs = [], q, node = this._root, child, x0, y0, z0, x1, y1, z1;
    if (node) octs.push(new Octant(node, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1));
    while (q = octs.pop()) {
      if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1) && node.length) {
        var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2;
        if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1));
        if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1));
        if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1));
        if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1));
        if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm));
        if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm));
        if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm));
        if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm));
      }
    }
    return this;
  }

  function tree_visitAfter$2(callback) {
    var octs = [], next = [], q;
    if (this._root) octs.push(new Octant(this._root, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1));
    while (q = octs.pop()) {
      var node = q.node;
      if (node.length) {
        var child, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2;
        if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm));
        if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm));
        if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm));
        if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm));
        if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1));
        if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1));
        if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1));
        if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1));
      }
      next.push(q);
    }
    while (q = next.pop()) {
      callback(q.node, q.x0, q.y0, q.z0, q.x1, q.y1, q.z1);
    }
    return this;
  }

  function defaultX$2(d) {
    return d[0];
  }

  function tree_x$2(_) {
    return arguments.length ? (this._x = _, this) : this._x;
  }

  function defaultY$1(d) {
    return d[1];
  }

  function tree_y$1(_) {
    return arguments.length ? (this._y = _, this) : this._y;
  }

  function defaultZ(d) {
    return d[2];
  }

  function tree_z(_) {
    return arguments.length ? (this._z = _, this) : this._z;
  }

  function octree(nodes, x, y, z) {
    var tree = new Octree(x == null ? defaultX$2 : x, y == null ? defaultY$1 : y, z == null ? defaultZ : z, NaN, NaN, NaN, NaN, NaN, NaN);
    return nodes == null ? tree : tree.addAll(nodes);
  }

  function Octree(x, y, z, x0, y0, z0, x1, y1, z1) {
    this._x = x;
    this._y = y;
    this._z = z;
    this._x0 = x0;
    this._y0 = y0;
    this._z0 = z0;
    this._x1 = x1;
    this._y1 = y1;
    this._z1 = z1;
    this._root = undefined;
  }

  function leaf_copy$2(leaf) {
    var copy = {data: leaf.data}, next = copy;
    while (leaf = leaf.next) next = next.next = {data: leaf.data};
    return copy;
  }

  var treeProto$2 = octree.prototype = Octree.prototype;

  treeProto$2.copy = function() {
    var copy = new Octree(this._x, this._y, this._z, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1),
        node = this._root,
        nodes,
        child;

    if (!node) return copy;

    if (!node.length) return copy._root = leaf_copy$2(node), copy;

    nodes = [{source: node, target: copy._root = new Array(8)}];
    while (node = nodes.pop()) {
      for (var i = 0; i < 8; ++i) {
        if (child = node.source[i]) {
          if (child.length) nodes.push({source: child, target: node.target[i] = new Array(8)});
          else node.target[i] = leaf_copy$2(child);
        }
      }
    }

    return copy;
  };

  treeProto$2.add = tree_add$2;
  treeProto$2.addAll = addAll$2;
  treeProto$2.cover = tree_cover$2;
  treeProto$2.data = tree_data$2;
  treeProto$2.extent = tree_extent$2;
  treeProto$2.find = tree_find$2;
  treeProto$2.remove = tree_remove$2;
  treeProto$2.removeAll = removeAll$2;
  treeProto$2.root = tree_root$2;
  treeProto$2.size = tree_size$2;
  treeProto$2.visit = tree_visit$2;
  treeProto$2.visitAfter = tree_visitAfter$2;
  treeProto$2.x = tree_x$2;
  treeProto$2.y = tree_y$1;
  treeProto$2.z = tree_z;

  function constant(x) {
    return function() {
      return x;
    };
  }

  function jiggle() {
    return (Math.random() - 0.5) * 1e-6;
  }

  function index(d) {
    return d.index;
  }

  function find(nodeById, nodeId) {
    var node = nodeById.get(nodeId);
    if (!node) throw new Error("node not found: " + nodeId);
    return node;
  }

  function forceLink(links) {
    var id = index,
        strength = defaultStrength,
        strengths,
        distance = constant(30),
        distances,
        nodes,
        nDim,
        count,
        bias,
        iterations = 1;

    if (links == null) links = [];

    function defaultStrength(link) {
      return 1 / Math.min(count[link.source.index], count[link.target.index]);
    }

    function force(alpha) {
      for (var k = 0, n = links.length; k < iterations; ++k) {
        for (var i = 0, link, source, target, x = 0, y = 0, z = 0, l, b; i < n; ++i) {
          link = links[i], source = link.source, target = link.target;
          x = target.x + target.vx - source.x - source.vx || jiggle();
          if (nDim > 1) { y = target.y + target.vy - source.y - source.vy || jiggle(); }
          if (nDim > 2) { z = target.z + target.vz - source.z - source.vz || jiggle(); }
          l = Math.sqrt(x * x + y * y + z * z);
          l = (l - distances[i]) / l * alpha * strengths[i];
          x *= l, y *= l, z *= l;

          target.vx -= x * (b = bias[i]);
          if (nDim > 1) { target.vy -= y * b; }
          if (nDim > 2) { target.vz -= z * b; }

          source.vx += x * (b = 1 - b);
          if (nDim > 1) { source.vy += y * b; }
          if (nDim > 2) { source.vz += z * b; }
        }
      }
    }

    function initialize() {
      if (!nodes) return;

      var i,
          n = nodes.length,
          m = links.length,
          nodeById = new Map(nodes.map((d, i) => [id(d, i, nodes), d])),
          link;

      for (i = 0, count = new Array(n); i < m; ++i) {
        link = links[i], link.index = i;
        if (typeof link.source !== "object") link.source = find(nodeById, link.source);
        if (typeof link.target !== "object") link.target = find(nodeById, link.target);
        count[link.source.index] = (count[link.source.index] || 0) + 1;
        count[link.target.index] = (count[link.target.index] || 0) + 1;
      }

      for (i = 0, bias = new Array(m); i < m; ++i) {
        link = links[i], bias[i] = count[link.source.index] / (count[link.source.index] + count[link.target.index]);
      }

      strengths = new Array(m), initializeStrength();
      distances = new Array(m), initializeDistance();
    }

    function initializeStrength() {
      if (!nodes) return;

      for (var i = 0, n = links.length; i < n; ++i) {
        strengths[i] = +strength(links[i], i, links);
      }
    }

    function initializeDistance() {
      if (!nodes) return;

      for (var i = 0, n = links.length; i < n; ++i) {
        distances[i] = +distance(links[i], i, links);
      }
    }

    force.initialize = function(initNodes, numDimensions) {
      nodes = initNodes;
      nDim = numDimensions;
      initialize();
    };

    force.links = function(_) {
      return arguments.length ? (links = _, initialize(), force) : links;
    };

    force.id = function(_) {
      return arguments.length ? (id = _, force) : id;
    };

    force.iterations = function(_) {
      return arguments.length ? (iterations = +_, force) : iterations;
    };

    force.strength = function(_) {
      return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initializeStrength(), force) : strength;
    };

    force.distance = function(_) {
      return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), initializeDistance(), force) : distance;
    };

    return force;
  }

  var noop = {value: function() {}};

  function dispatch() {
    for (var i = 0, n = arguments.length, _ = {}, t; i < n; ++i) {
      if (!(t = arguments[i] + "") || (t in _) || /[\s.]/.test(t)) throw new Error("illegal type: " + t);
      _[t] = [];
    }
    return new Dispatch(_);
  }

  function Dispatch(_) {
    this._ = _;
  }

  function parseTypenames(typenames, types) {
    return typenames.trim().split(/^|\s+/).map(function(t) {
      var name = "", i = t.indexOf(".");
      if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i);
      if (t && !types.hasOwnProperty(t)) throw new Error("unknown type: " + t);
      return {type: t, name: name};
    });
  }

  Dispatch.prototype = dispatch.prototype = {
    constructor: Dispatch,
    on: function(typename, callback) {
      var _ = this._,
          T = parseTypenames(typename + "", _),
          t,
          i = -1,
          n = T.length;

      // If no callback was specified, return the callback of the given type and name.
      if (arguments.length < 2) {
        while (++i < n) if ((t = (typename = T[i]).type) && (t = get(_[t], typename.name))) return t;
        return;
      }

      // If a type was specified, set the callback for the given type and name.
      // Otherwise, if a null callback was specified, remove callbacks of the given name.
      if (callback != null && typeof callback !== "function") throw new Error("invalid callback: " + callback);
      while (++i < n) {
        if (t = (typename = T[i]).type) _[t] = set(_[t], typename.name, callback);
        else if (callback == null) for (t in _) _[t] = set(_[t], typename.name, null);
      }

      return this;
    },
    copy: function() {
      var copy = {}, _ = this._;
      for (var t in _) copy[t] = _[t].slice();
      return new Dispatch(copy);
    },
    call: function(type, that) {
      if ((n = arguments.length - 2) > 0) for (var args = new Array(n), i = 0, n, t; i < n; ++i) args[i] = arguments[i + 2];
      if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type);
      for (t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args);
    },
    apply: function(type, that, args) {
      if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type);
      for (var t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args);
    }
  };

  function get(type, name) {
    for (var i = 0, n = type.length, c; i < n; ++i) {
      if ((c = type[i]).name === name) {
        return c.value;
      }
    }
  }

  function set(type, name, callback) {
    for (var i = 0, n = type.length; i < n; ++i) {
      if (type[i].name === name) {
        type[i] = noop, type = type.slice(0, i).concat(type.slice(i + 1));
        break;
      }
    }
    if (callback != null) type.push({name: name, value: callback});
    return type;
  }

  var frame = 0, // is an animation frame pending?
      timeout = 0, // is a timeout pending?
      interval = 0, // are any timers active?
      pokeDelay = 1000, // how frequently we check for clock skew
      taskHead,
      taskTail,
      clockLast = 0,
      clockNow = 0,
      clockSkew = 0,
      clock = typeof performance === "object" && performance.now ? performance : Date,
      setFrame = typeof window === "object" && window.requestAnimationFrame ? window.requestAnimationFrame.bind(window) : function(f) { setTimeout(f, 17); };

  function now() {
    return clockNow || (setFrame(clearNow), clockNow = clock.now() + clockSkew);
  }

  function clearNow() {
    clockNow = 0;
  }

  function Timer() {
    this._call =
    this._time =
    this._next = null;
  }

  Timer.prototype = timer.prototype = {
    constructor: Timer,
    restart: function(callback, delay, time) {
      if (typeof callback !== "function") throw new TypeError("callback is not a function");
      time = (time == null ? now() : +time) + (delay == null ? 0 : +delay);
      if (!this._next && taskTail !== this) {
        if (taskTail) taskTail._next = this;
        else taskHead = this;
        taskTail = this;
      }
      this._call = callback;
      this._time = time;
      sleep();
    },
    stop: function() {
      if (this._call) {
        this._call = null;
        this._time = Infinity;
        sleep();
      }
    }
  };

  function timer(callback, delay, time) {
    var t = new Timer;
    t.restart(callback, delay, time);
    return t;
  }

  function timerFlush() {
    now(); // Get the current time, if not already set.
    ++frame; // Pretend we’ve set an alarm, if we haven’t already.
    var t = taskHead, e;
    while (t) {
      if ((e = clockNow - t._time) >= 0) t._call.call(null, e);
      t = t._next;
    }
    --frame;
  }

  function wake() {
    clockNow = (clockLast = clock.now()) + clockSkew;
    frame = timeout = 0;
    try {
      timerFlush();
    } finally {
      frame = 0;
      nap();
      clockNow = 0;
    }
  }

  function poke() {
    var now = clock.now(), delay = now - clockLast;
    if (delay > pokeDelay) clockSkew -= delay, clockLast = now;
  }

  function nap() {
    var t0, t1 = taskHead, t2, time = Infinity;
    while (t1) {
      if (t1._call) {
        if (time > t1._time) time = t1._time;
        t0 = t1, t1 = t1._next;
      } else {
        t2 = t1._next, t1._next = null;
        t1 = t0 ? t0._next = t2 : taskHead = t2;
      }
    }
    taskTail = t0;
    sleep(time);
  }

  function sleep(time) {
    if (frame) return; // Soonest alarm already set, or will be.
    if (timeout) timeout = clearTimeout(timeout);
    var delay = time - clockNow; // Strictly less than if we recomputed clockNow.
    if (delay > 24) {
      if (time < Infinity) timeout = setTimeout(wake, time - clock.now() - clockSkew);
      if (interval) interval = clearInterval(interval);
    } else {
      if (!interval) clockLast = clock.now(), interval = setInterval(poke, pokeDelay);
      frame = 1, setFrame(wake);
    }
  }

  var MAX_DIMENSIONS = 3;

  function x(d) {
    return d.x;
  }

  function y(d) {
    return d.y;
  }

  function z(d) {
    return d.z;
  }

  var initialRadius = 10,
      initialAngleRoll = Math.PI * (3 - Math.sqrt(5)), // Golden ratio angle
      initialAngleYaw = Math.PI * 20 / (9 + Math.sqrt(221)); // Markov irrational number

  function forceSimulation(nodes, numDimensions) {
    numDimensions = numDimensions || 2;

    var nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(numDimensions))),
        simulation,
        alpha = 1,
        alphaMin = 0.001,
        alphaDecay = 1 - Math.pow(alphaMin, 1 / 300),
        alphaTarget = 0,
        velocityDecay = 0.6,
        forces = new Map(),
        stepper = timer(step),
        event = dispatch("tick", "end");

    if (nodes == null) nodes = [];

    function step() {
      tick();
      event.call("tick", simulation);
      if (alpha < alphaMin) {
        stepper.stop();
        event.call("end", simulation);
      }
    }

    function tick(iterations) {
      var i, n = nodes.length, node;

      if (iterations === undefined) iterations = 1;

      for (var k = 0; k < iterations; ++k) {
        alpha += (alphaTarget - alpha) * alphaDecay;

        forces.forEach(function (force) {
          force(alpha);
        });

        for (i = 0; i < n; ++i) {
          node = nodes[i];
          if (node.fx == null) node.x += node.vx *= velocityDecay;
          else node.x = node.fx, node.vx = 0;
          if (nDim > 1) {
            if (node.fy == null) node.y += node.vy *= velocityDecay;
            else node.y = node.fy, node.vy = 0;
          }
          if (nDim > 2) {
            if (node.fz == null) node.z += node.vz *= velocityDecay;
            else node.z = node.fz, node.vz = 0;
          }
        }
      }

      return simulation;
    }

    function initializeNodes() {
      for (var i = 0, n = nodes.length, node; i < n; ++i) {
        node = nodes[i], node.index = i;
        if (node.fx != null) node.x = node.fx;
        if (node.fy != null) node.y = node.fy;
        if (node.fz != null) node.z = node.fz;
        if (isNaN(node.x) || (nDim > 1 && isNaN(node.y)) || (nDim > 2 && isNaN(node.z))) {
          var radius = initialRadius * (nDim > 2 ? Math.cbrt(i) : (nDim > 1 ? Math.sqrt(i) : i)),
            rollAngle = i * initialAngleRoll,
            yawAngle = i * initialAngleYaw;

          if (nDim === 1) {
            node.x = radius;
          } else if (nDim === 2) {
            node.x = radius * Math.cos(rollAngle);
            node.y = radius * Math.sin(rollAngle);
          } else { // 3 dimensions: use spherical distribution along 2 irrational number angles
            node.x = radius * Math.sin(rollAngle) * Math.cos(yawAngle);
            node.y = radius * Math.cos(rollAngle);
            node.z = radius * Math.sin(rollAngle) * Math.sin(yawAngle);
          }
        }
        if (isNaN(node.vx) || (nDim > 1 && isNaN(node.vy)) || (nDim > 2 && isNaN(node.vz))) {
          node.vx = 0;
          if (nDim > 1) { node.vy = 0; }
          if (nDim > 2) { node.vz = 0; }
        }
      }
    }

    function initializeForce(force) {
      if (force.initialize) force.initialize(nodes, nDim);
      return force;
    }

    initializeNodes();

    return simulation = {
      tick: tick,

      restart: function() {
        return stepper.restart(step), simulation;
      },

      stop: function() {
        return stepper.stop(), simulation;
      },

      numDimensions: function(_) {
        return arguments.length
            ? (nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(_))), forces.forEach(initializeForce), simulation)
            : nDim;
      },

      nodes: function(_) {
        return arguments.length ? (nodes = _, initializeNodes(), forces.forEach(initializeForce), simulation) : nodes;
      },

      alpha: function(_) {
        return arguments.length ? (alpha = +_, simulation) : alpha;
      },

      alphaMin: function(_) {
        return arguments.length ? (alphaMin = +_, simulation) : alphaMin;
      },

      alphaDecay: function(_) {
        return arguments.length ? (alphaDecay = +_, simulation) : +alphaDecay;
      },

      alphaTarget: function(_) {
        return arguments.length ? (alphaTarget = +_, simulation) : alphaTarget;
      },

      velocityDecay: function(_) {
        return arguments.length ? (velocityDecay = 1 - _, simulation) : 1 - velocityDecay;
      },

      force: function(name, _) {
        return arguments.length > 1 ? ((_ == null ? forces.delete(name) : forces.set(name, initializeForce(_))), simulation) : forces.get(name);
      },

      find: function() {
        var args = Array.prototype.slice.call(arguments);
        var x = args.shift() || 0,
            y = (nDim > 1 ? args.shift() : null) || 0,
            z = (nDim > 2 ? args.shift() : null) || 0,
            radius = args.shift() || Infinity;

        var i = 0,
            n = nodes.length,
            dx,
            dy,
            dz,
            d2,
            node,
            closest;

        radius *= radius;

        for (i = 0; i < n; ++i) {
          node = nodes[i];
          dx = x - node.x;
          dy = y - (node.y || 0);
          dz = z - (node.z ||0);
          d2 = dx * dx + dy * dy + dz * dz;
          if (d2 < radius) closest = node, radius = d2;
        }

        return closest;
      },

      on: function(name, _) {
        return arguments.length > 1 ? (event.on(name, _), simulation) : event.on(name);
      }
    };
  }

  function forceManyBody() {
    var nodes,
        nDim,
        node,
        alpha,
        strength = constant(-30),
        strengths,
        distanceMin2 = 1,
        distanceMax2 = Infinity,
        theta2 = 0.81;

    function force(_) {
      var i,
          n = nodes.length,
          tree =
              (nDim === 1 ? binarytree(nodes, x)
              :(nDim === 2 ? quadtree(nodes, x, y)
              :(nDim === 3 ? octree(nodes, x, y, z)
              :null
          ))).visitAfter(accumulate);

      for (alpha = _, i = 0; i < n; ++i) node = nodes[i], tree.visit(apply);
    }

    function initialize() {
      if (!nodes) return;
      var i, n = nodes.length, node;
      strengths = new Array(n);
      for (i = 0; i < n; ++i) node = nodes[i], strengths[node.index] = +strength(node, i, nodes);
    }

    function accumulate(treeNode) {
      var strength = 0, q, c, weight = 0, x, y, z, i;
      var numChildren = treeNode.length;

      // For internal nodes, accumulate forces from children.
      if (numChildren) {
        for (x = y = z = i = 0; i < numChildren; ++i) {
          if ((q = treeNode[i]) && (c = Math.abs(q.value))) {
            strength += q.value, weight += c, x += c * (q.x || 0), y += c * (q.y || 0), z += c * (q.z || 0);
          }
        }
        strength *= Math.sqrt(4 / numChildren); // scale accumulated strength according to number of dimensions

        treeNode.x = x / weight;
        if (nDim > 1) { treeNode.y = y / weight; }
        if (nDim > 2) { treeNode.z = z / weight; }
      }

      // For leaf nodes, accumulate forces from coincident nodes.
      else {
        q = treeNode;
        q.x = q.data.x;
        if (nDim > 1) { q.y = q.data.y; }
        if (nDim > 2) { q.z = q.data.z; }
        do strength += strengths[q.data.index];
        while (q = q.next);
      }

      treeNode.value = strength;
    }

    function apply(treeNode, x1, arg1, arg2, arg3) {
      if (!treeNode.value) return true;
      var x2 = [arg1, arg2, arg3][nDim-1];

      var x = treeNode.x - node.x,
          y = (nDim > 1 ? treeNode.y - node.y : 0),
          z = (nDim > 2 ? treeNode.z - node.z : 0),
          w = x2 - x1,
          l = x * x + y * y + z * z;

      // Apply the Barnes-Hut approximation if possible.
      // Limit forces for very close nodes; randomize direction if coincident.
      if (w * w / theta2 < l) {
        if (l < distanceMax2) {
          if (x === 0) x = jiggle(), l += x * x;
          if (nDim > 1 && y === 0) y = jiggle(), l += y * y;
          if (nDim > 2 && z === 0) z = jiggle(), l += z * z;
          if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l);
          node.vx += x * treeNode.value * alpha / l;
          if (nDim > 1) { node.vy += y * treeNode.value * alpha / l; }
          if (nDim > 2) { node.vz += z * treeNode.value * alpha / l; }
        }
        return true;
      }

      // Otherwise, process points directly.
      else if (treeNode.length || l >= distanceMax2) return;

      // Limit forces for very close nodes; randomize direction if coincident.
      if (treeNode.data !== node || treeNode.next) {
        if (x === 0) x = jiggle(), l += x * x;
        if (nDim > 1 && y === 0) y = jiggle(), l += y * y;
        if (nDim > 2 && z === 0) z = jiggle(), l += z * z;
        if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l);
      }

      do if (treeNode.data !== node) {
        w = strengths[treeNode.data.index] * alpha / l;
        node.vx += x * w;
        if (nDim > 1) { node.vy += y * w; }
        if (nDim > 2) { node.vz += z * w; }
      } while (treeNode = treeNode.next);
    }

    force.initialize = function(initNodes, numDimensions) {
      nodes = initNodes;
      nDim = numDimensions;
      initialize();
    };

    force.strength = function(_) {
      return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength;
    };

    force.distanceMin = function(_) {
      return arguments.length ? (distanceMin2 = _ * _, force) : Math.sqrt(distanceMin2);
    };

    force.distanceMax = function(_) {
      return arguments.length ? (distanceMax2 = _ * _, force) : Math.sqrt(distanceMax2);
    };

    force.theta = function(_) {
      return arguments.length ? (theta2 = _ * _, force) : Math.sqrt(theta2);
    };

    return force;
  }

  function forceRadial(radius, x, y, z) {
    var nodes,
        nDim,
        strength = constant(0.1),
        strengths,
        radiuses;

    if (typeof radius !== "function") radius = constant(+radius);
    if (x == null) x = 0;
    if (y == null) y = 0;
    if (z == null) z = 0;

    function force(alpha) {
      for (var i = 0, n = nodes.length; i < n; ++i) {
        var node = nodes[i],
            dx = node.x - x || 1e-6,
            dy = (node.y || 0) - y || 1e-6,
            dz = (node.z || 0) - z || 1e-6,
            r = Math.sqrt(dx * dx + dy * dy + dz * dz),
            k = (radiuses[i] - r) * strengths[i] * alpha / r;
        node.vx += dx * k;
        if (nDim>1) { node.vy += dy * k; }
        if (nDim>2) { node.vz += dz * k; }
      }
    }

    function initialize() {
      if (!nodes) return;
      var i, n = nodes.length;
      strengths = new Array(n);
      radiuses = new Array(n);
      for (i = 0; i < n; ++i) {
        radiuses[i] = +radius(nodes[i], i, nodes);
        strengths[i] = isNaN(radiuses[i]) ? 0 : +strength(nodes[i], i, nodes);
      }
    }

    force.initialize = function(initNodes, numDimensions) {
      nodes = initNodes;
      nDim = numDimensions;
      initialize();
    };

    force.strength = function(_) {
      return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength;
    };

    force.radius = function(_) {
      return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), initialize(), force) : radius;
    };

    force.x = function(_) {
      return arguments.length ? (x = +_, force) : x;
    };

    force.y = function(_) {
      return arguments.length ? (y = +_, force) : y;
    };

    force.z = function(_) {
      return arguments.length ? (z = +_, force) : z;
    };

    return force;
  }

  var ngraph_events = function eventify(subject) {
    validateSubject(subject);

    var eventsStorage = createEventsStorage(subject);
    subject.on = eventsStorage.on;
    subject.off = eventsStorage.off;
    subject.fire = eventsStorage.fire;
    return subject;
  };

  function createEventsStorage(subject) {
    // Store all event listeners to this hash. Key is event name, value is array
    // of callback records.
    //
    // A callback record consists of callback function and its optional context:
    // { 'eventName' => [{callback: function, ctx: object}] }
    var registeredEvents = Object.create(null);

    return {
      on: function (eventName, callback, ctx) {
        if (typeof callback !== 'function') {
          throw new Error('callback is expected to be a function');
        }
        var handlers = registeredEvents[eventName];
        if (!handlers) {
          handlers = registeredEvents[eventName] = [];
        }
        handlers.push({callback: callback, ctx: ctx});

        return subject;
      },

      off: function (eventName, callback) {
        var wantToRemoveAll = (typeof eventName === 'undefined');
        if (wantToRemoveAll) {
          // Killing old events storage should be enough in this case:
          registeredEvents = Object.create(null);
          return subject;
        }

        if (registeredEvents[eventName]) {
          var deleteAllCallbacksForEvent = (typeof callback !== 'function');
          if (deleteAllCallbacksForEvent) {
            delete registeredEvents[eventName];
          } else {
            var callbacks = registeredEvents[eventName];
            for (var i = 0; i < callbacks.length; ++i) {
              if (callbacks[i].callback === callback) {
                callbacks.splice(i, 1);
              }
            }
          }
        }

        return subject;
      },

      fire: function (eventName) {
        var callbacks = registeredEvents[eventName];
        if (!callbacks) {
          return subject;
        }

        var fireArguments;
        if (arguments.length > 1) {
          fireArguments = Array.prototype.splice.call(arguments, 1);
        }
        for(var i = 0; i < callbacks.length; ++i) {
          var callbackInfo = callbacks[i];
          callbackInfo.callback.apply(callbackInfo.ctx, fireArguments);
        }

        return subject;
      }
    };
  }

  function validateSubject(subject) {
    if (!subject) {
      throw new Error('Eventify cannot use falsy object as events subject');
    }
    var reservedWords = ['on', 'fire', 'off'];
    for (var i = 0; i < reservedWords.length; ++i) {
      if (subject.hasOwnProperty(reservedWords[i])) {
        throw new Error("Subject cannot be eventified, since it already has property '" + reservedWords[i] + "'");
      }
    }
  }

  /**
   * @fileOverview Contains definition of the core graph object.
   */

  // TODO: need to change storage layer:
  // 1. Be able to get all nodes O(1)
  // 2. Be able to get number of links O(1)

  /**
   * @example
   *  var graph = require('ngraph.graph')();
   *  graph.addNode(1);     // graph has one node.
   *  graph.addLink(2, 3);  // now graph contains three nodes and one link.
   *
   */
  var ngraph_graph = createGraph;



  /**
   * Creates a new graph
   */
  function createGraph(options) {
    // Graph structure is maintained as dictionary of nodes
    // and array of links. Each node has 'links' property which
    // hold all links related to that node. And general links
    // array is used to speed up all links enumeration. This is inefficient
    // in terms of memory, but simplifies coding.
    options = options || {};
    if ('uniqueLinkId' in options) {
      console.warn(
        'ngraph.graph: Starting from version 0.14 `uniqueLinkId` is deprecated.\n' +
        'Use `multigraph` option instead\n',
        '\n',
        'Note: there is also change in default behavior: From now on each graph\n'+
        'is considered to be not a multigraph by default (each edge is unique).'
      );

      options.multigraph = options.uniqueLinkId;
    }

    // Dear reader, the non-multigraphs do not guarantee that there is only
    // one link for a given pair of node. When this option is set to false
    // we can save some memory and CPU (18% faster for non-multigraph);
    if (options.multigraph === undefined) options.multigraph = false;

    if (typeof Map !== 'function') {
      // TODO: Should we polyfill it ourselves? We don't use much operations there..
      throw new Error('ngraph.graph requires `Map` to be defined. Please polyfill it before using ngraph');
    } 

    var nodes = new Map();
    var links = [],
      // Hash of multi-edges. Used to track ids of edges between same nodes
      multiEdges = {},
      suspendEvents = 0,

      createLink = options.multigraph ? createUniqueLink : createSingleLink,

      // Our graph API provides means to listen to graph changes. Users can subscribe
      // to be notified about changes in the graph by using `on` method. However
      // in some cases they don't use it. To avoid unnecessary memory consumption
      // we will not record graph changes until we have at least one subscriber.
      // Code below supports this optimization.
      //
      // Accumulates all changes made during graph updates.
      // Each change element contains:
      //  changeType - one of the strings: 'add', 'remove' or 'update';
      //  node - if change is related to node this property is set to changed graph's node;
      //  link - if change is related to link this property is set to changed graph's link;
      changes = [],
      recordLinkChange = noop,
      recordNodeChange = noop,
      enterModification = noop,
      exitModification = noop;

    // this is our public API:
    var graphPart = {
      /**
       * Adds node to the graph. If node with given id already exists in the graph
       * its data is extended with whatever comes in 'data' argument.
       *
       * @param nodeId the node's identifier. A string or number is preferred.
       * @param [data] additional data for the node being added. If node already
       *   exists its data object is augmented with the new one.
       *
       * @return {node} The newly added node or node with given id if it already exists.
       */
      addNode: addNode,

      /**
       * Adds a link to the graph. The function always create a new
       * link between two nodes. If one of the nodes does not exists
       * a new node is created.
       *
       * @param fromId link start node id;
       * @param toId link end node id;
       * @param [data] additional data to be set on the new link;
       *
       * @return {link} The newly created link
       */
      addLink: addLink,

      /**
       * Removes link from the graph. If link does not exist does nothing.
       *
       * @param link - object returned by addLink() or getLinks() methods.
       *
       * @returns true if link was removed; false otherwise.
       */
      removeLink: removeLink,

      /**
       * Removes node with given id from the graph. If node does not exist in the graph
       * does nothing.
       *
       * @param nodeId node's identifier passed to addNode() function.
       *
       * @returns true if node was removed; false otherwise.
       */
      removeNode: removeNode,

      /**
       * Gets node with given identifier. If node does not exist undefined value is returned.
       *
       * @param nodeId requested node identifier;
       *
       * @return {node} in with requested identifier or undefined if no such node exists.
       */
      getNode: getNode,

      /**
       * Gets number of nodes in this graph.
       *
       * @return number of nodes in the graph.
       */
      getNodeCount: getNodeCount,

      /**
       * Gets total number of links in the graph.
       */
      getLinkCount: getLinkCount,

      /**
       * Synonym for `getLinkCount()`
       */
      getLinksCount: getLinkCount,
      
      /**
       * Synonym for `getNodeCount()`
       */
      getNodesCount: getNodeCount,

      /**
       * Gets all links (inbound and outbound) from the node with given id.
       * If node with given id is not found null is returned.
       *
       * @param nodeId requested node identifier.
       *
       * @return Array of links from and to requested node if such node exists;
       *   otherwise null is returned.
       */
      getLinks: getLinks,

      /**
       * Invokes callback on each node of the graph.
       *
       * @param {Function(node)} callback Function to be invoked. The function
       *   is passed one argument: visited node.
       */
      forEachNode: forEachNode,

      /**
       * Invokes callback on every linked (adjacent) node to the given one.
       *
       * @param nodeId Identifier of the requested node.
       * @param {Function(node, link)} callback Function to be called on all linked nodes.
       *   The function is passed two parameters: adjacent node and link object itself.
       * @param oriented if true graph treated as oriented.
       */
      forEachLinkedNode: forEachLinkedNode,

      /**
       * Enumerates all links in the graph
       *
       * @param {Function(link)} callback Function to be called on all links in the graph.
       *   The function is passed one parameter: graph's link object.
       *
       * Link object contains at least the following fields:
       *  fromId - node id where link starts;
       *  toId - node id where link ends,
       *  data - additional data passed to graph.addLink() method.
       */
      forEachLink: forEachLink,

      /**
       * Suspend all notifications about graph changes until
       * endUpdate is called.
       */
      beginUpdate: enterModification,

      /**
       * Resumes all notifications about graph changes and fires
       * graph 'changed' event in case there are any pending changes.
       */
      endUpdate: exitModification,

      /**
       * Removes all nodes and links from the graph.
       */
      clear: clear,

      /**
       * Detects whether there is a link between two nodes.
       * Operation complexity is O(n) where n - number of links of a node.
       * NOTE: this function is synonim for getLink()
       *
       * @returns link if there is one. null otherwise.
       */
      hasLink: getLink,

      /**
       * Detects whether there is a node with given id
       * 
       * Operation complexity is O(1)
       * NOTE: this function is synonim for getNode()
       *
       * @returns node if there is one; Falsy value otherwise.
       */
      hasNode: getNode,

      /**
       * Gets an edge between two nodes.
       * Operation complexity is O(n) where n - number of links of a node.
       *
       * @param {string} fromId link start identifier
       * @param {string} toId link end identifier
       *
       * @returns link if there is one. null otherwise.
       */
      getLink: getLink
    };

    // this will add `on()` and `fire()` methods.
    ngraph_events(graphPart);

    monitorSubscribers();

    return graphPart;

    function monitorSubscribers() {
      var realOn = graphPart.on;

      // replace real `on` with our temporary on, which will trigger change
      // modification monitoring:
      graphPart.on = on;

      function on() {
        // now it's time to start tracking stuff:
        graphPart.beginUpdate = enterModification = enterModificationReal;
        graphPart.endUpdate = exitModification = exitModificationReal;
        recordLinkChange = recordLinkChangeReal;
        recordNodeChange = recordNodeChangeReal;

        // this will replace current `on` method with real pub/sub from `eventify`.
        graphPart.on = realOn;
        // delegate to real `on` handler:
        return realOn.apply(graphPart, arguments);
      }
    }

    function recordLinkChangeReal(link, changeType) {
      changes.push({
        link: link,
        changeType: changeType
      });
    }

    function recordNodeChangeReal(node, changeType) {
      changes.push({
        node: node,
        changeType: changeType
      });
    }

    function addNode(nodeId, data) {
      if (nodeId === undefined) {
        throw new Error('Invalid node identifier');
      }

      enterModification();

      var node = getNode(nodeId);
      if (!node) {
        node = new Node$1(nodeId, data);
        recordNodeChange(node, 'add');
      } else {
        node.data = data;
        recordNodeChange(node, 'update');
      }

      nodes.set(nodeId, node);

      exitModification();
      return node;
    }

    function getNode(nodeId) {
      return nodes.get(nodeId);
    }

    function removeNode(nodeId) {
      var node = getNode(nodeId);
      if (!node) {
        return false;
      }

      enterModification();

      var prevLinks = node.links;
      if (prevLinks) {
        node.links = null;
        for(var i = 0; i < prevLinks.length; ++i) {
          removeLink(prevLinks[i]);
        }
      }

      nodes.delete(nodeId);

      recordNodeChange(node, 'remove');

      exitModification();

      return true;
    }


    function addLink(fromId, toId, data) {
      enterModification();

      var fromNode = getNode(fromId) || addNode(fromId);
      var toNode = getNode(toId) || addNode(toId);

      var link = createLink(fromId, toId, data);

      links.push(link);

      // TODO: this is not cool. On large graphs potentially would consume more memory.
      addLinkToNode(fromNode, link);
      if (fromId !== toId) {
        // make sure we are not duplicating links for self-loops
        addLinkToNode(toNode, link);
      }

      recordLinkChange(link, 'add');

      exitModification();

      return link;
    }

    function createSingleLink(fromId, toId, data) {
      var linkId = makeLinkId(fromId, toId);
      return new Link(fromId, toId, data, linkId);
    }

    function createUniqueLink(fromId, toId, data) {
      // TODO: Get rid of this method.
      var linkId = makeLinkId(fromId, toId);
      var isMultiEdge = multiEdges.hasOwnProperty(linkId);
      if (isMultiEdge || getLink(fromId, toId)) {
        if (!isMultiEdge) {
          multiEdges[linkId] = 0;
        }
        var suffix = '@' + (++multiEdges[linkId]);
        linkId = makeLinkId(fromId + suffix, toId + suffix);
      }

      return new Link(fromId, toId, data, linkId);
    }

    function getNodeCount() {
      return nodes.size;
    }

    function getLinkCount() {
      return links.length;
    }

    function getLinks(nodeId) {
      var node = getNode(nodeId);
      return node ? node.links : null;
    }

    function removeLink(link) {
      if (!link) {
        return false;
      }
      var idx = indexOfElementInArray(link, links);
      if (idx < 0) {
        return false;
      }

      enterModification();

      links.splice(idx, 1);

      var fromNode = getNode(link.fromId);
      var toNode = getNode(link.toId);

      if (fromNode) {
        idx = indexOfElementInArray(link, fromNode.links);
        if (idx >= 0) {
          fromNode.links.splice(idx, 1);
        }
      }

      if (toNode) {
        idx = indexOfElementInArray(link, toNode.links);
        if (idx >= 0) {
          toNode.links.splice(idx, 1);
        }
      }

      recordLinkChange(link, 'remove');

      exitModification();

      return true;
    }

    function getLink(fromNodeId, toNodeId) {
      // TODO: Use sorted links to speed this up
      var node = getNode(fromNodeId),
        i;
      if (!node || !node.links) {
        return null;
      }

      for (i = 0; i < node.links.length; ++i) {
        var link = node.links[i];
        if (link.fromId === fromNodeId && link.toId === toNodeId) {
          return link;
        }
      }

      return null; // no link.
    }

    function clear() {
      enterModification();
      forEachNode(function(node) {
        removeNode(node.id);
      });
      exitModification();
    }

    function forEachLink(callback) {
      var i, length;
      if (typeof callback === 'function') {
        for (i = 0, length = links.length; i < length; ++i) {
          callback(links[i]);
        }
      }
    }

    function forEachLinkedNode(nodeId, callback, oriented) {
      var node = getNode(nodeId);

      if (node && node.links && typeof callback === 'function') {
        if (oriented) {
          return forEachOrientedLink(node.links, nodeId, callback);
        } else {
          return forEachNonOrientedLink(node.links, nodeId, callback);
        }
      }
    }

    function forEachNonOrientedLink(links, nodeId, callback) {
      var quitFast;
      for (var i = 0; i < links.length; ++i) {
        var link = links[i];
        var linkedNodeId = link.fromId === nodeId ? link.toId : link.fromId;

        quitFast = callback(nodes.get(linkedNodeId), link);
        if (quitFast) {
          return true; // Client does not need more iterations. Break now.
        }
      }
    }

    function forEachOrientedLink(links, nodeId, callback) {
      var quitFast;
      for (var i = 0; i < links.length; ++i) {
        var link = links[i];
        if (link.fromId === nodeId) {
          quitFast = callback(nodes.get(link.toId), link);
          if (quitFast) {
            return true; // Client does not need more iterations. Break now.
          }
        }
      }
    }

    // we will not fire anything until users of this library explicitly call `on()`
    // method.
    function noop() {}

    // Enter, Exit modification allows bulk graph updates without firing events.
    function enterModificationReal() {
      suspendEvents += 1;
    }

    function exitModificationReal() {
      suspendEvents -= 1;
      if (suspendEvents === 0 && changes.length > 0) {
        graphPart.fire('changed', changes);
        changes.length = 0;
      }
    }

    function forEachNode(callback) {
      if (typeof callback !== 'function') {
        throw new Error('Function is expected to iterate over graph nodes. You passed ' + callback);
      }

      var valuesIterator = nodes.values();
      var nextValue = valuesIterator.next();
      while (!nextValue.done) {
        if (callback(nextValue.value)) {
          return true; // client doesn't want to proceed. Return.
        }
        nextValue = valuesIterator.next();
      }
    }
  }

  // need this for old browsers. Should this be a separate module?
  function indexOfElementInArray(element, array) {
    if (!array) return -1;

    if (array.indexOf) {
      return array.indexOf(element);
    }

    var len = array.length,
      i;

    for (i = 0; i < len; i += 1) {
      if (array[i] === element) {
        return i;
      }
    }

    return -1;
  }

  /**
   * Internal structure to represent node;
   */
  function Node$1(id, data) {
    this.id = id;
    this.links = null;
    this.data = data;
  }

  function addLinkToNode(node, link) {
    if (node.links) {
      node.links.push(link);
    } else {
      node.links = [link];
    }
  }

  /**
   * Internal structure to represent links;
   */
  function Link(fromId, toId, data, id) {
    this.fromId = fromId;
    this.toId = toId;
    this.data = data;
    this.id = id;
  }

  function makeLinkId(fromId, toId) {
    return fromId.toString() + '👉 ' + toId.toString();
  }

  var spring = Spring;

  /**
   * Represents a physical spring. Spring connects two bodies, has rest length
   * stiffness coefficient and optional weight
   */
  function Spring(fromBody, toBody, length, coeff) {
      this.from = fromBody;
      this.to = toBody;
      this.length = length;
      this.coeff = coeff;
  }

  var ngraph_expose = exposeProperties;

  /**
   * Augments `target` object with getter/setter functions, which modify settings
   *
   * @example
   *  var target = {};
   *  exposeProperties({ age: 42}, target);
   *  target.age(); // returns 42
   *  target.age(24); // make age 24;
   *
   *  var filteredTarget = {};
   *  exposeProperties({ age: 42, name: 'John'}, filteredTarget, ['name']);
   *  filteredTarget.name(); // returns 'John'
   *  filteredTarget.age === undefined; // true
   */
  function exposeProperties(settings, target, filter) {
    var needsFilter = Object.prototype.toString.call(filter) === '[object Array]';
    if (needsFilter) {
      for (var i = 0; i < filter.length; ++i) {
        augment(settings, target, filter[i]);
      }
    } else {
      for (var key in settings) {
        augment(settings, target, key);
      }
    }
  }

  function augment(source, target, key) {
    if (source.hasOwnProperty(key)) {
      if (typeof target[key] === 'function') {
        // this accessor is already defined. Ignore it
        return;
      }
      target[key] = function (value) {
        if (value !== undefined) {
          source[key] = value;
          return target;
        }
        return source[key];
      };
    }
  }

  var ngraph_merge = merge;

  /**
   * Augments `target` with properties in `options`. Does not override
   * target's properties if they are defined and matches expected type in 
   * options
   *
   * @returns {Object} merged object
   */
  function merge(target, options) {
    var key;
    if (!target) { target = {}; }
    if (options) {
      for (key in options) {
        if (options.hasOwnProperty(key)) {
          var targetHasIt = target.hasOwnProperty(key),
              optionsValueType = typeof options[key],
              shouldReplace = !targetHasIt || (typeof target[key] !== optionsValueType);

          if (shouldReplace) {
            target[key] = options[key];
          } else if (optionsValueType === 'object') {
            // go deep, don't care about loops here, we are simple API!:
            target[key] = merge(target[key], options[key]);
          }
        }
      }
    }

    return target;
  }

  function createCommonjsModule(fn, basedir, module) {
  	return module = {
  	  path: basedir,
  	  exports: {},
  	  require: function (path, base) {
        return commonjsRequire(path, (base === undefined || base === null) ? module.path : base);
      }
  	}, fn(module, module.exports), module.exports;
  }

  function commonjsRequire () {
  	throw new Error('Dynamic requires are not currently supported by @rollup/plugin-commonjs');
  }

  var ngraph_random = createCommonjsModule(function (module) {
  module.exports = random;

  // TODO: Deprecate?
  module.exports.random = random,
  module.exports.randomIterator = randomIterator;

  /**
   * Creates seeded PRNG with two methods:
   *   next() and nextDouble()
   */
  function random(inputSeed) {
    var seed = typeof inputSeed === 'number' ? inputSeed : (+new Date());
    return new Generator(seed)
  }

  function Generator(seed) {
    this.seed = seed;
  }

  /**
    * Generates random integer number in the range from 0 (inclusive) to maxValue (exclusive)
    *
    * @param maxValue Number REQUIRED. Omitting this number will result in NaN values from PRNG.
    */
  Generator.prototype.next = next;

  /**
    * Generates random double number in the range from 0 (inclusive) to 1 (exclusive)
    * This function is the same as Math.random() (except that it could be seeded)
    */
  Generator.prototype.nextDouble = nextDouble;

  /**
   * Returns a random real number uniformly in [0, 1)
   */
  Generator.prototype.uniform = nextDouble;

  Generator.prototype.gaussian = gaussian;

  function gaussian() {
    // use the polar form of the Box-Muller transform
    // based on https://introcs.cs.princeton.edu/java/23recursion/StdRandom.java
    var r, x, y;
    do {
      x = this.nextDouble() * 2 - 1;
      y = this.nextDouble() * 2 - 1;
      r = x * x + y * y;
    } while (r >= 1 || r === 0);

    return x * Math.sqrt(-2 * Math.log(r)/r);
  }

  function nextDouble() {
    var seed = this.seed;
    // Robert Jenkins' 32 bit integer hash function.
    seed = ((seed + 0x7ed55d16) + (seed << 12)) & 0xffffffff;
    seed = ((seed ^ 0xc761c23c) ^ (seed >>> 19)) & 0xffffffff;
    seed = ((seed + 0x165667b1) + (seed << 5)) & 0xffffffff;
    seed = ((seed + 0xd3a2646c) ^ (seed << 9)) & 0xffffffff;
    seed = ((seed + 0xfd7046c5) + (seed << 3)) & 0xffffffff;
    seed = ((seed ^ 0xb55a4f09) ^ (seed >>> 16)) & 0xffffffff;
    this.seed = seed;
    return (seed & 0xfffffff) / 0x10000000;
  }

  function next(maxValue) {
    return Math.floor(this.nextDouble() * maxValue);
  }

  /*
   * Creates iterator over array, which returns items of array in random order
   * Time complexity is guaranteed to be O(n);
   */
  function randomIterator(array, customRandom) {
    var localRandom = customRandom || random();
    if (typeof localRandom.next !== 'function') {
      throw new Error('customRandom does not match expected API: next() function is missing');
    }

    return {
      forEach: forEach,

      /**
       * Shuffles array randomly, in place.
       */
      shuffle: shuffle
    };

    function shuffle() {
      var i, j, t;
      for (i = array.length - 1; i > 0; --i) {
        j = localRandom.next(i + 1); // i inclusive
        t = array[j];
        array[j] = array[i];
        array[i] = t;
      }

      return array;
    }

    function forEach(callback) {
      var i, j, t;
      for (i = array.length - 1; i > 0; --i) {
        j = localRandom.next(i + 1); // i inclusive
        t = array[j];
        array[j] = array[i];
        array[i] = t;

        callback(t);
      }

      if (array.length) {
        callback(array[0]);
      }
    }
  }
  });

  /**
   * Internal data structure to represent 2D QuadTree node
   */
  var node = function Node() {
    // body stored inside this node. In quad tree only leaf nodes (by construction)
    // contain boides:
    this.body = null;

    // Child nodes are stored in quads. Each quad is presented by number:
    // 0 | 1
    // -----
    // 2 | 3
    this.quad0 = null;
    this.quad1 = null;
    this.quad2 = null;
    this.quad3 = null;

    // Total mass of current node
    this.mass = 0;

    // Center of mass coordinates
    this.massX = 0;
    this.massY = 0;

    // bounding box coordinates
    this.left = 0;
    this.top = 0;
    this.bottom = 0;
    this.right = 0;
  };

  var insertStack = InsertStack;

  /**
   * Our implmentation of QuadTree is non-recursive to avoid GC hit
   * This data structure represent stack of elements
   * which we are trying to insert into quad tree.
   */
  function InsertStack () {
      this.stack = [];
      this.popIdx = 0;
  }

  InsertStack.prototype = {
      isEmpty: function() {
          return this.popIdx === 0;
      },
      push: function (node, body) {
          var item = this.stack[this.popIdx];
          if (!item) {
              // we are trying to avoid memory pressue: create new element
              // only when absolutely necessary
              this.stack[this.popIdx] = new InsertStackElement(node, body);
          } else {
              item.node = node;
              item.body = body;
          }
          ++this.popIdx;
      },
      pop: function () {
          if (this.popIdx > 0) {
              return this.stack[--this.popIdx];
          }
      },
      reset: function () {
          this.popIdx = 0;
      }
  };

  function InsertStackElement(node, body) {
      this.node = node; // QuadTree node
      this.body = body; // physical body which needs to be inserted to node
  }

  var isSamePosition = function isSamePosition(point1, point2) {
      var dx = Math.abs(point1.x - point2.x);
      var dy = Math.abs(point1.y - point2.y);

      return (dx < 1e-8 && dy < 1e-8);
  };

  /**
   * This is Barnes Hut simulation algorithm for 2d case. Implementation
   * is highly optimized (avoids recusion and gc pressure)
   *
   * http://www.cs.princeton.edu/courses/archive/fall03/cs126/assignments/barnes-hut.html
   */

  var ngraph_quadtreebh = function(options) {
    options = options || {};
    options.gravity = typeof options.gravity === 'number' ? options.gravity : -1;
    options.theta = typeof options.theta === 'number' ? options.theta : 0.8;

    // we require deterministic randomness here
    var random = ngraph_random.random(1984),
      Node = node,
      InsertStack = insertStack,
      isSamePosition$1 = isSamePosition;

    var gravity = options.gravity,
      updateQueue = [],
      insertStack$1 = new InsertStack(),
      theta = options.theta,

      nodesCache = [],
      currentInCache = 0,
      root = newNode();

    return {
      insertBodies: insertBodies,
      /**
       * Gets root node if its present
       */
      getRoot: function() {
        return root;
      },
      updateBodyForce: update,
      options: function(newOptions) {
        if (newOptions) {
          if (typeof newOptions.gravity === 'number') {
            gravity = newOptions.gravity;
          }
          if (typeof newOptions.theta === 'number') {
            theta = newOptions.theta;
          }

          return this;
        }

        return {
          gravity: gravity,
          theta: theta
        };
      }
    };

    function newNode() {
      // To avoid pressure on GC we reuse nodes.
      var node = nodesCache[currentInCache];
      if (node) {
        node.quad0 = null;
        node.quad1 = null;
        node.quad2 = null;
        node.quad3 = null;
        node.body = null;
        node.mass = node.massX = node.massY = 0;
        node.left = node.right = node.top = node.bottom = 0;
      } else {
        node = new Node();
        nodesCache[currentInCache] = node;
      }

      ++currentInCache;
      return node;
    }

    function update(sourceBody) {
      var queue = updateQueue,
        v,
        dx,
        dy,
        r, fx = 0,
        fy = 0,
        queueLength = 1,
        shiftIdx = 0,
        pushIdx = 1;

      queue[0] = root;

      while (queueLength) {
        var node = queue[shiftIdx],
          body = node.body;

        queueLength -= 1;
        shiftIdx += 1;
        var differentBody = (body !== sourceBody);
        if (body && differentBody) {
          // If the current node is a leaf node (and it is not source body),
          // calculate the force exerted by the current node on body, and add this
          // amount to body's net force.
          dx = body.pos.x - sourceBody.pos.x;
          dy = body.pos.y - sourceBody.pos.y;
          r = Math.sqrt(dx * dx + dy * dy);

          if (r === 0) {
            // Poor man's protection against zero distance.
            dx = (random.nextDouble() - 0.5) / 50;
            dy = (random.nextDouble() - 0.5) / 50;
            r = Math.sqrt(dx * dx + dy * dy);
          }

          // This is standard gravition force calculation but we divide
          // by r^3 to save two operations when normalizing force vector.
          v = gravity * body.mass * sourceBody.mass / (r * r * r);
          fx += v * dx;
          fy += v * dy;
        } else if (differentBody) {
          // Otherwise, calculate the ratio s / r,  where s is the width of the region
          // represented by the internal node, and r is the distance between the body
          // and the node's center-of-mass
          dx = node.massX / node.mass - sourceBody.pos.x;
          dy = node.massY / node.mass - sourceBody.pos.y;
          r = Math.sqrt(dx * dx + dy * dy);

          if (r === 0) {
            // Sorry about code duplucation. I don't want to create many functions
            // right away. Just want to see performance first.
            dx = (random.nextDouble() - 0.5) / 50;
            dy = (random.nextDouble() - 0.5) / 50;
            r = Math.sqrt(dx * dx + dy * dy);
          }
          // If s / r < θ, treat this internal node as a single body, and calculate the
          // force it exerts on sourceBody, and add this amount to sourceBody's net force.
          if ((node.right - node.left) / r < theta) {
            // in the if statement above we consider node's width only
            // because the region was squarified during tree creation.
            // Thus there is no difference between using width or height.
            v = gravity * node.mass * sourceBody.mass / (r * r * r);
            fx += v * dx;
            fy += v * dy;
          } else {
            // Otherwise, run the procedure recursively on each of the current node's children.

            // I intentionally unfolded this loop, to save several CPU cycles.
            if (node.quad0) {
              queue[pushIdx] = node.quad0;
              queueLength += 1;
              pushIdx += 1;
            }
            if (node.quad1) {
              queue[pushIdx] = node.quad1;
              queueLength += 1;
              pushIdx += 1;
            }
            if (node.quad2) {
              queue[pushIdx] = node.quad2;
              queueLength += 1;
              pushIdx += 1;
            }
            if (node.quad3) {
              queue[pushIdx] = node.quad3;
              queueLength += 1;
              pushIdx += 1;
            }
          }
        }
      }

      sourceBody.force.x += fx;
      sourceBody.force.y += fy;
    }

    function insertBodies(bodies) {
      var x1 = Number.MAX_VALUE,
        y1 = Number.MAX_VALUE,
        x2 = Number.MIN_VALUE,
        y2 = Number.MIN_VALUE,
        i,
        max = bodies.length;

      // To reduce quad tree depth we are looking for exact bounding box of all particles.
      i = max;
      while (i--) {
        var x = bodies[i].pos.x;
        var y = bodies[i].pos.y;
        if (x < x1) {
          x1 = x;
        }
        if (x > x2) {
          x2 = x;
        }
        if (y < y1) {
          y1 = y;
        }
        if (y > y2) {
          y2 = y;
        }
      }

      // Squarify the bounds.
      var dx = x2 - x1,
        dy = y2 - y1;
      if (dx > dy) {
        y2 = y1 + dx;
      } else {
        x2 = x1 + dy;
      }

      currentInCache = 0;
      root = newNode();
      root.left = x1;
      root.right = x2;
      root.top = y1;
      root.bottom = y2;

      i = max - 1;
      if (i >= 0) {
        root.body = bodies[i];
      }
      while (i--) {
        insert(bodies[i]);
      }
    }

    function insert(newBody) {
      insertStack$1.reset();
      insertStack$1.push(root, newBody);

      while (!insertStack$1.isEmpty()) {
        var stackItem = insertStack$1.pop(),
          node = stackItem.node,
          body = stackItem.body;

        if (!node.body) {
          // This is internal node. Update the total mass of the node and center-of-mass.
          var x = body.pos.x;
          var y = body.pos.y;
          node.mass = node.mass + body.mass;
          node.massX = node.massX + body.mass * x;
          node.massY = node.massY + body.mass * y;

          // Recursively insert the body in the appropriate quadrant.
          // But first find the appropriate quadrant.
          var quadIdx = 0, // Assume we are in the 0's quad.
            left = node.left,
            right = (node.right + left) / 2,
            top = node.top,
            bottom = (node.bottom + top) / 2;

          if (x > right) { // somewhere in the eastern part.
            quadIdx = quadIdx + 1;
            left = right;
            right = node.right;
          }
          if (y > bottom) { // and in south.
            quadIdx = quadIdx + 2;
            top = bottom;
            bottom = node.bottom;
          }

          var child = getChild(node, quadIdx);
          if (!child) {
            // The node is internal but this quadrant is not taken. Add
            // subnode to it.
            child = newNode();
            child.left = left;
            child.top = top;
            child.right = right;
            child.bottom = bottom;
            child.body = body;

            setChild(node, quadIdx, child);
          } else {
            // continue searching in this quadrant.
            insertStack$1.push(child, body);
          }
        } else {
          // We are trying to add to the leaf node.
          // We have to convert current leaf into internal node
          // and continue adding two nodes.
          var oldBody = node.body;
          node.body = null; // internal nodes do not cary bodies

          if (isSamePosition$1(oldBody.pos, body.pos)) {
            // Prevent infinite subdivision by bumping one node
            // anywhere in this quadrant
            var retriesCount = 3;
            do {
              var offset = random.nextDouble();
              var dx = (node.right - node.left) * offset;
              var dy = (node.bottom - node.top) * offset;

              oldBody.pos.x = node.left + dx;
              oldBody.pos.y = node.top + dy;
              retriesCount -= 1;
              // Make sure we don't bump it out of the box. If we do, next iteration should fix it
            } while (retriesCount > 0 && isSamePosition$1(oldBody.pos, body.pos));

            if (retriesCount === 0 && isSamePosition$1(oldBody.pos, body.pos)) {
              // This is very bad, we ran out of precision.
              // if we do not return from the method we'll get into
              // infinite loop here. So we sacrifice correctness of layout, and keep the app running
              // Next layout iteration should get larger bounding box in the first step and fix this
              return;
            }
          }
          // Next iteration should subdivide node further.
          insertStack$1.push(node, oldBody);
          insertStack$1.push(node, body);
        }
      }
    }
  };

  function getChild(node, idx) {
    if (idx === 0) return node.quad0;
    if (idx === 1) return node.quad1;
    if (idx === 2) return node.quad2;
    if (idx === 3) return node.quad3;
    return null;
  }

  function setChild(node, idx, child) {
    if (idx === 0) node.quad0 = child;
    else if (idx === 1) node.quad1 = child;
    else if (idx === 2) node.quad2 = child;
    else if (idx === 3) node.quad3 = child;
  }

  var bounds = function (bodies, settings) {
    var random = ngraph_random.random(42);
    var boundingBox =  { x1: 0, y1: 0, x2: 0, y2: 0 };

    return {
      box: boundingBox,

      update: updateBoundingBox,

      reset : function () {
        boundingBox.x1 = boundingBox.y1 = 0;
        boundingBox.x2 = boundingBox.y2 = 0;
      },

      getBestNewPosition: function (neighbors) {
        var graphRect = boundingBox;

        var baseX = 0, baseY = 0;

        if (neighbors.length) {
          for (var i = 0; i < neighbors.length; ++i) {
            baseX += neighbors[i].pos.x;
            baseY += neighbors[i].pos.y;
          }

          baseX /= neighbors.length;
          baseY /= neighbors.length;
        } else {
          baseX = (graphRect.x1 + graphRect.x2) / 2;
          baseY = (graphRect.y1 + graphRect.y2) / 2;
        }

        var springLength = settings.springLength;
        return {
          x: baseX + random.next(springLength) - springLength / 2,
          y: baseY + random.next(springLength) - springLength / 2
        };
      }
    };

    function updateBoundingBox() {
      var i = bodies.length;
      if (i === 0) { return; } // don't have to wory here.

      var x1 = Number.MAX_VALUE,
          y1 = Number.MAX_VALUE,
          x2 = Number.MIN_VALUE,
          y2 = Number.MIN_VALUE;

      while(i--) {
        // this is O(n), could it be done faster with quadtree?
        // how about pinned nodes?
        var body = bodies[i];
        if (body.isPinned) {
          body.pos.x = body.prevPos.x;
          body.pos.y = body.prevPos.y;
        } else {
          body.prevPos.x = body.pos.x;
          body.prevPos.y = body.pos.y;
        }
        if (body.pos.x < x1) {
          x1 = body.pos.x;
        }
        if (body.pos.x > x2) {
          x2 = body.pos.x;
        }
        if (body.pos.y < y1) {
          y1 = body.pos.y;
        }
        if (body.pos.y > y2) {
          y2 = body.pos.y;
        }
      }

      boundingBox.x1 = x1;
      boundingBox.x2 = x2;
      boundingBox.y1 = y1;
      boundingBox.y2 = y2;
    }
  };

  /**
   * Represents drag force, which reduces force value on each step by given
   * coefficient.
   *
   * @param {Object} options for the drag force
   * @param {Number=} options.dragCoeff drag force coefficient. 0.1 by default
   */
  var dragForce = function (options) {
    var merge = ngraph_merge,
        expose = ngraph_expose;

    options = merge(options, {
      dragCoeff: 0.02
    });

    var api = {
      update : function (body) {
        body.force.x -= options.dragCoeff * body.velocity.x;
        body.force.y -= options.dragCoeff * body.velocity.y;
      }
    };

    // let easy access to dragCoeff:
    expose(options, api, ['dragCoeff']);

    return api;
  };

  /**
   * Represents spring force, which updates forces acting on two bodies, connected
   * by a spring.
   *
   * @param {Object} options for the spring force
   * @param {Number=} options.springCoeff spring force coefficient.
   * @param {Number=} options.springLength desired length of a spring at rest.
   */
  var springForce = function (options) {
    var merge = ngraph_merge;
    var random = ngraph_random.random(42);
    var expose = ngraph_expose;

    options = merge(options, {
      springCoeff: 0.0002,
      springLength: 80
    });

    var api = {
      /**
       * Upsates forces acting on a spring
       */
      update : function (spring) {
        var body1 = spring.from,
            body2 = spring.to,
            length = spring.length < 0 ? options.springLength : spring.length,
            dx = body2.pos.x - body1.pos.x,
            dy = body2.pos.y - body1.pos.y,
            r = Math.sqrt(dx * dx + dy * dy);

        if (r === 0) {
            dx = (random.nextDouble() - 0.5) / 50;
            dy = (random.nextDouble() - 0.5) / 50;
            r = Math.sqrt(dx * dx + dy * dy);
        }

        var d = r - length;
        var coeff = ((!spring.coeff || spring.coeff < 0) ? options.springCoeff : spring.coeff) * d / r;

        body1.force.x += coeff * dx;
        body1.force.y += coeff * dy;

        body2.force.x -= coeff * dx;
        body2.force.y -= coeff * dy;
      }
    };

    expose(options, api, ['springCoeff', 'springLength']);
    return api;
  };

  /**
   * Performs forces integration, using given time step. Uses Euler method to solve
   * differential equation (http://en.wikipedia.org/wiki/Euler_method ).
   *
   * @returns {Number} squared distance of total position updates.
   */

  var eulerIntegrator = integrate;

  function integrate(bodies, timeStep) {
    var dx = 0, tx = 0,
        dy = 0, ty = 0,
        i,
        max = bodies.length;

    if (max === 0) {
      return 0;
    }

    for (i = 0; i < max; ++i) {
      var body = bodies[i],
          coeff = timeStep / body.mass;

      body.velocity.x += coeff * body.force.x;
      body.velocity.y += coeff * body.force.y;
      var vx = body.velocity.x,
          vy = body.velocity.y,
          v = Math.sqrt(vx * vx + vy * vy);

      if (v > 1) {
        // We normalize it so that we move within timeStep range. 
        // for the case when v <= 1 - we let velocity to fade out.
        body.velocity.x = vx / v;
        body.velocity.y = vy / v;
      }

      dx = timeStep * body.velocity.x;
      dy = timeStep * body.velocity.y;

      body.pos.x += dx;
      body.pos.y += dy;

      tx += Math.abs(dx); ty += Math.abs(dy);
    }

    return (tx * tx + ty * ty)/max;
  }

  var ngraph_physics_primitives = {
    Body: Body,
    Vector2d: Vector2d,
    Body3d: Body3d,
    Vector3d: Vector3d
  };

  function Body(x, y) {
    this.pos = new Vector2d(x, y);
    this.prevPos = new Vector2d(x, y);
    this.force = new Vector2d();
    this.velocity = new Vector2d();
    this.mass = 1;
  }

  Body.prototype.setPosition = function (x, y) {
    this.prevPos.x = this.pos.x = x;
    this.prevPos.y = this.pos.y = y;
  };

  function Vector2d(x, y) {
    if (x && typeof x !== 'number') {
      // could be another vector
      this.x = typeof x.x === 'number' ? x.x : 0;
      this.y = typeof x.y === 'number' ? x.y : 0;
    } else {
      this.x = typeof x === 'number' ? x : 0;
      this.y = typeof y === 'number' ? y : 0;
    }
  }

  Vector2d.prototype.reset = function () {
    this.x = this.y = 0;
  };

  function Body3d(x, y, z) {
    this.pos = new Vector3d(x, y, z);
    this.prevPos = new Vector3d(x, y, z);
    this.force = new Vector3d();
    this.velocity = new Vector3d();
    this.mass = 1;
  }

  Body3d.prototype.setPosition = function (x, y, z) {
    this.prevPos.x = this.pos.x = x;
    this.prevPos.y = this.pos.y = y;
    this.prevPos.z = this.pos.z = z;
  };

  function Vector3d(x, y, z) {
    if (x && typeof x !== 'number') {
      // could be another vector
      this.x = typeof x.x === 'number' ? x.x : 0;
      this.y = typeof x.y === 'number' ? x.y : 0;
      this.z = typeof x.z === 'number' ? x.z : 0;
    } else {
      this.x = typeof x === 'number' ? x : 0;
      this.y = typeof y === 'number' ? y : 0;
      this.z = typeof z === 'number' ? z : 0;
    }
  }
  Vector3d.prototype.reset = function () {
    this.x = this.y = this.z = 0;
  };

  var createBody = function(pos) {
    return new ngraph_physics_primitives.Body(pos);
  };

  /**
   * Manages a simulation of physical forces acting on bodies and springs.
   */
  var ngraph_physics_simulator = physicsSimulator;

  function physicsSimulator(settings) {
    var Spring = spring;
    var expose = ngraph_expose;
    var merge = ngraph_merge;
    var eventify = ngraph_events;

    settings = merge(settings, {
        /**
         * Ideal length for links (springs in physical model).
         */
        springLength: 30,

        /**
         * Hook's law coefficient. 1 - solid spring.
         */
        springCoeff: 0.0008,

        /**
         * Coulomb's law coefficient. It's used to repel nodes thus should be negative
         * if you make it positive nodes start attract each other :).
         */
        gravity: -1.2,

        /**
         * Theta coefficient from Barnes Hut simulation. Ranged between (0, 1).
         * The closer it's to 1 the more nodes algorithm will have to go through.
         * Setting it to one makes Barnes Hut simulation no different from
         * brute-force forces calculation (each node is considered).
         */
        theta: 0.8,

        /**
         * Drag force coefficient. Used to slow down system, thus should be less than 1.
         * The closer it is to 0 the less tight system will be.
         */
        dragCoeff: 0.02,

        /**
         * Default time step (dt) for forces integration
         */
        timeStep : 20,
    });

    // We allow clients to override basic factory methods:
    var createQuadTree = settings.createQuadTree || ngraph_quadtreebh;
    var createBounds = settings.createBounds || bounds;
    var createDragForce = settings.createDragForce || dragForce;
    var createSpringForce = settings.createSpringForce || springForce;
    var integrate = settings.integrator || eulerIntegrator;
    var createBody$1 = settings.createBody || createBody;

    var bodies = [], // Bodies in this simulation.
        springs = [], // Springs in this simulation.
        quadTree =  createQuadTree(settings),
        bounds$1 = createBounds(bodies, settings),
        springForce$1 = createSpringForce(settings),
        dragForce$1 = createDragForce(settings);

    var bboxNeedsUpdate = true;
    var totalMovement = 0; // how much movement we made on last step

    var publicApi = {
      /**
       * Array of bodies, registered with current simulator
       *
       * Note: To add new body, use addBody() method. This property is only
       * exposed for testing/performance purposes.
       */
      bodies: bodies,

      quadTree: quadTree,

      /**
       * Array of springs, registered with current simulator
       *
       * Note: To add new spring, use addSpring() method. This property is only
       * exposed for testing/performance purposes.
       */
      springs: springs,

      /**
       * Returns settings with which current simulator was initialized
       */
      settings: settings,

      /**
       * Performs one step of force simulation.
       *
       * @returns {boolean} true if system is considered stable; False otherwise.
       */
      step: function () {
        accumulateForces();

        var movement = integrate(bodies, settings.timeStep);
        bounds$1.update();

        return movement;
      },

      /**
       * Adds body to the system
       *
       * @param {ngraph.physics.primitives.Body} body physical body
       *
       * @returns {ngraph.physics.primitives.Body} added body
       */
      addBody: function (body) {
        if (!body) {
          throw new Error('Body is required');
        }
        bodies.push(body);

        return body;
      },

      /**
       * Adds body to the system at given position
       *
       * @param {Object} pos position of a body
       *
       * @returns {ngraph.physics.primitives.Body} added body
       */
      addBodyAt: function (pos) {
        if (!pos) {
          throw new Error('Body position is required');
        }
        var body = createBody$1(pos);
        bodies.push(body);

        return body;
      },

      /**
       * Removes body from the system
       *
       * @param {ngraph.physics.primitives.Body} body to remove
       *
       * @returns {Boolean} true if body found and removed. falsy otherwise;
       */
      removeBody: function (body) {
        if (!body) { return; }

        var idx = bodies.indexOf(body);
        if (idx < 0) { return; }

        bodies.splice(idx, 1);
        if (bodies.length === 0) {
          bounds$1.reset();
        }
        return true;
      },

      /**
       * Adds a spring to this simulation.
       *
       * @returns {Object} - a handle for a spring. If you want to later remove
       * spring pass it to removeSpring() method.
       */
      addSpring: function (body1, body2, springLength, springCoefficient) {
        if (!body1 || !body2) {
          throw new Error('Cannot add null spring to force simulator');
        }

        if (typeof springLength !== 'number') {
          springLength = -1; // assume global configuration
        }

        var spring = new Spring(body1, body2, springLength, springCoefficient >= 0 ? springCoefficient : -1);
        springs.push(spring);

        // TODO: could mark simulator as dirty.
        return spring;
      },

      /**
       * Returns amount of movement performed on last step() call
       */
      getTotalMovement: function () {
        return totalMovement;
      },

      /**
       * Removes spring from the system
       *
       * @param {Object} spring to remove. Spring is an object returned by addSpring
       *
       * @returns {Boolean} true if spring found and removed. falsy otherwise;
       */
      removeSpring: function (spring) {
        if (!spring) { return; }
        var idx = springs.indexOf(spring);
        if (idx > -1) {
          springs.splice(idx, 1);
          return true;
        }
      },

      getBestNewBodyPosition: function (neighbors) {
        return bounds$1.getBestNewPosition(neighbors);
      },

      /**
       * Returns bounding box which covers all bodies
       */
      getBBox: function () {
        if (bboxNeedsUpdate) {
          bounds$1.update();
          bboxNeedsUpdate = false;
        }
        return bounds$1.box;
      },

      invalidateBBox: function () {
        bboxNeedsUpdate = true;
      },

      gravity: function (value) {
        if (value !== undefined) {
          settings.gravity = value;
          quadTree.options({gravity: value});
          return this;
        } else {
          return settings.gravity;
        }
      },

      theta: function (value) {
        if (value !== undefined) {
          settings.theta = value;
          quadTree.options({theta: value});
          return this;
        } else {
          return settings.theta;
        }
      }
    };

    // allow settings modification via public API:
    expose(settings, publicApi);

    eventify(publicApi);

    return publicApi;

    function accumulateForces() {
      // Accumulate forces acting on bodies.
      var body,
          i = bodies.length;

      if (i) {
        // only add bodies if there the array is not empty:
        quadTree.insertBodies(bodies); // performance: O(n * log n)
        while (i--) {
          body = bodies[i];
          // If body is pinned there is no point updating its forces - it should
          // never move:
          if (!body.isPinned) {
            body.force.reset();

            quadTree.updateBodyForce(body);
            dragForce$1.update(body);
          }
        }
      }

      i = springs.length;
      while(i--) {
        springForce$1.update(springs[i]);
      }
    }
  }

  var ngraph_forcelayout = createLayout;
  var simulator = ngraph_physics_simulator;



  /**
   * Creates force based layout for a given graph.
   *
   * @param {ngraph.graph} graph which needs to be laid out
   * @param {object} physicsSettings if you need custom settings
   * for physics simulator you can pass your own settings here. If it's not passed
   * a default one will be created.
   */
  function createLayout(graph, physicsSettings) {
    if (!graph) {
      throw new Error('Graph structure cannot be undefined');
    }

    var createSimulator = ngraph_physics_simulator;
    var physicsSimulator = createSimulator(physicsSettings);

    var nodeMass = defaultNodeMass;
    if (physicsSettings && typeof physicsSettings.nodeMass === 'function') {
      nodeMass = physicsSettings.nodeMass;
    }

    var nodeBodies = new Map();
    var springs = {};
    var bodiesCount = 0;

    var springTransform = physicsSimulator.settings.springTransform || noop$1;

    // Initialize physics with what we have in the graph:
    initPhysics();
    listenToEvents();

    var wasStable = false;

    var api = {
      /**
       * Performs one step of iterative layout algorithm
       *
       * @returns {boolean} true if the system should be considered stable; False otherwise.
       * The system is stable if no further call to `step()` can improve the layout.
       */
      step: function() {
        if (bodiesCount === 0) return true; // TODO: This will never fire 'stable'

        var lastMove = physicsSimulator.step();

        // Save the movement in case if someone wants to query it in the step
        // callback.
        api.lastMove = lastMove;

        // Allow listeners to perform low-level actions after nodes are updated.
        api.fire('step');

        var ratio = lastMove/bodiesCount;
        var isStableNow = ratio <= 0.01; // TODO: The number is somewhat arbitrary...

        if (wasStable !== isStableNow) {
          wasStable = isStableNow;
          onStableChanged(isStableNow);
        }

        return isStableNow;
      },

      /**
       * For a given `nodeId` returns position
       */
      getNodePosition: function (nodeId) {
        return getInitializedBody(nodeId).pos;
      },

      /**
       * Sets position of a node to a given coordinates
       * @param {string} nodeId node identifier
       * @param {number} x position of a node
       * @param {number} y position of a node
       * @param {number=} z position of node (only if applicable to body)
       */
      setNodePosition: function (nodeId) {
        var body = getInitializedBody(nodeId);
        body.setPosition.apply(body, Array.prototype.slice.call(arguments, 1));
        physicsSimulator.invalidateBBox();
      },

      /**
       * @returns {Object} Link position by link id
       * @returns {Object.from} {x, y} coordinates of link start
       * @returns {Object.to} {x, y} coordinates of link end
       */
      getLinkPosition: function (linkId) {
        var spring = springs[linkId];
        if (spring) {
          return {
            from: spring.from.pos,
            to: spring.to.pos
          };
        }
      },

      /**
       * @returns {Object} area required to fit in the graph. Object contains
       * `x1`, `y1` - top left coordinates
       * `x2`, `y2` - bottom right coordinates
       */
      getGraphRect: function () {
        return physicsSimulator.getBBox();
      },

      /**
       * Iterates over each body in the layout simulator and performs a callback(body, nodeId)
       */
      forEachBody: forEachBody,

      /*
       * Requests layout algorithm to pin/unpin node to its current position
       * Pinned nodes should not be affected by layout algorithm and always
       * remain at their position
       */
      pinNode: function (node, isPinned) {
        var body = getInitializedBody(node.id);
         body.isPinned = !!isPinned;
      },

      /**
       * Checks whether given graph's node is currently pinned
       */
      isNodePinned: function (node) {
        return getInitializedBody(node.id).isPinned;
      },

      /**
       * Request to release all resources
       */
      dispose: function() {
        graph.off('changed', onGraphChanged);
        api.fire('disposed');
      },

      /**
       * Gets physical body for a given node id. If node is not found undefined
       * value is returned.
       */
      getBody: getBody,

      /**
       * Gets spring for a given edge.
       *
       * @param {string} linkId link identifer. If two arguments are passed then
       * this argument is treated as formNodeId
       * @param {string=} toId when defined this parameter denotes head of the link
       * and first argument is treated as tail of the link (fromId)
       */
      getSpring: getSpring,

      /**
       * [Read only] Gets current physics simulator
       */
      simulator: physicsSimulator,

      /**
       * Gets the graph that was used for layout
       */
      graph: graph,

      /**
       * Gets amount of movement performed during last step operation
       */
      lastMove: 0
    };

    ngraph_events(api);

    return api;

    function forEachBody(cb) {
      nodeBodies.forEach(function(body, bodyId) {
        cb(body, bodyId);
      });
    }

    function getSpring(fromId, toId) {
      var linkId;
      if (toId === undefined) {
        if (typeof fromId !== 'object') {
          // assume fromId as a linkId:
          linkId = fromId;
        } else {
          // assume fromId to be a link object:
          linkId = fromId.id;
        }
      } else {
        // toId is defined, should grab link:
        var link = graph.hasLink(fromId, toId);
        if (!link) return;
        linkId = link.id;
      }

      return springs[linkId];
    }

    function getBody(nodeId) {
      return nodeBodies.get(nodeId);
    }

    function listenToEvents() {
      graph.on('changed', onGraphChanged);
    }

    function onStableChanged(isStable) {
      api.fire('stable', isStable);
    }

    function onGraphChanged(changes) {
      for (var i = 0; i < changes.length; ++i) {
        var change = changes[i];
        if (change.changeType === 'add') {
          if (change.node) {
            initBody(change.node.id);
          }
          if (change.link) {
            initLink(change.link);
          }
        } else if (change.changeType === 'remove') {
          if (change.node) {
            releaseNode(change.node);
          }
          if (change.link) {
            releaseLink(change.link);
          }
        }
      }
      bodiesCount = graph.getNodesCount();
    }

    function initPhysics() {
      bodiesCount = 0;

      graph.forEachNode(function (node) {
        initBody(node.id);
        bodiesCount += 1;
      });

      graph.forEachLink(initLink);
    }

    function initBody(nodeId) {
      var body = nodeBodies.get(nodeId);
      if (!body) {
        var node = graph.getNode(nodeId);
        if (!node) {
          throw new Error('initBody() was called with unknown node id');
        }

        var pos = node.position;
        if (!pos) {
          var neighbors = getNeighborBodies(node);
          pos = physicsSimulator.getBestNewBodyPosition(neighbors);
        }

        body = physicsSimulator.addBodyAt(pos);
        body.id = nodeId;

        nodeBodies.set(nodeId, body);
        updateBodyMass(nodeId);

        if (isNodeOriginallyPinned(node)) {
          body.isPinned = true;
        }
      }
    }

    function releaseNode(node) {
      var nodeId = node.id;
      var body = nodeBodies.get(nodeId);
      if (body) {
        nodeBodies.delete(nodeId);
        physicsSimulator.removeBody(body);
      }
    }

    function initLink(link) {
      updateBodyMass(link.fromId);
      updateBodyMass(link.toId);

      var fromBody = nodeBodies.get(link.fromId),
          toBody  = nodeBodies.get(link.toId),
          spring = physicsSimulator.addSpring(fromBody, toBody, link.length);

      springTransform(link, spring);

      springs[link.id] = spring;
    }

    function releaseLink(link) {
      var spring = springs[link.id];
      if (spring) {
        var from = graph.getNode(link.fromId),
            to = graph.getNode(link.toId);

        if (from) updateBodyMass(from.id);
        if (to) updateBodyMass(to.id);

        delete springs[link.id];

        physicsSimulator.removeSpring(spring);
      }
    }

    function getNeighborBodies(node) {
      // TODO: Could probably be done better on memory
      var neighbors = [];
      if (!node.links) {
        return neighbors;
      }
      var maxNeighbors = Math.min(node.links.length, 2);
      for (var i = 0; i < maxNeighbors; ++i) {
        var link = node.links[i];
        var otherBody = link.fromId !== node.id ? nodeBodies.get(link.fromId) : nodeBodies.get(link.toId);
        if (otherBody && otherBody.pos) {
          neighbors.push(otherBody);
        }
      }

      return neighbors;
    }

    function updateBodyMass(nodeId) {
      var body = nodeBodies.get(nodeId);
      body.mass = nodeMass(nodeId);
      if (Number.isNaN(body.mass)) {
        throw new Error('Node mass should be a number')
      }
    }

    /**
     * Checks whether graph node has in its settings pinned attribute,
     * which means layout algorithm cannot move it. Node can be marked
     * as pinned, if it has "isPinned" attribute, or when node.data has it.
     *
     * @param {Object} node a graph node to check
     * @return {Boolean} true if node should be treated as pinned; false otherwise.
     */
    function isNodeOriginallyPinned(node) {
      return (node && (node.isPinned || (node.data && node.data.isPinned)));
    }

    function getInitializedBody(nodeId) {
      var body = nodeBodies.get(nodeId);
      if (!body) {
        initBody(nodeId);
        body = nodeBodies.get(nodeId);
      }
      return body;
    }

    /**
     * Calculates mass of a body, which corresponds to node with given id.
     *
     * @param {String|Number} nodeId identifier of a node, for which body mass needs to be calculated
     * @returns {Number} recommended mass of the body;
     */
    function defaultNodeMass(nodeId) {
      var links = graph.getLinks(nodeId);
      if (!links) return 1;
      return 1 + links.length / 3.0;
    }
  }

  function noop$1() { }
  ngraph_forcelayout.simulator = simulator;

  /**
   * Internal data structure to represent 3D QuadTree node
   */
  var node$1 = function Node() {
    // body stored inside this node. In quad tree only leaf nodes (by construction)
    // contain boides:
    this.body = null;

    // Child nodes are stored in quads. Each quad is presented by number:
    // Behind Z median:
    // 0 | 1
    // -----
    // 2 | 3
    // In front of Z median:
    // 4 | 5
    // -----
    // 6 | 7
    this.quad0 = null;
    this.quad1 = null;
    this.quad2 = null;
    this.quad3 = null;
    this.quad4 = null;
    this.quad5 = null;
    this.quad6 = null;
    this.quad7 = null;

    // Total mass of current node
    this.mass = 0;

    // Center of mass coordinates
    this.massX = 0;
    this.massY = 0;
    this.massZ = 0;

    // bounding box coordinates
    this.left = 0;
    this.top = 0;
    this.bottom = 0;
    this.right = 0;
    this.front = 0;
    this.back = 0;
  };

  var insertStack$1 = InsertStack$1;

  /**
   * Our implementation of QuadTree is non-recursive to avoid GC hit
   * This data structure represent stack of elements
   * which we are trying to insert into quad tree.
   */
  function InsertStack$1 () {
      this.stack = [];
      this.popIdx = 0;
  }

  InsertStack$1.prototype = {
      isEmpty: function() {
          return this.popIdx === 0;
      },
      push: function (node, body) {
          var item = this.stack[this.popIdx];
          if (!item) {
              // we are trying to avoid memory pressure: create new element
              // only when absolutely necessary
              this.stack[this.popIdx] = new InsertStackElement$1(node, body);
          } else {
              item.node = node;
              item.body = body;
          }
          ++this.popIdx;
      },
      pop: function () {
          if (this.popIdx > 0) {
              return this.stack[--this.popIdx];
          }
      },
      reset: function () {
          this.popIdx = 0;
      }
  };

  function InsertStackElement$1(node, body) {
      this.node = node; // QuadTree node
      this.body = body; // physical body which needs to be inserted to node
  }

  var isSamePosition$1 = function isSamePosition(point1, point2) {
      var dx = Math.abs(point1.x - point2.x);
      var dy = Math.abs(point1.y - point2.y);
      var dz = Math.abs(point1.z - point2.z);

      return (dx < 1e-8 && dy < 1e-8 && dz < 1e-8);
  };

  /**
   * This is Barnes Hut simulation algorithm for 3d case. Implementation
   * is highly optimized (avoids recusion and gc pressure)
   *
   * http://www.cs.princeton.edu/courses/archive/fall03/cs126/assignments/barnes-hut.html
   *
   * NOTE: This module duplicates a lot of code from 2d case. Primary reason for
   * this is performance. Every time I tried to abstract away vector operations
   * I had negative impact on performance. So in this case I'm scarifying code
   * reuse in favor of speed
   */

  var ngraph_quadtreebh3d = function(options) {
    options = options || {};
    options.gravity = typeof options.gravity === 'number' ? options.gravity : -1;
    options.theta = typeof options.theta === 'number' ? options.theta : 0.8;

    // we require deterministic randomness here
    var random = ngraph_random.random(1984),
      Node = node$1,
      InsertStack = insertStack$1,
      isSamePosition = isSamePosition$1;

    var gravity = options.gravity,
      updateQueue = [],
      insertStack = new InsertStack(),
      theta = options.theta,

      nodesCache = [],
      currentInCache = 0,
      newNode = function() {
        // To avoid pressure on GC we reuse nodes.
        var node = nodesCache[currentInCache];
        if (node) {
          node.quad0 = null;
          node.quad4 = null;
          node.quad1 = null;
          node.quad5 = null;
          node.quad2 = null;
          node.quad6 = null;
          node.quad3 = null;
          node.quad7 = null;
          node.body = null;
          node.mass = node.massX = node.massY = node.massZ = 0;
          node.left = node.right = node.top = node.bottom = node.front = node.back = 0;
        } else {
          node = new Node();
          nodesCache[currentInCache] = node;
        }

        ++currentInCache;
        return node;
      },

      root = newNode(),

      // Inserts body to the tree
      insert = function(newBody) {
        insertStack.reset();
        insertStack.push(root, newBody);

        while (!insertStack.isEmpty()) {
          var stackItem = insertStack.pop(),
            node = stackItem.node,
            body = stackItem.body;

          if (!node.body) {
            // This is internal node. Update the total mass of the node and center-of-mass.
            var x = body.pos.x;
            var y = body.pos.y;
            var z = body.pos.z;
            node.mass += body.mass;
            node.massX += body.mass * x;
            node.massY += body.mass * y;
            node.massZ += body.mass * z;

            // Recursively insert the body in the appropriate quadrant.
            // But first find the appropriate quadrant.
            var quadIdx = 0, // Assume we are in the 0's quad.
              left = node.left,
              right = (node.right + left) / 2,
              top = node.top,
              bottom = (node.bottom + top) / 2,
              back = node.back,
              front = (node.front + back) / 2;

            if (x > right) { // somewhere in the eastern part.
              quadIdx += 1;
              var oldLeft = left;
              left = right;
              right = right + (right - oldLeft);
            }
            if (y > bottom) { // and in south.
              quadIdx += 2;
              var oldTop = top;
              top = bottom;
              bottom = bottom + (bottom - oldTop);
            }
            if (z > front) { // and in frontal part
              quadIdx += 4;
              var oldBack = back;
              back = front;
              front = back + (back - oldBack);
            }

            var child = getChild$1(node, quadIdx);
            if (!child) {
              // The node is internal but this quadrant is not taken. Add subnode to it.
              child = newNode();
              child.left = left;
              child.top = top;
              child.right = right;
              child.bottom = bottom;
              child.back = back;
              child.front = front;
              child.body = body;

              setChild$1(node, quadIdx, child);
            } else {
              // continue searching in this quadrant.
              insertStack.push(child, body);
            }
          } else {
            // We are trying to add to the leaf node.
            // We have to convert current leaf into internal node
            // and continue adding two nodes.
            var oldBody = node.body;
            node.body = null; // internal nodes do not carry bodies

            if (isSamePosition(oldBody.pos, body.pos)) {
              // Prevent infinite subdivision by bumping one node
              // anywhere in this quadrant
              var retriesCount = 3;
              do {
                var offset = random.nextDouble();
                var dx = (node.right - node.left) * offset;
                var dy = (node.bottom - node.top) * offset;
                var dz = (node.front - node.back) * offset;

                oldBody.pos.x = node.left + dx;
                oldBody.pos.y = node.top + dy;
                oldBody.pos.z = node.back + dz;
                retriesCount -= 1;
                // Make sure we don't bump it out of the box. If we do, next iteration should fix it
              } while (retriesCount > 0 && isSamePosition(oldBody.pos, body.pos));

              if (retriesCount === 0 && isSamePosition(oldBody.pos, body.pos)) {
                // This is very bad, we ran out of precision.
                // if we do not return from the method we'll get into
                // infinite loop here. So we sacrifice correctness of layout, and keep the app running
                // Next layout iteration should get larger bounding box in the first step and fix this
                return;
              }
            }
            // Next iteration should subdivide node further.
            insertStack.push(node, oldBody);
            insertStack.push(node, body);
          }
        }
      },

      update = function(sourceBody) {
        var queue = updateQueue,
          v,
          dx, dy, dz,
          r, fx = 0,
          fy = 0,
          fz = 0,
          queueLength = 1,
          shiftIdx = 0,
          pushIdx = 1;

        queue[0] = root;

        while (queueLength) {
          var node = queue[shiftIdx],
            body = node.body;

          queueLength -= 1;
          shiftIdx += 1;
          var differentBody = (body !== sourceBody);
          if (body && differentBody) {
            // If the current node is a leaf node (and it is not source body),
            // calculate the force exerted by the current node on body, and add this
            // amount to body's net force.
            dx = body.pos.x - sourceBody.pos.x;
            dy = body.pos.y - sourceBody.pos.y;
            dz = body.pos.z - sourceBody.pos.z;
            r = Math.sqrt(dx * dx + dy * dy + dz * dz);

            if (r === 0) {
              // Poor man's protection against zero distance.
              dx = (random.nextDouble() - 0.5) / 50;
              dy = (random.nextDouble() - 0.5) / 50;
              dz = (random.nextDouble() - 0.5) / 50;
              r = Math.sqrt(dx * dx + dy * dy + dz * dz);
            }

            // This is standard gravitation force calculation but we divide
            // by r^3 to save two operations when normalizing force vector.
            v = gravity * body.mass * sourceBody.mass / (r * r * r);
            fx += v * dx;
            fy += v * dy;
            fz += v * dz;
          } else if (differentBody) {
            // Otherwise, calculate the ratio s / r,  where s is the width of the region
            // represented by the internal node, and r is the distance between the body
            // and the node's center-of-mass
            dx = node.massX / node.mass - sourceBody.pos.x;
            dy = node.massY / node.mass - sourceBody.pos.y;
            dz = node.massZ / node.mass - sourceBody.pos.z;

            r = Math.sqrt(dx * dx + dy * dy + dz * dz);

            if (r === 0) {
              // Sorry about code duplication. I don't want to create many functions
              // right away. Just want to see performance first.
              dx = (random.nextDouble() - 0.5) / 50;
              dy = (random.nextDouble() - 0.5) / 50;
              dz = (random.nextDouble() - 0.5) / 50;
              r = Math.sqrt(dx * dx + dy * dy + dz * dz);
            }

            // If s / r < θ, treat this internal node as a single body, and calculate the
            // force it exerts on sourceBody, and add this amount to sourceBody's net force.
            if ((node.right - node.left) / r < theta) {
              // in the if statement above we consider node's width only
              // because the region was squarified during tree creation.
              // Thus there is no difference between using width or height.
              v = gravity * node.mass * sourceBody.mass / (r * r * r);
              fx += v * dx;
              fy += v * dy;
              fz += v * dz;
            } else {
              // Otherwise, run the procedure recursively on each of the current node's children.

              // I intentionally unfolded this loop, to save several CPU cycles.
              if (node.quad0) {
                queue[pushIdx] = node.quad0;
                queueLength += 1;
                pushIdx += 1;
              }
              if (node.quad1) {
                queue[pushIdx] = node.quad1;
                queueLength += 1;
                pushIdx += 1;
              }
              if (node.quad2) {
                queue[pushIdx] = node.quad2;
                queueLength += 1;
                pushIdx += 1;
              }
              if (node.quad3) {
                queue[pushIdx] = node.quad3;
                queueLength += 1;
                pushIdx += 1;
              }
              if (node.quad4) {
                queue[pushIdx] = node.quad4;
                queueLength += 1;
                pushIdx += 1;
              }
              if (node.quad5) {
                queue[pushIdx] = node.quad5;
                queueLength += 1;
                pushIdx += 1;
              }
              if (node.quad6) {
                queue[pushIdx] = node.quad6;
                queueLength += 1;
                pushIdx += 1;
              }
              if (node.quad7) {
                queue[pushIdx] = node.quad7;
                queueLength += 1;
                pushIdx += 1;
              }
            }
          }
        }

        sourceBody.force.x += fx;
        sourceBody.force.y += fy;
        sourceBody.force.z += fz;
      },

      insertBodies = function(bodies) {
        var x1 = Number.MAX_VALUE,
          y1 = Number.MAX_VALUE,
          z1 = Number.MAX_VALUE,
          x2 = Number.MIN_VALUE,
          y2 = Number.MIN_VALUE,
          z2 = Number.MIN_VALUE,
          i,
          max = bodies.length;

        // To reduce quad tree depth we are looking for exact bounding box of all particles.
        i = max;
        while (i--) {
          var pos = bodies[i].pos;
          var x = pos.x;
          var y = pos.y;
          var z = pos.z;
          if (x < x1) {
            x1 = x;
          }
          if (x > x2) {
            x2 = x;
          }
          if (y < y1) {
            y1 = y;
          }
          if (y > y2) {
            y2 = y;
          }
          if (z < z1) {
            z1 = z;
          }
          if (z > z2) {
            z2 = z;
          }
        }

        // Squarify the bounds.
        var maxSide = Math.max(x2 - x1, Math.max(y2 - y1, z2 - z1));

        x2 = x1 + maxSide;
        y2 = y1 + maxSide;
        z2 = z1 + maxSide;

        currentInCache = 0;
        root = newNode();
        root.left = x1;
        root.right = x2;
        root.top = y1;
        root.bottom = y2;
        root.back = z1;
        root.front = z2;

        i = max - 1;
        if (i > 0) {
          root.body = bodies[i];
        }
        while (i--) {
          insert(bodies[i]);
        }
      };

    return {
      insertBodies: insertBodies,
      updateBodyForce: update,
      options: function(newOptions) {
        if (newOptions) {
          if (typeof newOptions.gravity === 'number') {
            gravity = newOptions.gravity;
          }
          if (typeof newOptions.theta === 'number') {
            theta = newOptions.theta;
          }

          return this;
        }

        return {
          gravity: gravity,
          theta: theta
        };
      }
    };
  };

  function getChild$1(node, idx) {
    if (idx === 0) return node.quad0;
    if (idx === 1) return node.quad1;
    if (idx === 2) return node.quad2;
    if (idx === 3) return node.quad3;
    if (idx === 4) return node.quad4;
    if (idx === 5) return node.quad5;
    if (idx === 6) return node.quad6;
    if (idx === 7) return node.quad7;
    return null;
  }

  function setChild$1(node, idx, child) {
    if (idx === 0) node.quad0 = child;
    else if (idx === 1) node.quad1 = child;
    else if (idx === 2) node.quad2 = child;
    else if (idx === 3) node.quad3 = child;
    else if (idx === 4) node.quad4 = child;
    else if (idx === 5) node.quad5 = child;
    else if (idx === 6) node.quad6 = child;
    else if (idx === 7) node.quad7 = child;
  }

  var bounds$1 = function (bodies, settings) {
    var random = ngraph_random.random(42);
    var boundingBox =  { x1: 0, y1: 0, z1: 0, x2: 0, y2: 0, z2: 0 };

    return {
      box: boundingBox,

      update: updateBoundingBox,

      reset : function () {
        boundingBox.x1 = boundingBox.y1 = 0;
        boundingBox.x2 = boundingBox.y2 = 0;
        boundingBox.z1 = boundingBox.z2 = 0;
      },

      getBestNewPosition: function (neighbors) {
        var graphRect = boundingBox;

        var baseX = 0, baseY = 0, baseZ = 0;

        if (neighbors.length) {
          for (var i = 0; i < neighbors.length; ++i) {
            baseX += neighbors[i].pos.x;
            baseY += neighbors[i].pos.y;
            baseZ += neighbors[i].pos.z;
          }

          baseX /= neighbors.length;
          baseY /= neighbors.length;
          baseZ /= neighbors.length;
        } else {
          baseX = (graphRect.x1 + graphRect.x2) / 2;
          baseY = (graphRect.y1 + graphRect.y2) / 2;
          baseZ = (graphRect.z1 + graphRect.z2) / 2;
        }

        var springLength = settings.springLength;
        return {
          x: baseX + random.next(springLength) - springLength / 2,
          y: baseY + random.next(springLength) - springLength / 2,
          z: baseZ + random.next(springLength) - springLength / 2
        };
      }
    };

    function updateBoundingBox() {
      var i = bodies.length;
      if (i === 0) { return; } // don't have to wory here.

      var x1 = Number.MAX_VALUE,
          y1 = Number.MAX_VALUE,
          z1 = Number.MAX_VALUE,
          x2 = Number.MIN_VALUE,
          y2 = Number.MIN_VALUE,
          z2 = Number.MIN_VALUE;

      while(i--) {
        // this is O(n), could it be done faster with quadtree?
        // how about pinned nodes?
        var body = bodies[i];
        if (body.isPinned) {
          body.pos.x = body.prevPos.x;
          body.pos.y = body.prevPos.y;
          body.pos.z = body.prevPos.z;
        } else {
          body.prevPos.x = body.pos.x;
          body.prevPos.y = body.pos.y;
          body.prevPos.z = body.pos.z;
        }
        if (body.pos.x < x1) {
          x1 = body.pos.x;
        }
        if (body.pos.x > x2) {
          x2 = body.pos.x;
        }
        if (body.pos.y < y1) {
          y1 = body.pos.y;
        }
        if (body.pos.y > y2) {
          y2 = body.pos.y;
        }
        if (body.pos.z < z1) {
          z1 = body.pos.z;
        }
        if (body.pos.z > z2) {
          z2 = body.pos.z;
        }
      }

      boundingBox.x1 = x1;
      boundingBox.x2 = x2;
      boundingBox.y1 = y1;
      boundingBox.y2 = y2;
      boundingBox.z1 = z1;
      boundingBox.z2 = z2;
    }
  };

  /**
   * Represents 3d drag force, which reduces force value on each step by given
   * coefficient.
   *
   * @param {Object} options for the drag force
   * @param {Number=} options.dragCoeff drag force coefficient. 0.1 by default
   */
  var dragForce$1 = function (options) {
    var merge = ngraph_merge,
        expose = ngraph_expose;

    options = merge(options, {
      dragCoeff: 0.02
    });

    var api = {
      update : function (body) {
        body.force.x -= options.dragCoeff * body.velocity.x;
        body.force.y -= options.dragCoeff * body.velocity.y;
        body.force.z -= options.dragCoeff * body.velocity.z;
      }
    };

    // let easy access to dragCoeff:
    expose(options, api, ['dragCoeff']);

    return api;
  };

  /**
   * Represents 3d spring force, which updates forces acting on two bodies, conntected
   * by a spring.
   *
   * @param {Object} options for the spring force
   * @param {Number=} options.springCoeff spring force coefficient.
   * @param {Number=} options.springLength desired length of a spring at rest.
   */
  var springForce$1 = function (options) {
    var merge = ngraph_merge;
    var random = ngraph_random.random(42);
    var expose = ngraph_expose;

    options = merge(options, {
      springCoeff: 0.0002,
      springLength: 80
    });

    var api = {
      /**
       * Upsates forces acting on a spring
       */
      update : function (spring) {
        var body1 = spring.from,
            body2 = spring.to,
            length = spring.length < 0 ? options.springLength : spring.length,
            dx = body2.pos.x - body1.pos.x,
            dy = body2.pos.y - body1.pos.y,
            dz = body2.pos.z - body1.pos.z,
            r = Math.sqrt(dx * dx + dy * dy + dz * dz);

        if (r === 0) {
            dx = (random.nextDouble() - 0.5) / 50;
            dy = (random.nextDouble() - 0.5) / 50;
            dz = (random.nextDouble() - 0.5) / 50;
            r = Math.sqrt(dx * dx + dy * dy + dz * dz);
        }

        var d = r - length;
        var coeff = ((!spring.coeff || spring.coeff < 0) ? options.springCoeff : spring.coeff) * d / r * spring.weight;

        body1.force.x += coeff * dx;
        body1.force.y += coeff * dy;
        body1.force.z += coeff * dz;

        body2.force.x -= coeff * dx;
        body2.force.y -= coeff * dy;
        body2.force.z -= coeff * dz;
      }
    };

    expose(options, api, ['springCoeff', 'springLength']);
    return api;
  };

  var createBody$1 = function(pos) {
    return new ngraph_physics_primitives.Body3d(pos);
  };

  var verletIntegrator = integrate$1;

  function integrate$1(bodies, timeStep) {
    var tx = 0, ty = 0, tz = 0,
        i, max = bodies.length;

    for (i = 0; i < max; ++i) {
      var body = bodies[i],
        coeff = timeStep * timeStep / body.mass;

      body.pos.x = 2 * body.pos.x - body.prevPos.x + body.force.x * coeff;
      body.pos.y = 2 * body.pos.y - body.prevPos.y + body.force.y * coeff;
      body.pos.z = 2 * body.pos.z - body.prevPos.z + body.force.z * coeff;

      tx += Math.abs(body.pos.x - body.prevPos.x);
      ty += Math.abs(body.pos.y - body.prevPos.y);
      tz += Math.abs(body.pos.z - body.prevPos.z);
    }

    return (tx * tx + ty * ty + tz * tz)/bodies.length;
  }

  /**
   * Performs 3d forces integration, using given timestep. Uses Euler method to solve
   * differential equation (http://en.wikipedia.org/wiki/Euler_method ).
   *
   * @returns {Number} squared distance of total position updates.
   */

  var eulerIntegrator$1 = integrate$2;

  function integrate$2(bodies, timeStep) {
    var dx = 0, tx = 0,
        dy = 0, ty = 0,
        dz = 0, tz = 0,
        i,
        max = bodies.length;

    for (i = 0; i < max; ++i) {
      var body = bodies[i],
          coeff = timeStep / body.mass;

      body.velocity.x += coeff * body.force.x;
      body.velocity.y += coeff * body.force.y;
      body.velocity.z += coeff * body.force.z;

      var vx = body.velocity.x,
          vy = body.velocity.y,
          vz = body.velocity.z,
          v = Math.sqrt(vx * vx + vy * vy + vz * vz);

      if (v > 1) {
        body.velocity.x = vx / v;
        body.velocity.y = vy / v;
        body.velocity.z = vz / v;
      }

      dx = timeStep * body.velocity.x;
      dy = timeStep * body.velocity.y;
      dz = timeStep * body.velocity.z;

      body.pos.x += dx;
      body.pos.y += dy;
      body.pos.z += dz;

      tx += Math.abs(dx); ty += Math.abs(dy); tz += Math.abs(dz);
    }

    return (tx * tx + ty * ty + tz * tz)/bodies.length;
  }

  /**
   * This module provides all required forces to regular ngraph.physics.simulator
   * to make it 3D simulator. Ideally ngraph.physics.simulator should operate
   * with vectors, but on practices that showed performance decrease... Maybe
   * I was doing it wrong, will see if I can refactor/throw away this module.
   */
  var ngraph_forcelayout3d = createLayout$1;
  createLayout$1.get2dLayout = ngraph_forcelayout;

  function createLayout$1(graph, physicsSettings) {
    var merge = ngraph_merge;
    physicsSettings = merge(physicsSettings, {
          createQuadTree: ngraph_quadtreebh3d,
          createBounds: bounds$1,
          createDragForce: dragForce$1,
          createSpringForce: springForce$1,
          integrator: getIntegrator(physicsSettings),
          createBody: createBody$1
        });

    return createLayout$1.get2dLayout(graph, physicsSettings);
  }

  function getIntegrator(physicsSettings) {
    if (physicsSettings && physicsSettings.integrator === 'verlet') {
      return verletIntegrator;
    }

    return eulerIntegrator$1
  }

  /**
   * Returns a function, that, as long as it continues to be invoked, will not
   * be triggered. The function will be called after it stops being called for
   * N milliseconds. If `immediate` is passed, trigger the function on the
   * leading edge, instead of the trailing. The function also has a property 'clear' 
   * that is a function which will clear the timer to prevent previously scheduled executions. 
   *
   * @source underscore.js
   * @see http://unscriptable.com/2009/03/20/debouncing-javascript-methods/
   * @param {Function} function to wrap
   * @param {Number} timeout in ms (`100`)
   * @param {Boolean} whether to execute at the beginning (`false`)
   * @api public
   */
  function debounce(func, wait, immediate){
    var timeout, args, context, timestamp, result;
    if (null == wait) wait = 100;

    function later() {
      var last = Date.now() - timestamp;

      if (last < wait && last >= 0) {
        timeout = setTimeout(later, wait - last);
      } else {
        timeout = null;
        if (!immediate) {
          result = func.apply(context, args);
          context = args = null;
        }
      }
    }
    var debounced = function(){
      context = this;
      args = arguments;
      timestamp = Date.now();
      var callNow = immediate && !timeout;
      if (!timeout) timeout = setTimeout(later, wait);
      if (callNow) {
        result = func.apply(context, args);
        context = args = null;
      }

      return result;
    };

    debounced.clear = function() {
      if (timeout) {
        clearTimeout(timeout);
        timeout = null;
      }
    };
    
    debounced.flush = function() {
      if (timeout) {
        result = func.apply(context, args);
        context = args = null;
        
        clearTimeout(timeout);
        timeout = null;
      }
    };

    return debounced;
  }
  // Adds compatibility for ES modules
  debounce.debounce = debounce;

  var debounce_1 = debounce;

  function _classCallCheck(instance, Constructor) {
    if (!(instance instanceof Constructor)) {
      throw new TypeError("Cannot call a class as a function");
    }
  }

  function _slicedToArray(arr, i) {
    return _arrayWithHoles(arr) || _iterableToArrayLimit(arr, i) || _nonIterableRest();
  }

  function _arrayWithHoles(arr) {
    if (Array.isArray(arr)) return arr;
  }

  function _iterableToArrayLimit(arr, i) {
    if (!(Symbol.iterator in Object(arr) || Object.prototype.toString.call(arr) === "[object Arguments]")) {
      return;
    }

    var _arr = [];
    var _n = true;
    var _d = false;
    var _e = undefined;

    try {
      for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) {
        _arr.push(_s.value);

        if (i && _arr.length === i) break;
      }
    } catch (err) {
      _d = true;
      _e = err;
    } finally {
      try {
        if (!_n && _i["return"] != null) _i["return"]();
      } finally {
        if (_d) throw _e;
      }
    }

    return _arr;
  }

  function _nonIterableRest() {
    throw new TypeError("Invalid attempt to destructure non-iterable instance");
  }

  var Prop = function Prop(name, _ref) {
    var _ref$default = _ref["default"],
        defaultVal = _ref$default === void 0 ? null : _ref$default,
        _ref$triggerUpdate = _ref.triggerUpdate,
        triggerUpdate = _ref$triggerUpdate === void 0 ? true : _ref$triggerUpdate,
        _ref$onChange = _ref.onChange,
        onChange = _ref$onChange === void 0 ? function (newVal, state) {} : _ref$onChange;

    _classCallCheck(this, Prop);

    this.name = name;
    this.defaultVal = defaultVal;
    this.triggerUpdate = triggerUpdate;
    this.onChange = onChange;
  };

  function index$1 (_ref2) {
    var _ref2$stateInit = _ref2.stateInit,
        stateInit = _ref2$stateInit === void 0 ? function () {
      return {};
    } : _ref2$stateInit,
        _ref2$props = _ref2.props,
        rawProps = _ref2$props === void 0 ? {} : _ref2$props,
        _ref2$methods = _ref2.methods,
        methods = _ref2$methods === void 0 ? {} : _ref2$methods,
        _ref2$aliases = _ref2.aliases,
        aliases = _ref2$aliases === void 0 ? {} : _ref2$aliases,
        _ref2$init = _ref2.init,
        initFn = _ref2$init === void 0 ? function () {} : _ref2$init,
        _ref2$update = _ref2.update,
        updateFn = _ref2$update === void 0 ? function () {} : _ref2$update;
    // Parse props into Prop instances
    var props = Object.keys(rawProps).map(function (propName) {
      return new Prop(propName, rawProps[propName]);
    });
    return function () {
      var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};
      // Holds component state
      var state = Object.assign({}, stateInit instanceof Function ? stateInit(options) : stateInit, // Support plain objects for backwards compatibility
      {
        initialised: false
      }); // keeps track of which props triggered an update

      var changedProps = {}; // Component constructor

      function comp(nodeElement) {
        initStatic(nodeElement, options);
        digest();
        return comp;
      }

      var initStatic = function initStatic(nodeElement, options) {
        initFn.call(comp, nodeElement, state, options);
        state.initialised = true;
      };

      var digest = debounce_1(function () {
        if (!state.initialised) {
          return;
        }

        updateFn.call(comp, state, changedProps);
        changedProps = {};
      }, 1); // Getter/setter methods

      props.forEach(function (prop) {
        comp[prop.name] = getSetProp(prop);

        function getSetProp(_ref3) {
          var prop = _ref3.name,
              _ref3$triggerUpdate = _ref3.triggerUpdate,
              redigest = _ref3$triggerUpdate === void 0 ? false : _ref3$triggerUpdate,
              _ref3$onChange = _ref3.onChange,
              onChange = _ref3$onChange === void 0 ? function (newVal, state) {} : _ref3$onChange,
              _ref3$defaultVal = _ref3.defaultVal,
              defaultVal = _ref3$defaultVal === void 0 ? null : _ref3$defaultVal;
          return function (_) {
            var curVal = state[prop];

            if (!arguments.length) {
              return curVal;
            } // Getter mode


            var val = _ === undefined ? defaultVal : _; // pick default if value passed is undefined

            state[prop] = val;
            onChange.call(comp, val, state, curVal); // track changed props

            !changedProps.hasOwnProperty(prop) && (changedProps[prop] = curVal);

            if (redigest) {
              digest();
            }

            return comp;
          };
        }
      }); // Other methods

      Object.keys(methods).forEach(function (methodName) {
        comp[methodName] = function () {
          var _methods$methodName;

          for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {
            args[_key] = arguments[_key];
          }

          return (_methods$methodName = methods[methodName]).call.apply(_methods$methodName, [comp, state].concat(args));
        };
      }); // Link aliases

      Object.entries(aliases).forEach(function (_ref4) {
        var _ref5 = _slicedToArray(_ref4, 2),
            alias = _ref5[0],
            target = _ref5[1];

        return comp[alias] = comp[target];
      }); // Reset all component props to their default value

      comp.resetProps = function () {
        props.forEach(function (prop) {
          comp[prop.name](prop.defaultVal);
        });
        return comp;
      }; //


      comp.resetProps(); // Apply all prop defaults

      state._rerender = digest; // Expose digest method

      return comp;
    };
  }

  var index$2 = (function (p) {
    return p instanceof Function ? p // fn
    : typeof p === 'string' ? function (obj) {
      return obj[p];
    } // property name
    : function (obj) {
      return p;
    };
  }); // constant

  function max(values, valueof) {
    let max;
    if (valueof === undefined) {
      for (const value of values) {
        if (value != null
            && (max < value || (max === undefined && value >= value))) {
          max = value;
        }
      }
    } else {
      let index = -1;
      for (let value of values) {
        if ((value = valueof(value, ++index, values)) != null
            && (max < value || (max === undefined && value >= value))) {
          max = value;
        }
      }
    }
    return max;
  }

  function min(values, valueof) {
    let min;
    if (valueof === undefined) {
      for (const value of values) {
        if (value != null
            && (min > value || (min === undefined && value >= value))) {
          min = value;
        }
      }
    } else {
      let index = -1;
      for (let value of values) {
        if ((value = valueof(value, ++index, values)) != null
            && (min > value || (min === undefined && value >= value))) {
          min = value;
        }
      }
    }
    return min;
  }

  function _objectWithoutPropertiesLoose(source, excluded) {
    if (source == null) return {};
    var target = {};
    var sourceKeys = Object.keys(source);
    var key, i;

    for (i = 0; i < sourceKeys.length; i++) {
      key = sourceKeys[i];
      if (excluded.indexOf(key) >= 0) continue;
      target[key] = source[key];
    }

    return target;
  }

  function _objectWithoutProperties(source, excluded) {
    if (source == null) return {};

    var target = _objectWithoutPropertiesLoose(source, excluded);

    var key, i;

    if (Object.getOwnPropertySymbols) {
      var sourceSymbolKeys = Object.getOwnPropertySymbols(source);

      for (i = 0; i < sourceSymbolKeys.length; i++) {
        key = sourceSymbolKeys[i];
        if (excluded.indexOf(key) >= 0) continue;
        if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue;
        target[key] = source[key];
      }
    }

    return target;
  }

  function _slicedToArray$1(arr, i) {
    return _arrayWithHoles$1(arr) || _iterableToArrayLimit$1(arr, i) || _nonIterableRest$1();
  }

  function _toConsumableArray$1(arr) {
    return _arrayWithoutHoles$1(arr) || _iterableToArray$1(arr) || _nonIterableSpread$1();
  }

  function _arrayWithoutHoles$1(arr) {
    if (Array.isArray(arr)) {
      for (var i = 0, arr2 = new Array(arr.length); i < arr.length; i++) arr2[i] = arr[i];

      return arr2;
    }
  }

  function _arrayWithHoles$1(arr) {
    if (Array.isArray(arr)) return arr;
  }

  function _iterableToArray$1(iter) {
    if (Symbol.iterator in Object(iter) || Object.prototype.toString.call(iter) === "[object Arguments]") return Array.from(iter);
  }

  function _iterableToArrayLimit$1(arr, i) {
    if (!(Symbol.iterator in Object(arr) || Object.prototype.toString.call(arr) === "[object Arguments]")) {
      return;
    }

    var _arr = [];
    var _n = true;
    var _d = false;
    var _e = undefined;

    try {
      for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) {
        _arr.push(_s.value);

        if (i && _arr.length === i) break;
      }
    } catch (err) {
      _d = true;
      _e = err;
    } finally {
      try {
        if (!_n && _i["return"] != null) _i["return"]();
      } finally {
        if (_d) throw _e;
      }
    }

    return _arr;
  }

  function _nonIterableSpread$1() {
    throw new TypeError("Invalid attempt to spread non-iterable instance");
  }

  function _nonIterableRest$1() {
    throw new TypeError("Invalid attempt to destructure non-iterable instance");
  }

  function _toPrimitive(input, hint) {
    if (typeof input !== "object" || input === null) return input;
    var prim = input[Symbol.toPrimitive];

    if (prim !== undefined) {
      var res = prim.call(input, hint || "default");
      if (typeof res !== "object") return res;
      throw new TypeError("@@toPrimitive must return a primitive value.");
    }

    return (hint === "string" ? String : Number)(input);
  }

  function _toPropertyKey(arg) {
    var key = _toPrimitive(arg, "string");

    return typeof key === "symbol" ? key : String(key);
  }

  var index$3 = (function () {
    var list = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : [];
    var keyAccessors = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : [];
    var multiItem = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : true;
    var flattenKeys = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : false;
    var keys = (keyAccessors instanceof Array ? keyAccessors.length ? keyAccessors : [undefined] : [keyAccessors]).map(function (key) {
      return {
        keyAccessor: key,
        isProp: !(key instanceof Function)
      };
    });
    var indexedResult = list.reduce(function (res, item) {
      var iterObj = res;
      var itemVal = item;
      keys.forEach(function (_ref, idx) {
        var keyAccessor = _ref.keyAccessor,
            isProp = _ref.isProp;
        var key;

        if (isProp) {
          var _itemVal = itemVal,
              propVal = _itemVal[keyAccessor],
              rest = _objectWithoutProperties(_itemVal, [keyAccessor].map(_toPropertyKey));

          key = propVal;
          itemVal = rest;
        } else {
          key = keyAccessor(itemVal, idx);
        }

        if (idx + 1 < keys.length) {
          if (!iterObj.hasOwnProperty(key)) {
            iterObj[key] = {};
          }

          iterObj = iterObj[key];
        } else {
          // Leaf key
          if (multiItem) {
            if (!iterObj.hasOwnProperty(key)) {
              iterObj[key] = [];
            }

            iterObj[key].push(itemVal);
          } else {
            iterObj[key] = itemVal;
          }
        }
      });
      return res;
    }, {});

    if (multiItem instanceof Function) {
      // Reduce leaf multiple values
      (function reduce(node) {
        var level = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 1;

        if (level === keys.length) {
          Object.keys(node).forEach(function (k) {
            return node[k] = multiItem(node[k]);
          });
        } else {
          Object.values(node).forEach(function (child) {
            return reduce(child, level + 1);
          });
        }
      })(indexedResult); // IIFE

    }

    var result = indexedResult;

    if (flattenKeys) {
      // flatten into array
      result = [];

      (function flatten(node) {
        var accKeys = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : [];

        if (accKeys.length === keys.length) {
          result.push({
            keys: accKeys,
            vals: node
          });
        } else {
          Object.entries(node).forEach(function (_ref2) {
            var _ref3 = _slicedToArray$1(_ref2, 2),
                key = _ref3[0],
                val = _ref3[1];

            return flatten(val, [].concat(_toConsumableArray$1(accKeys), [key]));
          });
        }
      })(indexedResult); //IIFE


      if (keyAccessors instanceof Array && keyAccessors.length === 0 && result.length === 1) {
        // clear keys if there's no key accessors (single result)
        result[0].keys = [];
      }
    }

    return result;
  });

  function _defineProperty$1(obj, key, value) {
    if (key in obj) {
      Object.defineProperty(obj, key, {
        value: value,
        enumerable: true,
        configurable: true,
        writable: true
      });
    } else {
      obj[key] = value;
    }

    return obj;
  }

  function ownKeys$1(object, enumerableOnly) {
    var keys = Object.keys(object);

    if (Object.getOwnPropertySymbols) {
      var symbols = Object.getOwnPropertySymbols(object);
      if (enumerableOnly) symbols = symbols.filter(function (sym) {
        return Object.getOwnPropertyDescriptor(object, sym).enumerable;
      });
      keys.push.apply(keys, symbols);
    }

    return keys;
  }

  function _objectSpread2$1(target) {
    for (var i = 1; i < arguments.length; i++) {
      var source = arguments[i] != null ? arguments[i] : {};

      if (i % 2) {
        ownKeys$1(Object(source), true).forEach(function (key) {
          _defineProperty$1(target, key, source[key]);
        });
      } else if (Object.getOwnPropertyDescriptors) {
        Object.defineProperties(target, Object.getOwnPropertyDescriptors(source));
      } else {
        ownKeys$1(Object(source)).forEach(function (key) {
          Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key));
        });
      }
    }

    return target;
  }

  function _objectWithoutPropertiesLoose$1(source, excluded) {
    if (source == null) return {};
    var target = {};
    var sourceKeys = Object.keys(source);
    var key, i;

    for (i = 0; i < sourceKeys.length; i++) {
      key = sourceKeys[i];
      if (excluded.indexOf(key) >= 0) continue;
      target[key] = source[key];
    }

    return target;
  }

  function _objectWithoutProperties$1(source, excluded) {
    if (source == null) return {};

    var target = _objectWithoutPropertiesLoose$1(source, excluded);

    var key, i;

    if (Object.getOwnPropertySymbols) {
      var sourceSymbolKeys = Object.getOwnPropertySymbols(source);

      for (i = 0; i < sourceSymbolKeys.length; i++) {
        key = sourceSymbolKeys[i];
        if (excluded.indexOf(key) >= 0) continue;
        if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue;
        target[key] = source[key];
      }
    }

    return target;
  }

  function _slicedToArray$2(arr, i) {
    return _arrayWithHoles$2(arr) || _iterableToArrayLimit$2(arr, i) || _nonIterableRest$2();
  }

  function _toConsumableArray$2(arr) {
    return _arrayWithoutHoles$2(arr) || _iterableToArray$2(arr) || _nonIterableSpread$2();
  }

  function _arrayWithoutHoles$2(arr) {
    if (Array.isArray(arr)) {
      for (var i = 0, arr2 = new Array(arr.length); i < arr.length; i++) arr2[i] = arr[i];

      return arr2;
    }
  }

  function _arrayWithHoles$2(arr) {
    if (Array.isArray(arr)) return arr;
  }

  function _iterableToArray$2(iter) {
    if (Symbol.iterator in Object(iter) || Object.prototype.toString.call(iter) === "[object Arguments]") return Array.from(iter);
  }

  function _iterableToArrayLimit$2(arr, i) {
    if (!(Symbol.iterator in Object(arr) || Object.prototype.toString.call(arr) === "[object Arguments]")) {
      return;
    }

    var _arr = [];
    var _n = true;
    var _d = false;
    var _e = undefined;

    try {
      for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) {
        _arr.push(_s.value);

        if (i && _arr.length === i) break;
      }
    } catch (err) {
      _d = true;
      _e = err;
    } finally {
      try {
        if (!_n && _i["return"] != null) _i["return"]();
      } finally {
        if (_d) throw _e;
      }
    }

    return _arr;
  }

  function _nonIterableSpread$2() {
    throw new TypeError("Invalid attempt to spread non-iterable instance");
  }

  function _nonIterableRest$2() {
    throw new TypeError("Invalid attempt to destructure non-iterable instance");
  }

  function diffArrays(prev, next, idAccessor) {
    var result = {
      enter: [],
      update: [],
      exit: []
    };

    if (!idAccessor) {
      // use object references for comparison
      var prevSet = new Set(prev);
      var nextSet = new Set(next);
      new Set([].concat(_toConsumableArray$2(prevSet), _toConsumableArray$2(nextSet))).forEach(function (item) {
        var type = !prevSet.has(item) ? 'enter' : !nextSet.has(item) ? 'exit' : 'update';
        result[type].push(type === 'update' ? [item, item] : item);
      });
    } else {
      // compare by id (duplicate keys are ignored)
      var prevById = index$3(prev, idAccessor, false);
      var nextById = index$3(next, idAccessor, false);
      var byId = Object.assign({}, prevById, nextById);
      Object.entries(byId).forEach(function (_ref) {
        var _ref2 = _slicedToArray$2(_ref, 2),
            id = _ref2[0],
            item = _ref2[1];

        var type = !prevById.hasOwnProperty(id) ? 'enter' : !nextById.hasOwnProperty(id) ? 'exit' : 'update';
        result[type].push(type === 'update' ? [prevById[id], nextById[id]] : item);
      });
    }

    return result;
  }

  function dataBindDiff(data, existingObjs, _ref3) {
    var _ref3$objBindAttr = _ref3.objBindAttr,
        objBindAttr = _ref3$objBindAttr === void 0 ? '__obj' : _ref3$objBindAttr,
        _ref3$dataBindAttr = _ref3.dataBindAttr,
        dataBindAttr = _ref3$dataBindAttr === void 0 ? '__data' : _ref3$dataBindAttr,
        idAccessor = _ref3.idAccessor,
        _ref3$purge = _ref3.purge,
        purge = _ref3$purge === void 0 ? false : _ref3$purge;

    var isObjValid = function isObjValid(obj) {
      return obj.hasOwnProperty(dataBindAttr);
    };

    var removeObjs = existingObjs.filter(function (obj) {
      return !isObjValid(obj);
    });
    var prevD = existingObjs.filter(isObjValid).map(function (obj) {
      return obj[dataBindAttr];
    });
    var nextD = data;
    var diff = purge ? {
      enter: nextD,
      exit: prevD,
      update: []
    } // don't diff data in purge mode
    : diffArrays(prevD, nextD, idAccessor);
    diff.update = diff.update.map(function (_ref4) {
      var _ref5 = _slicedToArray$2(_ref4, 2),
          prevD = _ref5[0],
          nextD = _ref5[1];

      if (prevD !== nextD) {
        // transfer obj to new data point (if different)
        nextD[objBindAttr] = prevD[objBindAttr];
        nextD[objBindAttr][dataBindAttr] = nextD;
      }

      return nextD;
    });
    diff.exit = diff.exit.concat(removeObjs.map(function (obj) {
      return _defineProperty$1({}, objBindAttr, obj);
    }));
    return diff;
  }

  function viewDigest(data, existingObjs, // list
  appendObj, // item => {...} function
  removeObj, // item => {...} function
  _ref7) {
    var _ref7$createObj = _ref7.createObj,
        createObj = _ref7$createObj === void 0 ? function (d) {
      return {};
    } : _ref7$createObj,
        _ref7$updateObj = _ref7.updateObj,
        updateObj = _ref7$updateObj === void 0 ? function (obj, d) {} : _ref7$updateObj,
        _ref7$exitObj = _ref7.exitObj,
        exitObj = _ref7$exitObj === void 0 ? function (obj) {} : _ref7$exitObj,
        _ref7$objBindAttr = _ref7.objBindAttr,
        objBindAttr = _ref7$objBindAttr === void 0 ? '__obj' : _ref7$objBindAttr,
        _ref7$dataBindAttr = _ref7.dataBindAttr,
        dataBindAttr = _ref7$dataBindAttr === void 0 ? '__data' : _ref7$dataBindAttr,
        dataDiffOptions = _objectWithoutProperties$1(_ref7, ["createObj", "updateObj", "exitObj", "objBindAttr", "dataBindAttr"]);

    var _dataBindDiff = dataBindDiff(data, existingObjs, _objectSpread2$1({
      objBindAttr: objBindAttr,
      dataBindAttr: dataBindAttr
    }, dataDiffOptions)),
        enter = _dataBindDiff.enter,
        update = _dataBindDiff.update,
        exit = _dataBindDiff.exit; // Remove exiting points


    exit.forEach(function (d) {
      var obj = d[objBindAttr];
      delete d[objBindAttr]; // unbind obj

      exitObj(obj);
      removeObj(obj);
    });
    var newObjs = createObjs(enter);
    var pointsData = [].concat(_toConsumableArray$2(enter), _toConsumableArray$2(update));
    updateObjs(pointsData); // Add new points

    newObjs.forEach(appendObj); //

    function createObjs(data) {
      var newObjs = [];
      data.forEach(function (d) {
        var obj = createObj(d);

        if (obj) {
          obj[dataBindAttr] = d;
          d[objBindAttr] = obj;
          newObjs.push(obj);
        }
      });
      return newObjs;
    }

    function updateObjs(data) {
      data.forEach(function (d) {
        var obj = d[objBindAttr];

        if (obj) {
          obj[dataBindAttr] = d;
          updateObj(obj, d);
        }
      });
    }
  }

  function initRange(domain, range) {
    switch (arguments.length) {
      case 0: break;
      case 1: this.range(domain); break;
      default: this.range(range).domain(domain); break;
    }
    return this;
  }

  const implicit = Symbol("implicit");

  function ordinal() {
    var index = new Map(),
        domain = [],
        range = [],
        unknown = implicit;

    function scale(d) {
      var key = d + "", i = index.get(key);
      if (!i) {
        if (unknown !== implicit) return unknown;
        index.set(key, i = domain.push(d));
      }
      return range[(i - 1) % range.length];
    }

    scale.domain = function(_) {
      if (!arguments.length) return domain.slice();
      domain = [], index = new Map();
      for (const value of _) {
        const key = value + "";
        if (index.has(key)) continue;
        index.set(key, domain.push(value));
      }
      return scale;
    };

    scale.range = function(_) {
      return arguments.length ? (range = Array.from(_), scale) : range.slice();
    };

    scale.unknown = function(_) {
      return arguments.length ? (unknown = _, scale) : unknown;
    };

    scale.copy = function() {
      return ordinal(domain, range).unknown(unknown);
    };

    initRange.apply(scale, arguments);

    return scale;
  }

  function colors(specifier) {
    var n = specifier.length / 6 | 0, colors = new Array(n), i = 0;
    while (i < n) colors[i] = "#" + specifier.slice(i * 6, ++i * 6);
    return colors;
  }

  var schemePaired = colors("a6cee31f78b4b2df8a33a02cfb9a99e31a1cfdbf6fff7f00cab2d66a3d9affff99b15928");

  var tinycolor = createCommonjsModule(function (module) {
  // TinyColor v1.4.1
  // https://github.com/bgrins/TinyColor
  // Brian Grinstead, MIT License

  (function(Math) {

  var trimLeft = /^\s+/,
      trimRight = /\s+$/,
      tinyCounter = 0,
      mathRound = Math.round,
      mathMin = Math.min,
      mathMax = Math.max,
      mathRandom = Math.random;

  function tinycolor (color, opts) {

      color = (color) ? color : '';
      opts = opts || { };

      // If input is already a tinycolor, return itself
      if (color instanceof tinycolor) {
         return color;
      }
      // If we are called as a function, call using new instead
      if (!(this instanceof tinycolor)) {
          return new tinycolor(color, opts);
      }

      var rgb = inputToRGB(color);
      this._originalInput = color,
      this._r = rgb.r,
      this._g = rgb.g,
      this._b = rgb.b,
      this._a = rgb.a,
      this._roundA = mathRound(100*this._a) / 100,
      this._format = opts.format || rgb.format;
      this._gradientType = opts.gradientType;

      // Don't let the range of [0,255] come back in [0,1].
      // Potentially lose a little bit of precision here, but will fix issues where
      // .5 gets interpreted as half of the total, instead of half of 1
      // If it was supposed to be 128, this was already taken care of by `inputToRgb`
      if (this._r < 1) { this._r = mathRound(this._r); }
      if (this._g < 1) { this._g = mathRound(this._g); }
      if (this._b < 1) { this._b = mathRound(this._b); }

      this._ok = rgb.ok;
      this._tc_id = tinyCounter++;
  }

  tinycolor.prototype = {
      isDark: function() {
          return this.getBrightness() < 128;
      },
      isLight: function() {
          return !this.isDark();
      },
      isValid: function() {
          return this._ok;
      },
      getOriginalInput: function() {
        return this._originalInput;
      },
      getFormat: function() {
          return this._format;
      },
      getAlpha: function() {
          return this._a;
      },
      getBrightness: function() {
          //http://www.w3.org/TR/AERT#color-contrast
          var rgb = this.toRgb();
          return (rgb.r * 299 + rgb.g * 587 + rgb.b * 114) / 1000;
      },
      getLuminance: function() {
          //http://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef
          var rgb = this.toRgb();
          var RsRGB, GsRGB, BsRGB, R, G, B;
          RsRGB = rgb.r/255;
          GsRGB = rgb.g/255;
          BsRGB = rgb.b/255;

          if (RsRGB <= 0.03928) {R = RsRGB / 12.92;} else {R = Math.pow(((RsRGB + 0.055) / 1.055), 2.4);}
          if (GsRGB <= 0.03928) {G = GsRGB / 12.92;} else {G = Math.pow(((GsRGB + 0.055) / 1.055), 2.4);}
          if (BsRGB <= 0.03928) {B = BsRGB / 12.92;} else {B = Math.pow(((BsRGB + 0.055) / 1.055), 2.4);}
          return (0.2126 * R) + (0.7152 * G) + (0.0722 * B);
      },
      setAlpha: function(value) {
          this._a = boundAlpha(value);
          this._roundA = mathRound(100*this._a) / 100;
          return this;
      },
      toHsv: function() {
          var hsv = rgbToHsv(this._r, this._g, this._b);
          return { h: hsv.h * 360, s: hsv.s, v: hsv.v, a: this._a };
      },
      toHsvString: function() {
          var hsv = rgbToHsv(this._r, this._g, this._b);
          var h = mathRound(hsv.h * 360), s = mathRound(hsv.s * 100), v = mathRound(hsv.v * 100);
          return (this._a == 1) ?
            "hsv("  + h + ", " + s + "%, " + v + "%)" :
            "hsva(" + h + ", " + s + "%, " + v + "%, "+ this._roundA + ")";
      },
      toHsl: function() {
          var hsl = rgbToHsl(this._r, this._g, this._b);
          return { h: hsl.h * 360, s: hsl.s, l: hsl.l, a: this._a };
      },
      toHslString: function() {
          var hsl = rgbToHsl(this._r, this._g, this._b);
          var h = mathRound(hsl.h * 360), s = mathRound(hsl.s * 100), l = mathRound(hsl.l * 100);
          return (this._a == 1) ?
            "hsl("  + h + ", " + s + "%, " + l + "%)" :
            "hsla(" + h + ", " + s + "%, " + l + "%, "+ this._roundA + ")";
      },
      toHex: function(allow3Char) {
          return rgbToHex(this._r, this._g, this._b, allow3Char);
      },
      toHexString: function(allow3Char) {
          return '#' + this.toHex(allow3Char);
      },
      toHex8: function(allow4Char) {
          return rgbaToHex(this._r, this._g, this._b, this._a, allow4Char);
      },
      toHex8String: function(allow4Char) {
          return '#' + this.toHex8(allow4Char);
      },
      toRgb: function() {
          return { r: mathRound(this._r), g: mathRound(this._g), b: mathRound(this._b), a: this._a };
      },
      toRgbString: function() {
          return (this._a == 1) ?
            "rgb("  + mathRound(this._r) + ", " + mathRound(this._g) + ", " + mathRound(this._b) + ")" :
            "rgba(" + mathRound(this._r) + ", " + mathRound(this._g) + ", " + mathRound(this._b) + ", " + this._roundA + ")";
      },
      toPercentageRgb: function() {
          return { r: mathRound(bound01(this._r, 255) * 100) + "%", g: mathRound(bound01(this._g, 255) * 100) + "%", b: mathRound(bound01(this._b, 255) * 100) + "%", a: this._a };
      },
      toPercentageRgbString: function() {
          return (this._a == 1) ?
            "rgb("  + mathRound(bound01(this._r, 255) * 100) + "%, " + mathRound(bound01(this._g, 255) * 100) + "%, " + mathRound(bound01(this._b, 255) * 100) + "%)" :
            "rgba(" + mathRound(bound01(this._r, 255) * 100) + "%, " + mathRound(bound01(this._g, 255) * 100) + "%, " + mathRound(bound01(this._b, 255) * 100) + "%, " + this._roundA + ")";
      },
      toName: function() {
          if (this._a === 0) {
              return "transparent";
          }

          if (this._a < 1) {
              return false;
          }

          return hexNames[rgbToHex(this._r, this._g, this._b, true)] || false;
      },
      toFilter: function(secondColor) {
          var hex8String = '#' + rgbaToArgbHex(this._r, this._g, this._b, this._a);
          var secondHex8String = hex8String;
          var gradientType = this._gradientType ? "GradientType = 1, " : "";

          if (secondColor) {
              var s = tinycolor(secondColor);
              secondHex8String = '#' + rgbaToArgbHex(s._r, s._g, s._b, s._a);
          }

          return "progid:DXImageTransform.Microsoft.gradient("+gradientType+"startColorstr="+hex8String+",endColorstr="+secondHex8String+")";
      },
      toString: function(format) {
          var formatSet = !!format;
          format = format || this._format;

          var formattedString = false;
          var hasAlpha = this._a < 1 && this._a >= 0;
          var needsAlphaFormat = !formatSet && hasAlpha && (format === "hex" || format === "hex6" || format === "hex3" || format === "hex4" || format === "hex8" || format === "name");

          if (needsAlphaFormat) {
              // Special case for "transparent", all other non-alpha formats
              // will return rgba when there is transparency.
              if (format === "name" && this._a === 0) {
                  return this.toName();
              }
              return this.toRgbString();
          }
          if (format === "rgb") {
              formattedString = this.toRgbString();
          }
          if (format === "prgb") {
              formattedString = this.toPercentageRgbString();
          }
          if (format === "hex" || format === "hex6") {
              formattedString = this.toHexString();
          }
          if (format === "hex3") {
              formattedString = this.toHexString(true);
          }
          if (format === "hex4") {
              formattedString = this.toHex8String(true);
          }
          if (format === "hex8") {
              formattedString = this.toHex8String();
          }
          if (format === "name") {
              formattedString = this.toName();
          }
          if (format === "hsl") {
              formattedString = this.toHslString();
          }
          if (format === "hsv") {
              formattedString = this.toHsvString();
          }

          return formattedString || this.toHexString();
      },
      clone: function() {
          return tinycolor(this.toString());
      },

      _applyModification: function(fn, args) {
          var color = fn.apply(null, [this].concat([].slice.call(args)));
          this._r = color._r;
          this._g = color._g;
          this._b = color._b;
          this.setAlpha(color._a);
          return this;
      },
      lighten: function() {
          return this._applyModification(lighten, arguments);
      },
      brighten: function() {
          return this._applyModification(brighten, arguments);
      },
      darken: function() {
          return this._applyModification(darken, arguments);
      },
      desaturate: function() {
          return this._applyModification(desaturate, arguments);
      },
      saturate: function() {
          return this._applyModification(saturate, arguments);
      },
      greyscale: function() {
          return this._applyModification(greyscale, arguments);
      },
      spin: function() {
          return this._applyModification(spin, arguments);
      },

      _applyCombination: function(fn, args) {
          return fn.apply(null, [this].concat([].slice.call(args)));
      },
      analogous: function() {
          return this._applyCombination(analogous, arguments);
      },
      complement: function() {
          return this._applyCombination(complement, arguments);
      },
      monochromatic: function() {
          return this._applyCombination(monochromatic, arguments);
      },
      splitcomplement: function() {
          return this._applyCombination(splitcomplement, arguments);
      },
      triad: function() {
          return this._applyCombination(triad, arguments);
      },
      tetrad: function() {
          return this._applyCombination(tetrad, arguments);
      }
  };

  // If input is an object, force 1 into "1.0" to handle ratios properly
  // String input requires "1.0" as input, so 1 will be treated as 1
  tinycolor.fromRatio = function(color, opts) {
      if (typeof color == "object") {
          var newColor = {};
          for (var i in color) {
              if (color.hasOwnProperty(i)) {
                  if (i === "a") {
                      newColor[i] = color[i];
                  }
                  else {
                      newColor[i] = convertToPercentage(color[i]);
                  }
              }
          }
          color = newColor;
      }

      return tinycolor(color, opts);
  };

  // Given a string or object, convert that input to RGB
  // Possible string inputs:
  //
  //     "red"
  //     "#f00" or "f00"
  //     "#ff0000" or "ff0000"
  //     "#ff000000" or "ff000000"
  //     "rgb 255 0 0" or "rgb (255, 0, 0)"
  //     "rgb 1.0 0 0" or "rgb (1, 0, 0)"
  //     "rgba (255, 0, 0, 1)" or "rgba 255, 0, 0, 1"
  //     "rgba (1.0, 0, 0, 1)" or "rgba 1.0, 0, 0, 1"
  //     "hsl(0, 100%, 50%)" or "hsl 0 100% 50%"
  //     "hsla(0, 100%, 50%, 1)" or "hsla 0 100% 50%, 1"
  //     "hsv(0, 100%, 100%)" or "hsv 0 100% 100%"
  //
  function inputToRGB(color) {

      var rgb = { r: 0, g: 0, b: 0 };
      var a = 1;
      var s = null;
      var v = null;
      var l = null;
      var ok = false;
      var format = false;

      if (typeof color == "string") {
          color = stringInputToObject(color);
      }

      if (typeof color == "object") {
          if (isValidCSSUnit(color.r) && isValidCSSUnit(color.g) && isValidCSSUnit(color.b)) {
              rgb = rgbToRgb(color.r, color.g, color.b);
              ok = true;
              format = String(color.r).substr(-1) === "%" ? "prgb" : "rgb";
          }
          else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.v)) {
              s = convertToPercentage(color.s);
              v = convertToPercentage(color.v);
              rgb = hsvToRgb(color.h, s, v);
              ok = true;
              format = "hsv";
          }
          else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.l)) {
              s = convertToPercentage(color.s);
              l = convertToPercentage(color.l);
              rgb = hslToRgb(color.h, s, l);
              ok = true;
              format = "hsl";
          }

          if (color.hasOwnProperty("a")) {
              a = color.a;
          }
      }

      a = boundAlpha(a);

      return {
          ok: ok,
          format: color.format || format,
          r: mathMin(255, mathMax(rgb.r, 0)),
          g: mathMin(255, mathMax(rgb.g, 0)),
          b: mathMin(255, mathMax(rgb.b, 0)),
          a: a
      };
  }


  // Conversion Functions
  // --------------------

  // `rgbToHsl`, `rgbToHsv`, `hslToRgb`, `hsvToRgb` modified from:
  // <http://mjijackson.com/2008/02/rgb-to-hsl-and-rgb-to-hsv-color-model-conversion-algorithms-in-javascript>

  // `rgbToRgb`
  // Handle bounds / percentage checking to conform to CSS color spec
  // <http://www.w3.org/TR/css3-color/>
  // *Assumes:* r, g, b in [0, 255] or [0, 1]
  // *Returns:* { r, g, b } in [0, 255]
  function rgbToRgb(r, g, b){
      return {
          r: bound01(r, 255) * 255,
          g: bound01(g, 255) * 255,
          b: bound01(b, 255) * 255
      };
  }

  // `rgbToHsl`
  // Converts an RGB color value to HSL.
  // *Assumes:* r, g, and b are contained in [0, 255] or [0, 1]
  // *Returns:* { h, s, l } in [0,1]
  function rgbToHsl(r, g, b) {

      r = bound01(r, 255);
      g = bound01(g, 255);
      b = bound01(b, 255);

      var max = mathMax(r, g, b), min = mathMin(r, g, b);
      var h, s, l = (max + min) / 2;

      if(max == min) {
          h = s = 0; // achromatic
      }
      else {
          var d = max - min;
          s = l > 0.5 ? d / (2 - max - min) : d / (max + min);
          switch(max) {
              case r: h = (g - b) / d + (g < b ? 6 : 0); break;
              case g: h = (b - r) / d + 2; break;
              case b: h = (r - g) / d + 4; break;
          }

          h /= 6;
      }

      return { h: h, s: s, l: l };
  }

  // `hslToRgb`
  // Converts an HSL color value to RGB.
  // *Assumes:* h is contained in [0, 1] or [0, 360] and s and l are contained [0, 1] or [0, 100]
  // *Returns:* { r, g, b } in the set [0, 255]
  function hslToRgb(h, s, l) {
      var r, g, b;

      h = bound01(h, 360);
      s = bound01(s, 100);
      l = bound01(l, 100);

      function hue2rgb(p, q, t) {
          if(t < 0) t += 1;
          if(t > 1) t -= 1;
          if(t < 1/6) return p + (q - p) * 6 * t;
          if(t < 1/2) return q;
          if(t < 2/3) return p + (q - p) * (2/3 - t) * 6;
          return p;
      }

      if(s === 0) {
          r = g = b = l; // achromatic
      }
      else {
          var q = l < 0.5 ? l * (1 + s) : l + s - l * s;
          var p = 2 * l - q;
          r = hue2rgb(p, q, h + 1/3);
          g = hue2rgb(p, q, h);
          b = hue2rgb(p, q, h - 1/3);
      }

      return { r: r * 255, g: g * 255, b: b * 255 };
  }

  // `rgbToHsv`
  // Converts an RGB color value to HSV
  // *Assumes:* r, g, and b are contained in the set [0, 255] or [0, 1]
  // *Returns:* { h, s, v } in [0,1]
  function rgbToHsv(r, g, b) {

      r = bound01(r, 255);
      g = bound01(g, 255);
      b = bound01(b, 255);

      var max = mathMax(r, g, b), min = mathMin(r, g, b);
      var h, s, v = max;

      var d = max - min;
      s = max === 0 ? 0 : d / max;

      if(max == min) {
          h = 0; // achromatic
      }
      else {
          switch(max) {
              case r: h = (g - b) / d + (g < b ? 6 : 0); break;
              case g: h = (b - r) / d + 2; break;
              case b: h = (r - g) / d + 4; break;
          }
          h /= 6;
      }
      return { h: h, s: s, v: v };
  }

  // `hsvToRgb`
  // Converts an HSV color value to RGB.
  // *Assumes:* h is contained in [0, 1] or [0, 360] and s and v are contained in [0, 1] or [0, 100]
  // *Returns:* { r, g, b } in the set [0, 255]
   function hsvToRgb(h, s, v) {

      h = bound01(h, 360) * 6;
      s = bound01(s, 100);
      v = bound01(v, 100);

      var i = Math.floor(h),
          f = h - i,
          p = v * (1 - s),
          q = v * (1 - f * s),
          t = v * (1 - (1 - f) * s),
          mod = i % 6,
          r = [v, q, p, p, t, v][mod],
          g = [t, v, v, q, p, p][mod],
          b = [p, p, t, v, v, q][mod];

      return { r: r * 255, g: g * 255, b: b * 255 };
  }

  // `rgbToHex`
  // Converts an RGB color to hex
  // Assumes r, g, and b are contained in the set [0, 255]
  // Returns a 3 or 6 character hex
  function rgbToHex(r, g, b, allow3Char) {

      var hex = [
          pad2(mathRound(r).toString(16)),
          pad2(mathRound(g).toString(16)),
          pad2(mathRound(b).toString(16))
      ];

      // Return a 3 character hex if possible
      if (allow3Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1)) {
          return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0);
      }

      return hex.join("");
  }

  // `rgbaToHex`
  // Converts an RGBA color plus alpha transparency to hex
  // Assumes r, g, b are contained in the set [0, 255] and
  // a in [0, 1]. Returns a 4 or 8 character rgba hex
  function rgbaToHex(r, g, b, a, allow4Char) {

      var hex = [
          pad2(mathRound(r).toString(16)),
          pad2(mathRound(g).toString(16)),
          pad2(mathRound(b).toString(16)),
          pad2(convertDecimalToHex(a))
      ];

      // Return a 4 character hex if possible
      if (allow4Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1) && hex[3].charAt(0) == hex[3].charAt(1)) {
          return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0) + hex[3].charAt(0);
      }

      return hex.join("");
  }

  // `rgbaToArgbHex`
  // Converts an RGBA color to an ARGB Hex8 string
  // Rarely used, but required for "toFilter()"
  function rgbaToArgbHex(r, g, b, a) {

      var hex = [
          pad2(convertDecimalToHex(a)),
          pad2(mathRound(r).toString(16)),
          pad2(mathRound(g).toString(16)),
          pad2(mathRound(b).toString(16))
      ];

      return hex.join("");
  }

  // `equals`
  // Can be called with any tinycolor input
  tinycolor.equals = function (color1, color2) {
      if (!color1 || !color2) { return false; }
      return tinycolor(color1).toRgbString() == tinycolor(color2).toRgbString();
  };

  tinycolor.random = function() {
      return tinycolor.fromRatio({
          r: mathRandom(),
          g: mathRandom(),
          b: mathRandom()
      });
  };


  // Modification Functions
  // ----------------------
  // Thanks to less.js for some of the basics here
  // <https://github.com/cloudhead/less.js/blob/master/lib/less/functions.js>

  function desaturate(color, amount) {
      amount = (amount === 0) ? 0 : (amount || 10);
      var hsl = tinycolor(color).toHsl();
      hsl.s -= amount / 100;
      hsl.s = clamp01(hsl.s);
      return tinycolor(hsl);
  }

  function saturate(color, amount) {
      amount = (amount === 0) ? 0 : (amount || 10);
      var hsl = tinycolor(color).toHsl();
      hsl.s += amount / 100;
      hsl.s = clamp01(hsl.s);
      return tinycolor(hsl);
  }

  function greyscale(color) {
      return tinycolor(color).desaturate(100);
  }

  function lighten (color, amount) {
      amount = (amount === 0) ? 0 : (amount || 10);
      var hsl = tinycolor(color).toHsl();
      hsl.l += amount / 100;
      hsl.l = clamp01(hsl.l);
      return tinycolor(hsl);
  }

  function brighten(color, amount) {
      amount = (amount === 0) ? 0 : (amount || 10);
      var rgb = tinycolor(color).toRgb();
      rgb.r = mathMax(0, mathMin(255, rgb.r - mathRound(255 * - (amount / 100))));
      rgb.g = mathMax(0, mathMin(255, rgb.g - mathRound(255 * - (amount / 100))));
      rgb.b = mathMax(0, mathMin(255, rgb.b - mathRound(255 * - (amount / 100))));
      return tinycolor(rgb);
  }

  function darken (color, amount) {
      amount = (amount === 0) ? 0 : (amount || 10);
      var hsl = tinycolor(color).toHsl();
      hsl.l -= amount / 100;
      hsl.l = clamp01(hsl.l);
      return tinycolor(hsl);
  }

  // Spin takes a positive or negative amount within [-360, 360] indicating the change of hue.
  // Values outside of this range will be wrapped into this range.
  function spin(color, amount) {
      var hsl = tinycolor(color).toHsl();
      var hue = (hsl.h + amount) % 360;
      hsl.h = hue < 0 ? 360 + hue : hue;
      return tinycolor(hsl);
  }

  // Combination Functions
  // ---------------------
  // Thanks to jQuery xColor for some of the ideas behind these
  // <https://github.com/infusion/jQuery-xcolor/blob/master/jquery.xcolor.js>

  function complement(color) {
      var hsl = tinycolor(color).toHsl();
      hsl.h = (hsl.h + 180) % 360;
      return tinycolor(hsl);
  }

  function triad(color) {
      var hsl = tinycolor(color).toHsl();
      var h = hsl.h;
      return [
          tinycolor(color),
          tinycolor({ h: (h + 120) % 360, s: hsl.s, l: hsl.l }),
          tinycolor({ h: (h + 240) % 360, s: hsl.s, l: hsl.l })
      ];
  }

  function tetrad(color) {
      var hsl = tinycolor(color).toHsl();
      var h = hsl.h;
      return [
          tinycolor(color),
          tinycolor({ h: (h + 90) % 360, s: hsl.s, l: hsl.l }),
          tinycolor({ h: (h + 180) % 360, s: hsl.s, l: hsl.l }),
          tinycolor({ h: (h + 270) % 360, s: hsl.s, l: hsl.l })
      ];
  }

  function splitcomplement(color) {
      var hsl = tinycolor(color).toHsl();
      var h = hsl.h;
      return [
          tinycolor(color),
          tinycolor({ h: (h + 72) % 360, s: hsl.s, l: hsl.l}),
          tinycolor({ h: (h + 216) % 360, s: hsl.s, l: hsl.l})
      ];
  }

  function analogous(color, results, slices) {
      results = results || 6;
      slices = slices || 30;

      var hsl = tinycolor(color).toHsl();
      var part = 360 / slices;
      var ret = [tinycolor(color)];

      for (hsl.h = ((hsl.h - (part * results >> 1)) + 720) % 360; --results; ) {
          hsl.h = (hsl.h + part) % 360;
          ret.push(tinycolor(hsl));
      }
      return ret;
  }

  function monochromatic(color, results) {
      results = results || 6;
      var hsv = tinycolor(color).toHsv();
      var h = hsv.h, s = hsv.s, v = hsv.v;
      var ret = [];
      var modification = 1 / results;

      while (results--) {
          ret.push(tinycolor({ h: h, s: s, v: v}));
          v = (v + modification) % 1;
      }

      return ret;
  }

  // Utility Functions
  // ---------------------

  tinycolor.mix = function(color1, color2, amount) {
      amount = (amount === 0) ? 0 : (amount || 50);

      var rgb1 = tinycolor(color1).toRgb();
      var rgb2 = tinycolor(color2).toRgb();

      var p = amount / 100;

      var rgba = {
          r: ((rgb2.r - rgb1.r) * p) + rgb1.r,
          g: ((rgb2.g - rgb1.g) * p) + rgb1.g,
          b: ((rgb2.b - rgb1.b) * p) + rgb1.b,
          a: ((rgb2.a - rgb1.a) * p) + rgb1.a
      };

      return tinycolor(rgba);
  };


  // Readability Functions
  // ---------------------
  // <http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef (WCAG Version 2)

  // `contrast`
  // Analyze the 2 colors and returns the color contrast defined by (WCAG Version 2)
  tinycolor.readability = function(color1, color2) {
      var c1 = tinycolor(color1);
      var c2 = tinycolor(color2);
      return (Math.max(c1.getLuminance(),c2.getLuminance())+0.05) / (Math.min(c1.getLuminance(),c2.getLuminance())+0.05);
  };

  // `isReadable`
  // Ensure that foreground and background color combinations meet WCAG2 guidelines.
  // The third argument is an optional Object.
  //      the 'level' property states 'AA' or 'AAA' - if missing or invalid, it defaults to 'AA';
  //      the 'size' property states 'large' or 'small' - if missing or invalid, it defaults to 'small'.
  // If the entire object is absent, isReadable defaults to {level:"AA",size:"small"}.

  // *Example*
  //    tinycolor.isReadable("#000", "#111") => false
  //    tinycolor.isReadable("#000", "#111",{level:"AA",size:"large"}) => false
  tinycolor.isReadable = function(color1, color2, wcag2) {
      var readability = tinycolor.readability(color1, color2);
      var wcag2Parms, out;

      out = false;

      wcag2Parms = validateWCAG2Parms(wcag2);
      switch (wcag2Parms.level + wcag2Parms.size) {
          case "AAsmall":
          case "AAAlarge":
              out = readability >= 4.5;
              break;
          case "AAlarge":
              out = readability >= 3;
              break;
          case "AAAsmall":
              out = readability >= 7;
              break;
      }
      return out;

  };

  // `mostReadable`
  // Given a base color and a list of possible foreground or background
  // colors for that base, returns the most readable color.
  // Optionally returns Black or White if the most readable color is unreadable.
  // *Example*
  //    tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:false}).toHexString(); // "#112255"
  //    tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:true}).toHexString();  // "#ffffff"
  //    tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"large"}).toHexString(); // "#faf3f3"
  //    tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"small"}).toHexString(); // "#ffffff"
  tinycolor.mostReadable = function(baseColor, colorList, args) {
      var bestColor = null;
      var bestScore = 0;
      var readability;
      var includeFallbackColors, level, size ;
      args = args || {};
      includeFallbackColors = args.includeFallbackColors ;
      level = args.level;
      size = args.size;

      for (var i= 0; i < colorList.length ; i++) {
          readability = tinycolor.readability(baseColor, colorList[i]);
          if (readability > bestScore) {
              bestScore = readability;
              bestColor = tinycolor(colorList[i]);
          }
      }

      if (tinycolor.isReadable(baseColor, bestColor, {"level":level,"size":size}) || !includeFallbackColors) {
          return bestColor;
      }
      else {
          args.includeFallbackColors=false;
          return tinycolor.mostReadable(baseColor,["#fff", "#000"],args);
      }
  };


  // Big List of Colors
  // ------------------
  // <http://www.w3.org/TR/css3-color/#svg-color>
  var names = tinycolor.names = {
      aliceblue: "f0f8ff",
      antiquewhite: "faebd7",
      aqua: "0ff",
      aquamarine: "7fffd4",
      azure: "f0ffff",
      beige: "f5f5dc",
      bisque: "ffe4c4",
      black: "000",
      blanchedalmond: "ffebcd",
      blue: "00f",
      blueviolet: "8a2be2",
      brown: "a52a2a",
      burlywood: "deb887",
      burntsienna: "ea7e5d",
      cadetblue: "5f9ea0",
      chartreuse: "7fff00",
      chocolate: "d2691e",
      coral: "ff7f50",
      cornflowerblue: "6495ed",
      cornsilk: "fff8dc",
      crimson: "dc143c",
      cyan: "0ff",
      darkblue: "00008b",
      darkcyan: "008b8b",
      darkgoldenrod: "b8860b",
      darkgray: "a9a9a9",
      darkgreen: "006400",
      darkgrey: "a9a9a9",
      darkkhaki: "bdb76b",
      darkmagenta: "8b008b",
      darkolivegreen: "556b2f",
      darkorange: "ff8c00",
      darkorchid: "9932cc",
      darkred: "8b0000",
      darksalmon: "e9967a",
      darkseagreen: "8fbc8f",
      darkslateblue: "483d8b",
      darkslategray: "2f4f4f",
      darkslategrey: "2f4f4f",
      darkturquoise: "00ced1",
      darkviolet: "9400d3",
      deeppink: "ff1493",
      deepskyblue: "00bfff",
      dimgray: "696969",
      dimgrey: "696969",
      dodgerblue: "1e90ff",
      firebrick: "b22222",
      floralwhite: "fffaf0",
      forestgreen: "228b22",
      fuchsia: "f0f",
      gainsboro: "dcdcdc",
      ghostwhite: "f8f8ff",
      gold: "ffd700",
      goldenrod: "daa520",
      gray: "808080",
      green: "008000",
      greenyellow: "adff2f",
      grey: "808080",
      honeydew: "f0fff0",
      hotpink: "ff69b4",
      indianred: "cd5c5c",
      indigo: "4b0082",
      ivory: "fffff0",
      khaki: "f0e68c",
      lavender: "e6e6fa",
      lavenderblush: "fff0f5",
      lawngreen: "7cfc00",
      lemonchiffon: "fffacd",
      lightblue: "add8e6",
      lightcoral: "f08080",
      lightcyan: "e0ffff",
      lightgoldenrodyellow: "fafad2",
      lightgray: "d3d3d3",
      lightgreen: "90ee90",
      lightgrey: "d3d3d3",
      lightpink: "ffb6c1",
      lightsalmon: "ffa07a",
      lightseagreen: "20b2aa",
      lightskyblue: "87cefa",
      lightslategray: "789",
      lightslategrey: "789",
      lightsteelblue: "b0c4de",
      lightyellow: "ffffe0",
      lime: "0f0",
      limegreen: "32cd32",
      linen: "faf0e6",
      magenta: "f0f",
      maroon: "800000",
      mediumaquamarine: "66cdaa",
      mediumblue: "0000cd",
      mediumorchid: "ba55d3",
      mediumpurple: "9370db",
      mediumseagreen: "3cb371",
      mediumslateblue: "7b68ee",
      mediumspringgreen: "00fa9a",
      mediumturquoise: "48d1cc",
      mediumvioletred: "c71585",
      midnightblue: "191970",
      mintcream: "f5fffa",
      mistyrose: "ffe4e1",
      moccasin: "ffe4b5",
      navajowhite: "ffdead",
      navy: "000080",
      oldlace: "fdf5e6",
      olive: "808000",
      olivedrab: "6b8e23",
      orange: "ffa500",
      orangered: "ff4500",
      orchid: "da70d6",
      palegoldenrod: "eee8aa",
      palegreen: "98fb98",
      paleturquoise: "afeeee",
      palevioletred: "db7093",
      papayawhip: "ffefd5",
      peachpuff: "ffdab9",
      peru: "cd853f",
      pink: "ffc0cb",
      plum: "dda0dd",
      powderblue: "b0e0e6",
      purple: "800080",
      rebeccapurple: "663399",
      red: "f00",
      rosybrown: "bc8f8f",
      royalblue: "4169e1",
      saddlebrown: "8b4513",
      salmon: "fa8072",
      sandybrown: "f4a460",
      seagreen: "2e8b57",
      seashell: "fff5ee",
      sienna: "a0522d",
      silver: "c0c0c0",
      skyblue: "87ceeb",
      slateblue: "6a5acd",
      slategray: "708090",
      slategrey: "708090",
      snow: "fffafa",
      springgreen: "00ff7f",
      steelblue: "4682b4",
      tan: "d2b48c",
      teal: "008080",
      thistle: "d8bfd8",
      tomato: "ff6347",
      turquoise: "40e0d0",
      violet: "ee82ee",
      wheat: "f5deb3",
      white: "fff",
      whitesmoke: "f5f5f5",
      yellow: "ff0",
      yellowgreen: "9acd32"
  };

  // Make it easy to access colors via `hexNames[hex]`
  var hexNames = tinycolor.hexNames = flip(names);


  // Utilities
  // ---------

  // `{ 'name1': 'val1' }` becomes `{ 'val1': 'name1' }`
  function flip(o) {
      var flipped = { };
      for (var i in o) {
          if (o.hasOwnProperty(i)) {
              flipped[o[i]] = i;
          }
      }
      return flipped;
  }

  // Return a valid alpha value [0,1] with all invalid values being set to 1
  function boundAlpha(a) {
      a = parseFloat(a);

      if (isNaN(a) || a < 0 || a > 1) {
          a = 1;
      }

      return a;
  }

  // Take input from [0, n] and return it as [0, 1]
  function bound01(n, max) {
      if (isOnePointZero(n)) { n = "100%"; }

      var processPercent = isPercentage(n);
      n = mathMin(max, mathMax(0, parseFloat(n)));

      // Automatically convert percentage into number
      if (processPercent) {
          n = parseInt(n * max, 10) / 100;
      }

      // Handle floating point rounding errors
      if ((Math.abs(n - max) < 0.000001)) {
          return 1;
      }

      // Convert into [0, 1] range if it isn't already
      return (n % max) / parseFloat(max);
  }

  // Force a number between 0 and 1
  function clamp01(val) {
      return mathMin(1, mathMax(0, val));
  }

  // Parse a base-16 hex value into a base-10 integer
  function parseIntFromHex(val) {
      return parseInt(val, 16);
  }

  // Need to handle 1.0 as 100%, since once it is a number, there is no difference between it and 1
  // <http://stackoverflow.com/questions/7422072/javascript-how-to-detect-number-as-a-decimal-including-1-0>
  function isOnePointZero(n) {
      return typeof n == "string" && n.indexOf('.') != -1 && parseFloat(n) === 1;
  }

  // Check to see if string passed in is a percentage
  function isPercentage(n) {
      return typeof n === "string" && n.indexOf('%') != -1;
  }

  // Force a hex value to have 2 characters
  function pad2(c) {
      return c.length == 1 ? '0' + c : '' + c;
  }

  // Replace a decimal with it's percentage value
  function convertToPercentage(n) {
      if (n <= 1) {
          n = (n * 100) + "%";
      }

      return n;
  }

  // Converts a decimal to a hex value
  function convertDecimalToHex(d) {
      return Math.round(parseFloat(d) * 255).toString(16);
  }
  // Converts a hex value to a decimal
  function convertHexToDecimal(h) {
      return (parseIntFromHex(h) / 255);
  }

  var matchers = (function() {

      // <http://www.w3.org/TR/css3-values/#integers>
      var CSS_INTEGER = "[-\\+]?\\d+%?";

      // <http://www.w3.org/TR/css3-values/#number-value>
      var CSS_NUMBER = "[-\\+]?\\d*\\.\\d+%?";

      // Allow positive/negative integer/number.  Don't capture the either/or, just the entire outcome.
      var CSS_UNIT = "(?:" + CSS_NUMBER + ")|(?:" + CSS_INTEGER + ")";

      // Actual matching.
      // Parentheses and commas are optional, but not required.
      // Whitespace can take the place of commas or opening paren
      var PERMISSIVE_MATCH3 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?";
      var PERMISSIVE_MATCH4 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?";

      return {
          CSS_UNIT: new RegExp(CSS_UNIT),
          rgb: new RegExp("rgb" + PERMISSIVE_MATCH3),
          rgba: new RegExp("rgba" + PERMISSIVE_MATCH4),
          hsl: new RegExp("hsl" + PERMISSIVE_MATCH3),
          hsla: new RegExp("hsla" + PERMISSIVE_MATCH4),
          hsv: new RegExp("hsv" + PERMISSIVE_MATCH3),
          hsva: new RegExp("hsva" + PERMISSIVE_MATCH4),
          hex3: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,
          hex6: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/,
          hex4: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,
          hex8: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/
      };
  })();

  // `isValidCSSUnit`
  // Take in a single string / number and check to see if it looks like a CSS unit
  // (see `matchers` above for definition).
  function isValidCSSUnit(color) {
      return !!matchers.CSS_UNIT.exec(color);
  }

  // `stringInputToObject`
  // Permissive string parsing.  Take in a number of formats, and output an object
  // based on detected format.  Returns `{ r, g, b }` or `{ h, s, l }` or `{ h, s, v}`
  function stringInputToObject(color) {

      color = color.replace(trimLeft,'').replace(trimRight, '').toLowerCase();
      var named = false;
      if (names[color]) {
          color = names[color];
          named = true;
      }
      else if (color == 'transparent') {
          return { r: 0, g: 0, b: 0, a: 0, format: "name" };
      }

      // Try to match string input using regular expressions.
      // Keep most of the number bounding out of this function - don't worry about [0,1] or [0,100] or [0,360]
      // Just return an object and let the conversion functions handle that.
      // This way the result will be the same whether the tinycolor is initialized with string or object.
      var match;
      if ((match = matchers.rgb.exec(color))) {
          return { r: match[1], g: match[2], b: match[3] };
      }
      if ((match = matchers.rgba.exec(color))) {
          return { r: match[1], g: match[2], b: match[3], a: match[4] };
      }
      if ((match = matchers.hsl.exec(color))) {
          return { h: match[1], s: match[2], l: match[3] };
      }
      if ((match = matchers.hsla.exec(color))) {
          return { h: match[1], s: match[2], l: match[3], a: match[4] };
      }
      if ((match = matchers.hsv.exec(color))) {
          return { h: match[1], s: match[2], v: match[3] };
      }
      if ((match = matchers.hsva.exec(color))) {
          return { h: match[1], s: match[2], v: match[3], a: match[4] };
      }
      if ((match = matchers.hex8.exec(color))) {
          return {
              r: parseIntFromHex(match[1]),
              g: parseIntFromHex(match[2]),
              b: parseIntFromHex(match[3]),
              a: convertHexToDecimal(match[4]),
              format: named ? "name" : "hex8"
          };
      }
      if ((match = matchers.hex6.exec(color))) {
          return {
              r: parseIntFromHex(match[1]),
              g: parseIntFromHex(match[2]),
              b: parseIntFromHex(match[3]),
              format: named ? "name" : "hex"
          };
      }
      if ((match = matchers.hex4.exec(color))) {
          return {
              r: parseIntFromHex(match[1] + '' + match[1]),
              g: parseIntFromHex(match[2] + '' + match[2]),
              b: parseIntFromHex(match[3] + '' + match[3]),
              a: convertHexToDecimal(match[4] + '' + match[4]),
              format: named ? "name" : "hex8"
          };
      }
      if ((match = matchers.hex3.exec(color))) {
          return {
              r: parseIntFromHex(match[1] + '' + match[1]),
              g: parseIntFromHex(match[2] + '' + match[2]),
              b: parseIntFromHex(match[3] + '' + match[3]),
              format: named ? "name" : "hex"
          };
      }

      return false;
  }

  function validateWCAG2Parms(parms) {
      // return valid WCAG2 parms for isReadable.
      // If input parms are invalid, return {"level":"AA", "size":"small"}
      var level, size;
      parms = parms || {"level":"AA", "size":"small"};
      level = (parms.level || "AA").toUpperCase();
      size = (parms.size || "small").toLowerCase();
      if (level !== "AA" && level !== "AAA") {
          level = "AA";
      }
      if (size !== "small" && size !== "large") {
          size = "small";
      }
      return {"level":level, "size":size};
  }

  // Node: Export function
  if ( module.exports) {
      module.exports = tinycolor;
  }
  // AMD/requirejs: Define the module
  else {
      window.tinycolor = tinycolor;
  }

  })(Math);
  });

  function _typeof(obj) {
    "@babel/helpers - typeof";

    if (typeof Symbol === "function" && typeof Symbol.iterator === "symbol") {
      _typeof = function (obj) {
        return typeof obj;
      };
    } else {
      _typeof = function (obj) {
        return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj;
      };
    }

    return _typeof(obj);
  }

  function _classCallCheck$1(instance, Constructor) {
    if (!(instance instanceof Constructor)) {
      throw new TypeError("Cannot call a class as a function");
    }
  }

  function _defineProperty$2(obj, key, value) {
    if (key in obj) {
      Object.defineProperty(obj, key, {
        value: value,
        enumerable: true,
        configurable: true,
        writable: true
      });
    } else {
      obj[key] = value;
    }

    return obj;
  }

  function ownKeys$2(object, enumerableOnly) {
    var keys = Object.keys(object);

    if (Object.getOwnPropertySymbols) {
      var symbols = Object.getOwnPropertySymbols(object);
      if (enumerableOnly) symbols = symbols.filter(function (sym) {
        return Object.getOwnPropertyDescriptor(object, sym).enumerable;
      });
      keys.push.apply(keys, symbols);
    }

    return keys;
  }

  function _objectSpread2$2(target) {
    for (var i = 1; i < arguments.length; i++) {
      var source = arguments[i] != null ? arguments[i] : {};

      if (i % 2) {
        ownKeys$2(Object(source), true).forEach(function (key) {
          _defineProperty$2(target, key, source[key]);
        });
      } else if (Object.getOwnPropertyDescriptors) {
        Object.defineProperties(target, Object.getOwnPropertyDescriptors(source));
      } else {
        ownKeys$2(Object(source)).forEach(function (key) {
          Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key));
        });
      }
    }

    return target;
  }

  function _inherits(subClass, superClass) {
    if (typeof superClass !== "function" && superClass !== null) {
      throw new TypeError("Super expression must either be null or a function");
    }

    subClass.prototype = Object.create(superClass && superClass.prototype, {
      constructor: {
        value: subClass,
        writable: true,
        configurable: true
      }
    });
    if (superClass) _setPrototypeOf(subClass, superClass);
  }

  function _getPrototypeOf(o) {
    _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) {
      return o.__proto__ || Object.getPrototypeOf(o);
    };
    return _getPrototypeOf(o);
  }

  function _setPrototypeOf(o, p) {
    _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) {
      o.__proto__ = p;
      return o;
    };

    return _setPrototypeOf(o, p);
  }

  function _isNativeReflectConstruct() {
    if (typeof Reflect === "undefined" || !Reflect.construct) return false;
    if (Reflect.construct.sham) return false;
    if (typeof Proxy === "function") return true;

    try {
      Date.prototype.toString.call(Reflect.construct(Date, [], function () {}));
      return true;
    } catch (e) {
      return false;
    }
  }

  function _construct(Parent, args, Class) {
    if (_isNativeReflectConstruct()) {
      _construct = Reflect.construct;
    } else {
      _construct = function _construct(Parent, args, Class) {
        var a = [null];
        a.push.apply(a, args);
        var Constructor = Function.bind.apply(Parent, a);
        var instance = new Constructor();
        if (Class) _setPrototypeOf(instance, Class.prototype);
        return instance;
      };
    }

    return _construct.apply(null, arguments);
  }

  function _objectWithoutPropertiesLoose$2(source, excluded) {
    if (source == null) return {};
    var target = {};
    var sourceKeys = Object.keys(source);
    var key, i;

    for (i = 0; i < sourceKeys.length; i++) {
      key = sourceKeys[i];
      if (excluded.indexOf(key) >= 0) continue;
      target[key] = source[key];
    }

    return target;
  }

  function _objectWithoutProperties$2(source, excluded) {
    if (source == null) return {};

    var target = _objectWithoutPropertiesLoose$2(source, excluded);

    var key, i;

    if (Object.getOwnPropertySymbols) {
      var sourceSymbolKeys = Object.getOwnPropertySymbols(source);

      for (i = 0; i < sourceSymbolKeys.length; i++) {
        key = sourceSymbolKeys[i];
        if (excluded.indexOf(key) >= 0) continue;
        if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue;
        target[key] = source[key];
      }
    }

    return target;
  }

  function _assertThisInitialized(self) {
    if (self === void 0) {
      throw new ReferenceError("this hasn't been initialised - super() hasn't been called");
    }

    return self;
  }

  function _possibleConstructorReturn(self, call) {
    if (call && (typeof call === "object" || typeof call === "function")) {
      return call;
    }

    return _assertThisInitialized(self);
  }

  function _createSuper(Derived) {
    var hasNativeReflectConstruct = _isNativeReflectConstruct();

    return function _createSuperInternal() {
      var Super = _getPrototypeOf(Derived),
          result;

      if (hasNativeReflectConstruct) {
        var NewTarget = _getPrototypeOf(this).constructor;

        result = Reflect.construct(Super, arguments, NewTarget);
      } else {
        result = Super.apply(this, arguments);
      }

      return _possibleConstructorReturn(this, result);
    };
  }

  function _slicedToArray$3(arr, i) {
    return _arrayWithHoles$3(arr) || _iterableToArrayLimit$3(arr, i) || _unsupportedIterableToArray$1(arr, i) || _nonIterableRest$3();
  }

  function _toConsumableArray$3(arr) {
    return _arrayWithoutHoles$3(arr) || _iterableToArray$3(arr) || _unsupportedIterableToArray$1(arr) || _nonIterableSpread$3();
  }

  function _arrayWithoutHoles$3(arr) {
    if (Array.isArray(arr)) return _arrayLikeToArray$1(arr);
  }

  function _arrayWithHoles$3(arr) {
    if (Array.isArray(arr)) return arr;
  }

  function _iterableToArray$3(iter) {
    if (typeof Symbol !== "undefined" && Symbol.iterator in Object(iter)) return Array.from(iter);
  }

  function _iterableToArrayLimit$3(arr, i) {
    if (typeof Symbol === "undefined" || !(Symbol.iterator in Object(arr))) return;
    var _arr = [];
    var _n = true;
    var _d = false;
    var _e = undefined;

    try {
      for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) {
        _arr.push(_s.value);

        if (i && _arr.length === i) break;
      }
    } catch (err) {
      _d = true;
      _e = err;
    } finally {
      try {
        if (!_n && _i["return"] != null) _i["return"]();
      } finally {
        if (_d) throw _e;
      }
    }

    return _arr;
  }

  function _unsupportedIterableToArray$1(o, minLen) {
    if (!o) return;
    if (typeof o === "string") return _arrayLikeToArray$1(o, minLen);
    var n = Object.prototype.toString.call(o).slice(8, -1);
    if (n === "Object" && o.constructor) n = o.constructor.name;
    if (n === "Map" || n === "Set") return Array.from(o);
    if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$1(o, minLen);
  }

  function _arrayLikeToArray$1(arr, len) {
    if (len == null || len > arr.length) len = arr.length;

    for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i];

    return arr2;
  }

  function _nonIterableSpread$3() {
    throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
  }

  function _nonIterableRest$3() {
    throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
  }

  var materialDispose = function materialDispose(material) {
    if (material instanceof Array) {
      material.forEach(materialDispose);
    } else {
      if (material.map) {
        material.map.dispose();
      }

      material.dispose();
    }
  };

  var deallocate = function deallocate(obj) {
    if (obj.geometry) {
      obj.geometry.dispose();
    }

    if (obj.material) {
      materialDispose(obj.material);
    }

    if (obj.texture) {
      obj.texture.dispose();
    }

    if (obj.children) {
      obj.children.forEach(deallocate);
    }
  };

  var emptyObject = function emptyObject(obj) {
    while (obj.children.length) {
      var childObj = obj.children[0];
      obj.remove(childObj);
      deallocate(childObj);
    }
  };

  function threeDigest(data, scene) {
    var _ref = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {};

    var _ref$objFilter = _ref.objFilter,
        objFilter = _ref$objFilter === void 0 ? function () {
      return true;
    } : _ref$objFilter,
        options = _objectWithoutProperties$2(_ref, ["objFilter"]);

    return viewDigest(data, scene.children.filter(objFilter), function (obj) {
      return scene.add(obj);
    }, function (obj) {
      scene.remove(obj);
      emptyObject(obj);
    }, _objectSpread2$2({
      objBindAttr: '__threeObj'
    }, options));
  }

  var colorStr2Hex = function colorStr2Hex(str) {
    return isNaN(str) ? parseInt(tinycolor(str).toHex(), 16) : str;
  };

  var colorAlpha = function colorAlpha(str) {
    return isNaN(str) ? tinycolor(str).getAlpha() : 1;
  };

  var autoColorScale = ordinal(schemePaired); // Autoset attribute colorField by colorByAccessor property
  // If an object has already a color, don't set it
  // Objects can be nodes or links

  function autoColorObjects(objects, colorByAccessor, colorField) {
    if (!colorByAccessor || typeof colorField !== 'string') return;
    objects.filter(function (obj) {
      return !obj[colorField];
    }).forEach(function (obj) {
      obj[colorField] = autoColorScale(colorByAccessor(obj));
    });
  }

  function getDagDepths (_ref, idAccessor) {
    var nodes = _ref.nodes,
        links = _ref.links;

    var _ref2 = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {},
        _ref2$nodeFilter = _ref2.nodeFilter,
        nodeFilter = _ref2$nodeFilter === void 0 ? function () {
      return true;
    } : _ref2$nodeFilter,
        _ref2$onLoopError = _ref2.onLoopError,
        onLoopError = _ref2$onLoopError === void 0 ? function (loopIds) {
      throw "Invalid DAG structure! Found cycle in node path: ".concat(loopIds.join(' -> '), ".");
    } : _ref2$onLoopError;

    // linked graph
    var graph = {};
    nodes.forEach(function (node) {
      return graph[idAccessor(node)] = {
        data: node,
        out: [],
        depth: -1,
        skip: !nodeFilter(node)
      };
    });
    links.forEach(function (_ref3) {
      var source = _ref3.source,
          target = _ref3.target;
      var sourceId = getNodeId(source);
      var targetId = getNodeId(target);
      if (!graph.hasOwnProperty(sourceId)) throw "Missing source node with id: ".concat(sourceId);
      if (!graph.hasOwnProperty(targetId)) throw "Missing target node with id: ".concat(targetId);
      var sourceNode = graph[sourceId];
      var targetNode = graph[targetId];
      sourceNode.out.push(targetNode);

      function getNodeId(node) {
        return _typeof(node) === 'object' ? idAccessor(node) : node;
      }
    });
    var foundLoops = [];
    traverse(Object.values(graph));
    var nodeDepths = Object.assign.apply(Object, [{}].concat(_toConsumableArray$3(Object.entries(graph).filter(function (_ref4) {
      var _ref5 = _slicedToArray$3(_ref4, 2),
          node = _ref5[1];

      return !node.skip;
    }).map(function (_ref6) {
      var _ref7 = _slicedToArray$3(_ref6, 2),
          id = _ref7[0],
          node = _ref7[1];

      return _defineProperty$2({}, id, node.depth);
    }))));
    return nodeDepths;

    function traverse(nodes) {
      var nodeStack = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : [];
      var currentDepth = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 0;

      for (var i = 0, l = nodes.length; i < l; i++) {
        var node = nodes[i];

        if (nodeStack.indexOf(node) !== -1) {
          var _ret = function () {
            var loop = [].concat(_toConsumableArray$3(nodeStack.slice(nodeStack.indexOf(node))), [node]).map(function (d) {
              return idAccessor(d.data);
            });

            if (!foundLoops.some(function (foundLoop) {
              return foundLoop.length === loop.length && foundLoop.every(function (id, idx) {
                return id === loop[idx];
              });
            })) {
              foundLoops.push(loop);
              onLoopError(loop);
            }

            return "continue";
          }();

          if (_ret === "continue") continue;
        }

        if (currentDepth > node.depth) {
          // Don't unnecessarily revisit chunks of the graph
          node.depth = currentDepth;
          traverse(node.out, [].concat(_toConsumableArray$3(nodeStack), [node]), currentDepth + (node.skip ? 0 : 1));
        }
      }
    }
  }

  var three = window.THREE ? window.THREE // Prefer consumption from global THREE, if exists
  : {
    Group: Group,
    Mesh: Mesh,
    MeshLambertMaterial: MeshLambertMaterial,
    Color: Color,
    BufferGeometry: BufferGeometry,
    BufferAttribute: BufferAttribute,
    Matrix4: Matrix4,
    Vector3: Vector3,
    SphereBufferGeometry: SphereBufferGeometry,
    CylinderBufferGeometry: CylinderBufferGeometry,
    TubeBufferGeometry: TubeBufferGeometry,
    ConeBufferGeometry: ConeBufferGeometry,
    Line: Line,
    LineBasicMaterial: LineBasicMaterial,
    QuadraticBezierCurve3: QuadraticBezierCurve3,
    CubicBezierCurve3: CubicBezierCurve3,
    Box3: Box3
  };
  var ngraph = {
    graph: ngraph_graph,
    forcelayout: ngraph_forcelayout,
    forcelayout3d: ngraph_forcelayout3d
  };

  var DAG_LEVEL_NODE_RATIO = 2; // support multiple method names for backwards threejs compatibility

  var setAttributeFn = new three.BufferGeometry().setAttribute ? 'setAttribute' : 'addAttribute';
  var applyMatrix4Fn = new three.BufferGeometry().applyMatrix4 ? 'applyMatrix4' : 'applyMatrix';
  var ForceGraph = index$1({
    props: {
      jsonUrl: {
        onChange: function onChange(jsonUrl, state) {
          var _this = this;

          if (jsonUrl && !state.fetchingJson) {
            // Load data asynchronously
            state.fetchingJson = true;
            state.onLoading();
            fetch(jsonUrl).then(function (r) {
              return r.json();
            }).then(function (json) {
              state.fetchingJson = false;
              state.onFinishLoading(json);

              _this.graphData(json);
            });
          }
        },
        triggerUpdate: false
      },
      graphData: {
        "default": {
          nodes: [],
          links: []
        },
        onChange: function onChange(graphData, state) {
          if (graphData.nodes.length || graphData.links.length) {
            console.info('force-graph loading', graphData.nodes.length + ' nodes', graphData.links.length + ' links');
          }

          state.engineRunning = false; // Pause simulation immediately
        }
      },
      numDimensions: {
        "default": 3,
        onChange: function onChange(numDim, state) {
          var chargeForce = state.d3ForceLayout.force('charge'); // Increase repulsion on 3D mode for improved spatial separation

          if (chargeForce) {
            chargeForce.strength(numDim > 2 ? -60 : -30);
          }

          if (numDim < 3) {
            eraseDimension(state.graphData.nodes, 'z');
          }

          if (numDim < 2) {
            eraseDimension(state.graphData.nodes, 'y');
          }

          function eraseDimension(nodes, dim) {
            nodes.forEach(function (d) {
              delete d[dim]; // position

              delete d["v".concat(dim)]; // velocity
            });
          }
        }
      },
      dagMode: {
        onChange: function onChange(dagMode, state) {
          // td, bu, lr, rl, zin, zout, radialin, radialout
          !dagMode && state.forceEngine === 'd3' && (state.graphData.nodes || []).forEach(function (n) {
            return n.fx = n.fy = n.fz = undefined;
          }); // unfix nodes when disabling dag mode
        }
      },
      dagLevelDistance: {},
      dagNodeFilter: {
        "default": function _default(node) {
          return true;
        }
      },
      onDagError: {
        triggerUpdate: false
      },
      nodeRelSize: {
        "default": 4
      },
      // volume per val unit
      nodeId: {
        "default": 'id'
      },
      nodeVal: {
        "default": 'val'
      },
      nodeResolution: {
        "default": 8
      },
      // how many slice segments in the sphere's circumference
      nodeColor: {
        "default": 'color'
      },
      nodeAutoColorBy: {},
      nodeOpacity: {
        "default": 0.75
      },
      nodeVisibility: {
        "default": true
      },
      nodeThreeObject: {},
      nodeThreeObjectExtend: {
        "default": false
      },
      linkSource: {
        "default": 'source'
      },
      linkTarget: {
        "default": 'target'
      },
      linkVisibility: {
        "default": true
      },
      linkColor: {
        "default": 'color'
      },
      linkAutoColorBy: {},
      linkOpacity: {
        "default": 0.2
      },
      linkWidth: {},
      // Rounded to nearest decimal. For falsy values use dimensionless line with 1px regardless of distance.
      linkResolution: {
        "default": 6
      },
      // how many radial segments in each line tube's geometry
      linkCurvature: {
        "default": 0,
        triggerUpdate: false
      },
      // line curvature radius (0: straight, 1: semi-circle)
      linkCurveRotation: {
        "default": 0,
        triggerUpdate: false
      },
      // line curve rotation along the line axis (0: interection with XY plane, PI: upside down)
      linkMaterial: {},
      linkThreeObject: {},
      linkThreeObjectExtend: {
        "default": false
      },
      linkPositionUpdate: {
        triggerUpdate: false
      },
      // custom function to call for updating the link's position. Signature: (threeObj, { start: { x, y, z},  end: { x, y, z }}, link). If the function returns a truthy value, the regular link position update will not run.
      linkDirectionalArrowLength: {
        "default": 0
      },
      linkDirectionalArrowColor: {},
      linkDirectionalArrowRelPos: {
        "default": 0.5,
        triggerUpdate: false
      },
      // value between 0<>1 indicating the relative pos along the (exposed) line
      linkDirectionalArrowResolution: {
        "default": 8
      },
      // how many slice segments in the arrow's conic circumference
      linkDirectionalParticles: {
        "default": 0
      },
      // animate photons travelling in the link direction
      linkDirectionalParticleSpeed: {
        "default": 0.01,
        triggerUpdate: false
      },
      // in link length ratio per frame
      linkDirectionalParticleWidth: {
        "default": 0.5
      },
      linkDirectionalParticleColor: {},
      linkDirectionalParticleResolution: {
        "default": 4
      },
      // how many slice segments in the particle sphere's circumference
      forceEngine: {
        "default": 'd3'
      },
      // d3 or ngraph
      d3AlphaMin: {
        "default": 0,
        triggerUpdate: false
      },
      d3AlphaDecay: {
        "default": 0.0228,
        triggerUpdate: false,
        onChange: function onChange(alphaDecay, state) {
          state.d3ForceLayout.alphaDecay(alphaDecay);
        }
      },
      d3AlphaTarget: {
        "default": 0,
        triggerUpdate: false,
        onChange: function onChange(alphaTarget, state) {
          state.d3ForceLayout.alphaTarget(alphaTarget);
        }
      },
      d3VelocityDecay: {
        "default": 0.4,
        triggerUpdate: false,
        onChange: function onChange(velocityDecay, state) {
          state.d3ForceLayout.velocityDecay(velocityDecay);
        }
      },
      ngraphPhysics: {},
      warmupTicks: {
        "default": 0,
        triggerUpdate: false
      },
      // how many times to tick the force engine at init before starting to render
      cooldownTicks: {
        "default": Infinity,
        triggerUpdate: false
      },
      cooldownTime: {
        "default": 15000,
        triggerUpdate: false
      },
      // ms
      onLoading: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onFinishLoading: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onUpdate: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onFinishUpdate: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onEngineTick: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onEngineStop: {
        "default": function _default() {},
        triggerUpdate: false
      }
    },
    methods: {
      refresh: function refresh(state) {
        state._flushObjects = true;

        state._rerender();

        return this;
      },
      // Expose d3 forces for external manipulation
      d3Force: function d3Force(state, forceName, forceFn) {
        if (forceFn === undefined) {
          return state.d3ForceLayout.force(forceName); // Force getter
        }

        state.d3ForceLayout.force(forceName, forceFn); // Force setter

        return this;
      },
      d3ReheatSimulation: function d3ReheatSimulation(state) {
        state.d3ForceLayout.alpha(1);
        this.resetCountdown();
        return this;
      },
      // reset cooldown state
      resetCountdown: function resetCountdown(state) {
        state.cntTicks = 0;
        state.startTickTime = new Date();
        state.engineRunning = true;
        return this;
      },
      tickFrame: function tickFrame(state) {
        var isD3Sim = state.forceEngine !== 'ngraph';

        if (state.engineRunning) {
          layoutTick();
        }

        updateArrows();
        updatePhotons();
        return this; //

        function layoutTick() {
          if (++state.cntTicks > state.cooldownTicks || new Date() - state.startTickTime > state.cooldownTime || isD3Sim && state.d3AlphaMin > 0 && state.d3ForceLayout.alpha() < state.d3AlphaMin) {
            state.engineRunning = false; // Stop ticking graph

            state.onEngineStop();
          } else {
            state.layout[isD3Sim ? 'tick' : 'step'](); // Tick it

            state.onEngineTick();
          } // Update nodes position


          state.graphData.nodes.forEach(function (node) {
            var obj = node.__threeObj;
            if (!obj) return;
            var pos = isD3Sim ? node : state.layout.getNodePosition(node[state.nodeId]);
            obj.position.x = pos.x;
            obj.position.y = pos.y || 0;
            obj.position.z = pos.z || 0;
          }); // Update links position

          var linkWidthAccessor = index$2(state.linkWidth);
          var linkCurvatureAccessor = index$2(state.linkCurvature);
          var linkCurveRotationAccessor = index$2(state.linkCurveRotation);
          var linkThreeObjectExtendAccessor = index$2(state.linkThreeObjectExtend);
          state.graphData.links.forEach(function (link) {
            var lineObj = link.__lineObj;
            if (!lineObj) return;
            var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id);
            var start = pos[isD3Sim ? 'source' : 'from'];
            var end = pos[isD3Sim ? 'target' : 'to'];
            if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link

            calcLinkCurve(link); // calculate link curve for all links, including custom replaced, so it can be used in directional functionality

            var extendedObj = linkThreeObjectExtendAccessor(link);

            if (state.linkPositionUpdate && state.linkPositionUpdate(extendedObj ? lineObj.children[1] : lineObj, // pass child custom object if extending the default
            {
              start: {
                x: start.x,
                y: start.y,
                z: start.z
              },
              end: {
                x: end.x,
                y: end.y,
                z: end.z
              }
            }, link) && !extendedObj) {
              // exit if successfully custom updated position of non-extended obj
              return;
            }

            var curveResolution = 30; // # line segments

            var curve = link.__curve; // select default line obj if it's an extended group

            var line = lineObj.children.length ? lineObj.children[0] : lineObj;

            if (line.type === 'Line') {
              // Update line geometry
              if (!curve) {
                // straight line
                var linePos = line.geometry.getAttribute('position');

                if (!linePos || !linePos.array || linePos.array.length !== 6) {
                  line.geometry[setAttributeFn]('position', linePos = new three.BufferAttribute(new Float32Array(2 * 3), 3));
                }

                linePos.array[0] = start.x;
                linePos.array[1] = start.y || 0;
                linePos.array[2] = start.z || 0;
                linePos.array[3] = end.x;
                linePos.array[4] = end.y || 0;
                linePos.array[5] = end.z || 0;
                linePos.needsUpdate = true;
              } else {
                // bezier curve line
                line.geometry.setFromPoints(curve.getPoints(curveResolution));
              }

              line.geometry.computeBoundingSphere();
            } else if (line.type === 'Mesh') {
              // Update cylinder geometry
              if (!curve) {
                // straight tube
                if (line.geometry.type !== 'CylinderBufferGeometry') {
                  var linkWidth = Math.ceil(linkWidthAccessor(link) * 10) / 10;
                  var r = linkWidth / 2;
                  var geometry = new three.CylinderBufferGeometry(r, r, 1, state.linkResolution, 1, false);
                  geometry[applyMatrix4Fn](new three.Matrix4().makeTranslation(0, 1 / 2, 0));
                  geometry[applyMatrix4Fn](new three.Matrix4().makeRotationX(Math.PI / 2));
                  line.geometry.dispose();
                  line.geometry = geometry;
                }

                var vStart = new three.Vector3(start.x, start.y || 0, start.z || 0);
                var vEnd = new three.Vector3(end.x, end.y || 0, end.z || 0);
                var distance = vStart.distanceTo(vEnd);
                line.position.x = vStart.x;
                line.position.y = vStart.y;
                line.position.z = vStart.z;
                line.scale.z = distance;
                line.parent.localToWorld(vEnd); // lookAt requires world coords

                line.lookAt(vEnd);
              } else {
                // curved tube
                if (line.geometry.type !== 'TubeBufferGeometry') {
                  // reset object positioning
                  line.position.set(0, 0, 0);
                  line.rotation.set(0, 0, 0);
                  line.scale.set(1, 1, 1);
                }

                var _linkWidth = Math.ceil(linkWidthAccessor(link) * 10) / 10;

                var _r = _linkWidth / 2;

                var _geometry = new three.TubeBufferGeometry(curve, curveResolution, _r, state.linkResolution, false);

                line.geometry.dispose();
                line.geometry = _geometry;
              }
            }
          }); //

          function calcLinkCurve(link) {
            var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id);
            var start = pos[isD3Sim ? 'source' : 'from'];
            var end = pos[isD3Sim ? 'target' : 'to'];
            if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link

            var curvature = linkCurvatureAccessor(link);

            if (!curvature) {
              link.__curve = null; // Straight line
            } else {
              // bezier curve line (only for line types)
              var vStart = new three.Vector3(start.x, start.y || 0, start.z || 0);
              var vEnd = new three.Vector3(end.x, end.y || 0, end.z || 0);
              var l = vStart.distanceTo(vEnd); // line length

              var curve;
              var curveRotation = linkCurveRotationAccessor(link);

              if (l > 0) {
                var dx = end.x - start.x;
                var dy = end.y - start.y || 0;
                var vLine = new three.Vector3().subVectors(vEnd, vStart);
                var cp = vLine.clone().multiplyScalar(curvature).cross(dx !== 0 || dy !== 0 ? new three.Vector3(0, 0, 1) : new three.Vector3(0, 1, 0)) // avoid cross-product of parallel vectors (prefer Z, fallback to Y)
                .applyAxisAngle(vLine.normalize(), curveRotation) // rotate along line axis according to linkCurveRotation
                .add(new three.Vector3().addVectors(vStart, vEnd).divideScalar(2));
                curve = new three.QuadraticBezierCurve3(vStart, cp, vEnd);
              } else {
                // Same point, draw a loop
                var d = curvature * 70;
                var endAngle = -curveRotation; // Rotate clockwise (from Z angle perspective)

                var startAngle = endAngle + Math.PI / 2;
                curve = new three.CubicBezierCurve3(vStart, new three.Vector3(d * Math.cos(startAngle), d * Math.sin(startAngle), 0).add(vStart), new three.Vector3(d * Math.cos(endAngle), d * Math.sin(endAngle), 0).add(vStart), vEnd);
              }

              link.__curve = curve;
            }
          }
        }

        function updateArrows() {
          // update link arrow position
          var arrowRelPosAccessor = index$2(state.linkDirectionalArrowRelPos);
          var arrowLengthAccessor = index$2(state.linkDirectionalArrowLength);
          var nodeValAccessor = index$2(state.nodeVal);
          state.graphData.links.forEach(function (link) {
            var arrowObj = link.__arrowObj;
            if (!arrowObj) return;
            var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id);
            var start = pos[isD3Sim ? 'source' : 'from'];
            var end = pos[isD3Sim ? 'target' : 'to'];
            if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link

            var startR = Math.sqrt(Math.max(0, nodeValAccessor(start) || 1)) * state.nodeRelSize;
            var endR = Math.sqrt(Math.max(0, nodeValAccessor(end) || 1)) * state.nodeRelSize;
            var arrowLength = arrowLengthAccessor(link);
            var arrowRelPos = arrowRelPosAccessor(link);
            var getPosAlongLine = link.__curve ? function (t) {
              return link.__curve.getPoint(t);
            } // interpolate along bezier curve
            : function (t) {
              // straight line: interpolate linearly
              var iplt = function iplt(dim, start, end, t) {
                return start[dim] + (end[dim] - start[dim]) * t || 0;
              };

              return {
                x: iplt('x', start, end, t),
                y: iplt('y', start, end, t),
                z: iplt('z', start, end, t)
              };
            };
            var lineLen = link.__curve ? link.__curve.getLength() : Math.sqrt(['x', 'y', 'z'].map(function (dim) {
              return Math.pow((end[dim] || 0) - (start[dim] || 0), 2);
            }).reduce(function (acc, v) {
              return acc + v;
            }, 0));
            var posAlongLine = startR + arrowLength + (lineLen - startR - endR - arrowLength) * arrowRelPos;
            var arrowHead = getPosAlongLine(posAlongLine / lineLen);
            var arrowTail = getPosAlongLine((posAlongLine - arrowLength) / lineLen);
            ['x', 'y', 'z'].forEach(function (dim) {
              return arrowObj.position[dim] = arrowTail[dim];
            });

            var headVec = _construct(three.Vector3, _toConsumableArray$3(['x', 'y', 'z'].map(function (c) {
              return arrowHead[c];
            })));

            arrowObj.parent.localToWorld(headVec); // lookAt requires world coords

            arrowObj.lookAt(headVec);
          });
        }

        function updatePhotons() {
          // update link particle positions
          var particleSpeedAccessor = index$2(state.linkDirectionalParticleSpeed);
          state.graphData.links.forEach(function (link) {
            var cyclePhotons = link.__photonsObj && link.__photonsObj.children;
            var singleHopPhotons = link.__singleHopPhotonsObj && link.__singleHopPhotonsObj.children;
            if ((!singleHopPhotons || !singleHopPhotons.length) && (!cyclePhotons || !cyclePhotons.length)) return;
            var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id);
            var start = pos[isD3Sim ? 'source' : 'from'];
            var end = pos[isD3Sim ? 'target' : 'to'];
            if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link

            var particleSpeed = particleSpeedAccessor(link);
            var getPhotonPos = link.__curve ? function (t) {
              return link.__curve.getPoint(t);
            } // interpolate along bezier curve
            : function (t) {
              // straight line: interpolate linearly
              var iplt = function iplt(dim, start, end, t) {
                return start[dim] + (end[dim] - start[dim]) * t || 0;
              };

              return {
                x: iplt('x', start, end, t),
                y: iplt('y', start, end, t),
                z: iplt('z', start, end, t)
              };
            };
            var photons = [].concat(_toConsumableArray$3(cyclePhotons || []), _toConsumableArray$3(singleHopPhotons || []));
            photons.forEach(function (photon, idx) {
              var singleHop = photon.parent.__linkThreeObjType === 'singleHopPhotons';

              if (!photon.hasOwnProperty('__progressRatio')) {
                photon.__progressRatio = singleHop ? 0 : idx / cyclePhotons.length;
              }

              photon.__progressRatio += particleSpeed;

              if (photon.__progressRatio >= 1) {
                if (!singleHop) {
                  photon.__progressRatio = photon.__progressRatio % 1;
                } else {
                  // remove particle
                  photon.parent.remove(photon);
                  emptyObject(photon);
                  return;
                }
              }

              var photonPosRatio = photon.__progressRatio;
              var pos = getPhotonPos(photonPosRatio);
              ['x', 'y', 'z'].forEach(function (dim) {
                return photon.position[dim] = pos[dim];
              });
            });
          });
        }
      },
      emitParticle: function emitParticle(state, link) {
        if (link) {
          if (!link.__singleHopPhotonsObj) {
            var obj = new three.Group();
            obj.__linkThreeObjType = 'singleHopPhotons';
            link.__singleHopPhotonsObj = obj;
            state.graphScene.add(obj);
          }

          var particleWidthAccessor = index$2(state.linkDirectionalParticleWidth);
          var photonR = Math.ceil(particleWidthAccessor(link) * 10) / 10 / 2;
          var numSegments = state.linkDirectionalParticleResolution;
          var particleGeometry = new three.SphereBufferGeometry(photonR, numSegments, numSegments);
          var linkColorAccessor = index$2(state.linkColor);
          var particleColorAccessor = index$2(state.linkDirectionalParticleColor);
          var photonColor = particleColorAccessor(link) || linkColorAccessor(link) || '#f0f0f0';
          var materialColor = new three.Color(colorStr2Hex(photonColor));
          var opacity = state.linkOpacity * 3;
          var particleMaterial = new three.MeshLambertMaterial({
            color: materialColor,
            transparent: true,
            opacity: opacity
          }); // add a single hop particle

          link.__singleHopPhotonsObj.add(new three.Mesh(particleGeometry, particleMaterial));
        }

        return this;
      },
      getGraphBbox: function getGraphBbox(state) {
        var nodeFilter = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : function () {
          return true;
        };
        if (!state.initialised) return null; // recursively collect all nested geometries bboxes

        var bboxes = function getBboxes(obj) {
          var bboxes = [];

          if (obj.geometry) {
            obj.geometry.computeBoundingBox();
            var box = new three.Box3();
            box.copy(obj.geometry.boundingBox).applyMatrix4(obj.matrixWorld);
            bboxes.push(box);
          }

          return bboxes.concat.apply(bboxes, _toConsumableArray$3((obj.children || []).filter(function (obj) {
            return !obj.hasOwnProperty('__graphObjType') || obj.__graphObjType === 'node' && nodeFilter(obj.__data);
          } // exclude filtered out nodes
          ).map(getBboxes)));
        }(state.graphScene);

        if (!bboxes.length) return null; // extract global x,y,z min/max

        return Object.assign.apply(Object, _toConsumableArray$3(['x', 'y', 'z'].map(function (c) {
          return _defineProperty$2({}, c, [min(bboxes, function (bb) {
            return bb.min[c];
          }), max(bboxes, function (bb) {
            return bb.max[c];
          })]);
        })));
      }
    },
    stateInit: function stateInit() {
      return {
        d3ForceLayout: forceSimulation().force('link', forceLink()).force('charge', forceManyBody()).force('center', forceCenter()).force('dagRadial', null).stop(),
        engineRunning: false
      };
    },
    init: function init(threeObj, state) {
      // Main three object to manipulate
      state.graphScene = threeObj;
    },
    update: function update(state, changedProps) {
      var hasAnyPropChanged = function hasAnyPropChanged(propList) {
        return propList.some(function (p) {
          return changedProps.hasOwnProperty(p);
        });
      };

      state.engineRunning = false; // pause simulation

      state.onUpdate();

      if (state.nodeAutoColorBy !== null && hasAnyPropChanged(['nodeAutoColorBy', 'graphData', 'nodeColor'])) {
        // Auto add color to uncolored nodes
        autoColorObjects(state.graphData.nodes, index$2(state.nodeAutoColorBy), state.nodeColor);
      }

      if (state.linkAutoColorBy !== null && hasAnyPropChanged(['linkAutoColorBy', 'graphData', 'linkColor'])) {
        // Auto add color to uncolored links
        autoColorObjects(state.graphData.links, index$2(state.linkAutoColorBy), state.linkColor);
      } // Digest nodes WebGL objects


      if (state._flushObjects || hasAnyPropChanged(['graphData', 'nodeThreeObject', 'nodeThreeObjectExtend', 'nodeVal', 'nodeColor', 'nodeVisibility', 'nodeRelSize', 'nodeResolution', 'nodeOpacity'])) {
        var customObjectAccessor = index$2(state.nodeThreeObject);
        var customObjectExtendAccessor = index$2(state.nodeThreeObjectExtend);
        var valAccessor = index$2(state.nodeVal);
        var colorAccessor = index$2(state.nodeColor);
        var visibilityAccessor = index$2(state.nodeVisibility);
        var sphereGeometries = {}; // indexed by node value

        var sphereMaterials = {}; // indexed by color

        threeDigest(state.graphData.nodes.filter(visibilityAccessor), state.graphScene, {
          purge: state._flushObjects || hasAnyPropChanged([// recreate objects if any of these props have changed
          'nodeThreeObject', 'nodeThreeObjectExtend']),
          objFilter: function objFilter(obj) {
            return obj.__graphObjType === 'node';
          },
          createObj: function createObj(node) {
            var customObj = customObjectAccessor(node);
            var extendObj = customObjectExtendAccessor(node);

            if (customObj && state.nodeThreeObject === customObj) {
              // clone object if it's a shared object among all nodes
              customObj = customObj.clone();
            }

            var obj;

            if (customObj && !extendObj) {
              obj = customObj;
            } else {
              // Add default object (sphere mesh)
              obj = new three.Mesh();
              obj.__graphDefaultObj = true;

              if (customObj && extendObj) {
                obj.add(customObj); // extend default with custom
              }
            }

            obj.__graphObjType = 'node'; // Add object type

            return obj;
          },
          updateObj: function updateObj(obj, node) {
            if (obj.__graphDefaultObj) {
              // bypass internal updates for custom node objects
              var val = valAccessor(node) || 1;
              var radius = Math.cbrt(val) * state.nodeRelSize;
              var numSegments = state.nodeResolution;

              if (obj.geometry.type !== 'SphereBufferGeometry' || obj.geometry.parameters.radius !== radius || obj.geometry.parameters.widthSegments !== numSegments) {
                if (!sphereGeometries.hasOwnProperty(val)) {
                  sphereGeometries[val] = new three.SphereBufferGeometry(radius, numSegments, numSegments);
                }

                obj.geometry.dispose();
                obj.geometry = sphereGeometries[val];
              }

              var color = colorAccessor(node);
              var materialColor = new three.Color(colorStr2Hex(color || '#ffffaa'));
              var opacity = state.nodeOpacity * colorAlpha(color);

              if (obj.material.type !== 'MeshLambertMaterial' || !obj.material.color.equals(materialColor) || obj.material.opacity !== opacity) {
                if (!sphereMaterials.hasOwnProperty(color)) {
                  sphereMaterials[color] = new three.MeshLambertMaterial({
                    color: materialColor,
                    transparent: true,
                    opacity: opacity
                  });
                }

                obj.material.dispose();
                obj.material = sphereMaterials[color];
              }
            }
          }
        });
      } // Digest links WebGL objects


      if (state._flushObjects || hasAnyPropChanged(['graphData', 'linkThreeObject', 'linkThreeObjectExtend', 'linkMaterial', 'linkColor', 'linkWidth', 'linkVisibility', 'linkResolution', 'linkOpacity', 'linkDirectionalArrowLength', 'linkDirectionalArrowColor', 'linkDirectionalArrowResolution', 'linkDirectionalParticles', 'linkDirectionalParticleWidth', 'linkDirectionalParticleColor', 'linkDirectionalParticleResolution'])) {
        var _customObjectAccessor = index$2(state.linkThreeObject);

        var _customObjectExtendAccessor = index$2(state.linkThreeObjectExtend);

        var customMaterialAccessor = index$2(state.linkMaterial);

        var _visibilityAccessor = index$2(state.linkVisibility);

        var _colorAccessor = index$2(state.linkColor);

        var widthAccessor = index$2(state.linkWidth);
        var cylinderGeometries = {}; // indexed by link width

        var lambertLineMaterials = {}; // for cylinder objects, indexed by link color

        var basicLineMaterials = {}; // for line objects, indexed by link color

        var visibleLinks = state.graphData.links.filter(_visibilityAccessor); // lines digest cycle

        threeDigest(visibleLinks, state.graphScene, {
          objBindAttr: '__lineObj',
          purge: state._flushObjects || hasAnyPropChanged([// recreate objects if any of these props have changed
          'linkThreeObject', 'linkThreeObjectExtend', 'linkWidth']),
          objFilter: function objFilter(obj) {
            return obj.__graphObjType === 'link';
          },
          createObj: function createObj(link) {
            var customObj = _customObjectAccessor(link);

            var extendObj = _customObjectExtendAccessor(link);

            if (customObj && state.linkThreeObject === customObj) {
              // clone object if it's a shared object among all links
              customObj = customObj.clone();
            }

            var defaultObj;

            if (!customObj || extendObj) {
              // construct default line obj
              var useCylinder = !!widthAccessor(link);

              if (useCylinder) {
                defaultObj = new three.Mesh();
              } else {
                // Use plain line (constant width)
                var lineGeometry = new three.BufferGeometry();
                lineGeometry[setAttributeFn]('position', new three.BufferAttribute(new Float32Array(2 * 3), 3));
                defaultObj = new three.Line(lineGeometry);
              }
            }

            var obj;

            if (!customObj) {
              obj = defaultObj;
              obj.__graphDefaultObj = true;
            } else {
              if (!extendObj) {
                // use custom object
                obj = customObj;
              } else {
                // extend default with custom in a group
                obj = new three.Group();
                obj.__graphDefaultObj = true;
                obj.add(defaultObj);
                obj.add(customObj);
              }
            }

            obj.renderOrder = 10; // Prevent visual glitches of dark lines on top of nodes by rendering them last

            obj.__graphObjType = 'link'; // Add object type

            return obj;
          },
          updateObj: function updateObj(updObj, link) {
            if (updObj.__graphDefaultObj) {
              // bypass internal updates for custom link objects
              // select default object if it's an extended group
              var obj = updObj.children.length ? updObj.children[0] : updObj;
              var linkWidth = Math.ceil(widthAccessor(link) * 10) / 10;
              var useCylinder = !!linkWidth;

              if (useCylinder) {
                var r = linkWidth / 2;
                var numSegments = state.linkResolution;

                if (obj.geometry.type !== 'CylinderBufferGeometry' || obj.geometry.parameters.radiusTop !== r || obj.geometry.parameters.radialSegments !== numSegments) {
                  if (!cylinderGeometries.hasOwnProperty(linkWidth)) {
                    var geometry = new three.CylinderBufferGeometry(r, r, 1, numSegments, 1, false);
                    geometry[applyMatrix4Fn](new three.Matrix4().makeTranslation(0, 1 / 2, 0));
                    geometry[applyMatrix4Fn](new three.Matrix4().makeRotationX(Math.PI / 2));
                    cylinderGeometries[linkWidth] = geometry;
                  }

                  obj.geometry.dispose();
                  obj.geometry = cylinderGeometries[linkWidth];
                }
              }

              var customMaterial = customMaterialAccessor(link);

              if (customMaterial) {
                obj.material = customMaterial;
              } else {
                var color = _colorAccessor(link);

                var materialColor = new three.Color(colorStr2Hex(color || '#f0f0f0'));
                var opacity = state.linkOpacity * colorAlpha(color);
                var materialType = useCylinder ? 'MeshLambertMaterial' : 'LineBasicMaterial';

                if (obj.material.type !== materialType || !obj.material.color.equals(materialColor) || obj.material.opacity !== opacity) {
                  var lineMaterials = useCylinder ? lambertLineMaterials : basicLineMaterials;

                  if (!lineMaterials.hasOwnProperty(color)) {
                    lineMaterials[color] = new three[materialType]({
                      color: materialColor,
                      transparent: opacity < 1,
                      opacity: opacity,
                      depthWrite: opacity >= 1 // Prevent transparency issues

                    });
                  }

                  obj.material.dispose();
                  obj.material = lineMaterials[color];
                }
              }
            }
          }
        }); // Arrows digest cycle

        if (state.linkDirectionalArrowLength || changedProps.hasOwnProperty('linkDirectionalArrowLength')) {
          var arrowLengthAccessor = index$2(state.linkDirectionalArrowLength);
          var arrowColorAccessor = index$2(state.linkDirectionalArrowColor);
          threeDigest(visibleLinks.filter(arrowLengthAccessor), state.graphScene, {
            objBindAttr: '__arrowObj',
            objFilter: function objFilter(obj) {
              return obj.__linkThreeObjType === 'arrow';
            },
            createObj: function createObj() {
              var obj = new three.Mesh(undefined, new three.MeshLambertMaterial({
                transparent: true
              }));
              obj.__linkThreeObjType = 'arrow'; // Add object type

              return obj;
            },
            updateObj: function updateObj(obj, link) {
              var arrowLength = arrowLengthAccessor(link);
              var numSegments = state.linkDirectionalArrowResolution;

              if (obj.geometry.type !== 'ConeBufferGeometry' || obj.geometry.parameters.height !== arrowLength || obj.geometry.parameters.radialSegments !== numSegments) {
                var coneGeometry = new three.ConeBufferGeometry(arrowLength * 0.25, arrowLength, numSegments); // Correct orientation

                coneGeometry.translate(0, arrowLength / 2, 0);
                coneGeometry.rotateX(Math.PI / 2);
                obj.geometry.dispose();
                obj.geometry = coneGeometry;
              }

              obj.material.color = new three.Color(arrowColorAccessor(link) || _colorAccessor(link) || '#f0f0f0');
              obj.material.opacity = state.linkOpacity * 3;
            }
          });
        } // Photon particles digest cycle


        if (state.linkDirectionalParticles || changedProps.hasOwnProperty('linkDirectionalParticles')) {
          var particlesAccessor = index$2(state.linkDirectionalParticles);
          var particleWidthAccessor = index$2(state.linkDirectionalParticleWidth);
          var particleColorAccessor = index$2(state.linkDirectionalParticleColor);
          var particleMaterials = {}; // indexed by link color

          var particleGeometries = {}; // indexed by particle width

          threeDigest(visibleLinks.filter(particlesAccessor), state.graphScene, {
            objBindAttr: '__photonsObj',
            objFilter: function objFilter(obj) {
              return obj.__linkThreeObjType === 'photons';
            },
            createObj: function createObj() {
              var obj = new three.Group();
              obj.__linkThreeObjType = 'photons'; // Add object type

              return obj;
            },
            updateObj: function updateObj(obj, link) {
              var numPhotons = Math.round(Math.abs(particlesAccessor(link)));
              var curPhoton = !!obj.children.length && obj.children[0];
              var photonR = Math.ceil(particleWidthAccessor(link) * 10) / 10 / 2;
              var numSegments = state.linkDirectionalParticleResolution;
              var particleGeometry;

              if (curPhoton && curPhoton.geometry.parameters.radius === photonR && curPhoton.geometry.parameters.widthSegments === numSegments) {
                particleGeometry = curPhoton.geometry;
              } else {
                if (!particleGeometries.hasOwnProperty(photonR)) {
                  particleGeometries[photonR] = new three.SphereBufferGeometry(photonR, numSegments, numSegments);
                }

                particleGeometry = particleGeometries[photonR];
                curPhoton && curPhoton.geometry.dispose();
              }

              var photonColor = particleColorAccessor(link) || _colorAccessor(link) || '#f0f0f0';
              var materialColor = new three.Color(colorStr2Hex(photonColor));
              var opacity = state.linkOpacity * 3;
              var particleMaterial;

              if (curPhoton && curPhoton.material.color.equals(materialColor) && curPhoton.material.opacity === opacity) {
                particleMaterial = curPhoton.material;
              } else {
                if (!particleMaterials.hasOwnProperty(photonColor)) {
                  particleMaterials[photonColor] = new three.MeshLambertMaterial({
                    color: materialColor,
                    transparent: true,
                    opacity: opacity
                  });
                }

                particleMaterial = particleMaterials[photonColor];
                curPhoton && curPhoton.material.dispose();
              } // digest cycle for each photon


              threeDigest(_toConsumableArray$3(new Array(numPhotons)).map(function (_, idx) {
                return {
                  idx: idx
                };
              }), obj, {
                idAccessor: function idAccessor(d) {
                  return d.idx;
                },
                createObj: function createObj() {
                  return new three.Mesh(particleGeometry, particleMaterial);
                },
                updateObj: function updateObj(obj) {
                  obj.geometry = particleGeometry;
                  obj.material = particleMaterial;
                }
              });
            }
          });
        }
      }

      state._flushObjects = false; // reset objects refresh flag
      // simulation engine

      if (hasAnyPropChanged(['graphData', 'nodeId', 'linkSource', 'linkTarget', 'numDimensions', 'forceEngine', 'dagMode', 'dagNodeFilter', 'dagLevelDistance'])) {
        state.engineRunning = false; // Pause simulation
        // parse links

        state.graphData.links.forEach(function (link) {
          link.source = link[state.linkSource];
          link.target = link[state.linkTarget];
        }); // Feed data to force-directed layout

        var isD3Sim = state.forceEngine !== 'ngraph';
        var layout;

        if (isD3Sim) {
          // D3-force
          (layout = state.d3ForceLayout).stop().alpha(1) // re-heat the simulation
          .numDimensions(state.numDimensions).nodes(state.graphData.nodes); // add links (if link force is still active)

          var linkForce = state.d3ForceLayout.force('link');

          if (linkForce) {
            linkForce.id(function (d) {
              return d[state.nodeId];
            }).links(state.graphData.links);
          } // setup dag force constraints


          var nodeDepths = state.dagMode && getDagDepths(state.graphData, function (node) {
            return node[state.nodeId];
          }, {
            nodeFilter: state.dagNodeFilter,
            onLoopError: state.onDagError || undefined
          });
          var maxDepth = Math.max.apply(Math, _toConsumableArray$3(Object.values(nodeDepths || [])));
          var dagLevelDistance = state.dagLevelDistance || state.graphData.nodes.length / (maxDepth || 1) * DAG_LEVEL_NODE_RATIO * (['radialin', 'radialout'].indexOf(state.dagMode) !== -1 ? 0.7 : 1); // Fix nodes to x,y,z for dag mode

          if (state.dagMode) {
            var getFFn = function getFFn(fix, invert) {
              return function (node) {
                return !fix ? undefined : (nodeDepths[node[state.nodeId]] - maxDepth / 2) * dagLevelDistance * (invert ? -1 : 1);
              };
            };

            var fxFn = getFFn(['lr', 'rl'].indexOf(state.dagMode) !== -1, state.dagMode === 'rl');
            var fyFn = getFFn(['td', 'bu'].indexOf(state.dagMode) !== -1, state.dagMode === 'td');
            var fzFn = getFFn(['zin', 'zout'].indexOf(state.dagMode) !== -1, state.dagMode === 'zout');
            state.graphData.nodes.filter(state.dagNodeFilter).forEach(function (node) {
              node.fx = fxFn(node);
              node.fy = fyFn(node);
              node.fz = fzFn(node);
            });
          } // Use radial force for radial dags


          state.d3ForceLayout.force('dagRadial', ['radialin', 'radialout'].indexOf(state.dagMode) !== -1 ? forceRadial(function (node) {
            var nodeDepth = nodeDepths[node[state.nodeId]] || -1;
            return (state.dagMode === 'radialin' ? maxDepth - nodeDepth : nodeDepth) * dagLevelDistance;
          }).strength(function (node) {
            return state.dagNodeFilter(node) ? 1 : 0;
          }) : null);
        } else {
          // ngraph
          var _graph = ngraph.graph();

          state.graphData.nodes.forEach(function (node) {
            _graph.addNode(node[state.nodeId]);
          });
          state.graphData.links.forEach(function (link) {
            _graph.addLink(link.source, link.target);
          });
          layout = ngraph['forcelayout' + (state.numDimensions === 2 ? '' : '3d')](_graph, state.ngraphPhysics || undefined);
          layout.graph = _graph; // Attach graph reference to layout
        }

        for (var i = 0; i < state.warmupTicks && !(isD3Sim && state.d3AlphaMin > 0 && state.d3ForceLayout.alpha() < state.d3AlphaMin); i++) {
          layout[isD3Sim ? "tick" : "step"]();
        } // Initial ticks before starting to render


        state.layout = layout;
        this.resetCountdown();
      }

      state.engineRunning = true; // resume simulation

      state.onFinishUpdate();
    }
  });

  function fromKapsule (kapsule) {
    var baseClass = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : Object;
    var initKapsuleWithSelf = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : false;

    var FromKapsule = /*#__PURE__*/function (_baseClass) {
      _inherits(FromKapsule, _baseClass);

      var _super = _createSuper(FromKapsule);

      function FromKapsule() {
        var _this;

        _classCallCheck$1(this, FromKapsule);

        for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {
          args[_key] = arguments[_key];
        }

        _this = _super.call.apply(_super, [this].concat(args));
        _this.__kapsuleInstance = kapsule().apply(void 0, [].concat(_toConsumableArray$3(initKapsuleWithSelf ? [_assertThisInitialized(_this)] : []), args));
        return _this;
      }

      return FromKapsule;
    }(baseClass); // attach kapsule props/methods to class prototype


    Object.keys(kapsule()).forEach(function (m) {
      return FromKapsule.prototype[m] = function () {
        var _this$__kapsuleInstan;

        var returnVal = (_this$__kapsuleInstan = this.__kapsuleInstance)[m].apply(_this$__kapsuleInstan, arguments);

        return returnVal === this.__kapsuleInstance ? this // chain based on this class, not the kapsule obj
        : returnVal;
      };
    });
    return FromKapsule;
  }

  var three$1 = window.THREE ? window.THREE : {
    Group: Group
  }; // Prefer consumption from global THREE, if exists
  var threeForcegraph = fromKapsule(ForceGraph, three$1.Group, true);

  /**
   * @author Eberhard Graether / http://egraether.com/
   * @author Mark Lundin 	/ http://mark-lundin.com
   * @author Simone Manini / http://daron1337.github.io
   * @author Luca Antiga 	/ http://lantiga.github.io
   */

  var TrackballControls = function ( object, domElement ) {

  	if ( domElement === undefined ) console.warn( 'THREE.TrackballControls: The second parameter "domElement" is now mandatory.' );
  	if ( domElement === document ) console.error( 'THREE.TrackballControls: "document" should not be used as the target "domElement". Please use "renderer.domElement" instead.' );

  	var scope = this;
  	var STATE = { NONE: - 1, ROTATE: 0, ZOOM: 1, PAN: 2, TOUCH_ROTATE: 3, TOUCH_ZOOM_PAN: 4 };

  	this.object = object;
  	this.domElement = domElement;

  	// API

  	this.enabled = true;

  	this.screen = { left: 0, top: 0, width: 0, height: 0 };

  	this.rotateSpeed = 1.0;
  	this.zoomSpeed = 1.2;
  	this.panSpeed = 0.3;

  	this.noRotate = false;
  	this.noZoom = false;
  	this.noPan = false;

  	this.staticMoving = false;
  	this.dynamicDampingFactor = 0.2;

  	this.minDistance = 0;
  	this.maxDistance = Infinity;

  	this.keys = [ 65 /*A*/, 83 /*S*/, 68 /*D*/ ];

  	this.mouseButtons = { LEFT: MOUSE.ROTATE, MIDDLE: MOUSE.ZOOM, RIGHT: MOUSE.PAN };

  	// internals

  	this.target = new Vector3();

  	var EPS = 0.000001;

  	var lastPosition = new Vector3();
  	var lastZoom = 1;

  	var _state = STATE.NONE,
  		_keyState = STATE.NONE,

  		_eye = new Vector3(),

  		_movePrev = new Vector2(),
  		_moveCurr = new Vector2(),

  		_lastAxis = new Vector3(),
  		_lastAngle = 0,

  		_zoomStart = new Vector2(),
  		_zoomEnd = new Vector2(),

  		_touchZoomDistanceStart = 0,
  		_touchZoomDistanceEnd = 0,

  		_panStart = new Vector2(),
  		_panEnd = new Vector2();

  	// for reset

  	this.target0 = this.target.clone();
  	this.position0 = this.object.position.clone();
  	this.up0 = this.object.up.clone();
  	this.zoom0 = this.object.zoom;

  	// events

  	var changeEvent = { type: 'change' };
  	var startEvent = { type: 'start' };
  	var endEvent = { type: 'end' };


  	// methods

  	this.handleResize = function () {

  		var box = scope.domElement.getBoundingClientRect();
  		// adjustments come from similar code in the jquery offset() function
  		var d = scope.domElement.ownerDocument.documentElement;
  		scope.screen.left = box.left + window.pageXOffset - d.clientLeft;
  		scope.screen.top = box.top + window.pageYOffset - d.clientTop;
  		scope.screen.width = box.width;
  		scope.screen.height = box.height;

  	};

  	var getMouseOnScreen = ( function () {

  		var vector = new Vector2();

  		return function getMouseOnScreen( pageX, pageY ) {

  			vector.set(
  				( pageX - scope.screen.left ) / scope.screen.width,
  				( pageY - scope.screen.top ) / scope.screen.height
  			);

  			return vector;

  		};

  	}() );

  	var getMouseOnCircle = ( function () {

  		var vector = new Vector2();

  		return function getMouseOnCircle( pageX, pageY ) {

  			vector.set(
  				( ( pageX - scope.screen.width * 0.5 - scope.screen.left ) / ( scope.screen.width * 0.5 ) ),
  				( ( scope.screen.height + 2 * ( scope.screen.top - pageY ) ) / scope.screen.width ) // screen.width intentional
  			);

  			return vector;

  		};

  	}() );

  	this.rotateCamera = ( function () {

  		var axis = new Vector3(),
  			quaternion = new Quaternion(),
  			eyeDirection = new Vector3(),
  			objectUpDirection = new Vector3(),
  			objectSidewaysDirection = new Vector3(),
  			moveDirection = new Vector3(),
  			angle;

  		return function rotateCamera() {

  			moveDirection.set( _moveCurr.x - _movePrev.x, _moveCurr.y - _movePrev.y, 0 );
  			angle = moveDirection.length();

  			if ( angle ) {

  				_eye.copy( scope.object.position ).sub( scope.target );

  				eyeDirection.copy( _eye ).normalize();
  				objectUpDirection.copy( scope.object.up ).normalize();
  				objectSidewaysDirection.crossVectors( objectUpDirection, eyeDirection ).normalize();

  				objectUpDirection.setLength( _moveCurr.y - _movePrev.y );
  				objectSidewaysDirection.setLength( _moveCurr.x - _movePrev.x );

  				moveDirection.copy( objectUpDirection.add( objectSidewaysDirection ) );

  				axis.crossVectors( moveDirection, _eye ).normalize();

  				angle *= scope.rotateSpeed;
  				quaternion.setFromAxisAngle( axis, angle );

  				_eye.applyQuaternion( quaternion );
  				scope.object.up.applyQuaternion( quaternion );

  				_lastAxis.copy( axis );
  				_lastAngle = angle;

  			} else if ( ! scope.staticMoving && _lastAngle ) {

  				_lastAngle *= Math.sqrt( 1.0 - scope.dynamicDampingFactor );
  				_eye.copy( scope.object.position ).sub( scope.target );
  				quaternion.setFromAxisAngle( _lastAxis, _lastAngle );
  				_eye.applyQuaternion( quaternion );
  				scope.object.up.applyQuaternion( quaternion );

  			}

  			_movePrev.copy( _moveCurr );

  		};

  	}() );


  	this.zoomCamera = function () {

  		var factor;

  		if ( _state === STATE.TOUCH_ZOOM_PAN ) {

  			factor = _touchZoomDistanceStart / _touchZoomDistanceEnd;
  			_touchZoomDistanceStart = _touchZoomDistanceEnd;

  			if ( scope.object.isPerspectiveCamera ) {

  				_eye.multiplyScalar( factor );

  			} else if ( scope.object.isOrthographicCamera ) {

  				scope.object.zoom *= factor;
  				scope.object.updateProjectionMatrix();

  			} else {

  				console.warn( 'THREE.TrackballControls: Unsupported camera type' );

  			}

  		} else {

  			factor = 1.0 + ( _zoomEnd.y - _zoomStart.y ) * scope.zoomSpeed;

  			if ( factor !== 1.0 && factor > 0.0 ) {

  				if ( scope.object.isPerspectiveCamera ) {

  					_eye.multiplyScalar( factor );

  				} else if ( scope.object.isOrthographicCamera ) {

  					scope.object.zoom /= factor;
  					scope.object.updateProjectionMatrix();

  				} else {

  					console.warn( 'THREE.TrackballControls: Unsupported camera type' );

  				}

  			}

  			if ( scope.staticMoving ) {

  				_zoomStart.copy( _zoomEnd );

  			} else {

  				_zoomStart.y += ( _zoomEnd.y - _zoomStart.y ) * this.dynamicDampingFactor;

  			}

  		}

  	};

  	this.panCamera = ( function () {

  		var mouseChange = new Vector2(),
  			objectUp = new Vector3(),
  			pan = new Vector3();

  		return function panCamera() {

  			mouseChange.copy( _panEnd ).sub( _panStart );

  			if ( mouseChange.lengthSq() ) {

  				if ( scope.object.isOrthographicCamera ) {

  					var scale_x = ( scope.object.right - scope.object.left ) / scope.object.zoom / scope.domElement.clientWidth;
  					var scale_y = ( scope.object.top - scope.object.bottom ) / scope.object.zoom / scope.domElement.clientWidth;

  					mouseChange.x *= scale_x;
  					mouseChange.y *= scale_y;

  				}

  				mouseChange.multiplyScalar( _eye.length() * scope.panSpeed );

  				pan.copy( _eye ).cross( scope.object.up ).setLength( mouseChange.x );
  				pan.add( objectUp.copy( scope.object.up ).setLength( mouseChange.y ) );

  				scope.object.position.add( pan );
  				scope.target.add( pan );

  				if ( scope.staticMoving ) {

  					_panStart.copy( _panEnd );

  				} else {

  					_panStart.add( mouseChange.subVectors( _panEnd, _panStart ).multiplyScalar( scope.dynamicDampingFactor ) );

  				}

  			}

  		};

  	}() );

  	this.checkDistances = function () {

  		if ( ! scope.noZoom || ! scope.noPan ) {

  			if ( _eye.lengthSq() > scope.maxDistance * scope.maxDistance ) {

  				scope.object.position.addVectors( scope.target, _eye.setLength( scope.maxDistance ) );
  				_zoomStart.copy( _zoomEnd );

  			}

  			if ( _eye.lengthSq() < scope.minDistance * scope.minDistance ) {

  				scope.object.position.addVectors( scope.target, _eye.setLength( scope.minDistance ) );
  				_zoomStart.copy( _zoomEnd );

  			}

  		}

  	};

  	this.update = function () {

  		_eye.subVectors( scope.object.position, scope.target );

  		if ( ! scope.noRotate ) {

  			scope.rotateCamera();

  		}

  		if ( ! scope.noZoom ) {

  			scope.zoomCamera();

  		}

  		if ( ! scope.noPan ) {

  			scope.panCamera();

  		}

  		scope.object.position.addVectors( scope.target, _eye );

  		if ( scope.object.isPerspectiveCamera ) {

  			scope.checkDistances();

  			scope.object.lookAt( scope.target );

  			if ( lastPosition.distanceToSquared( scope.object.position ) > EPS ) {

  				scope.dispatchEvent( changeEvent );

  				lastPosition.copy( scope.object.position );

  			}

  		} else if ( scope.object.isOrthographicCamera ) {

  			scope.object.lookAt( scope.target );

  			if ( lastPosition.distanceToSquared( scope.object.position ) > EPS || lastZoom !== scope.object.zoom ) {

  				scope.dispatchEvent( changeEvent );

  				lastPosition.copy( scope.object.position );
  				lastZoom = scope.object.zoom;

  			}

  		} else {

  			console.warn( 'THREE.TrackballControls: Unsupported camera type' );

  		}

  	};

  	this.reset = function () {

  		_state = STATE.NONE;
  		_keyState = STATE.NONE;

  		scope.target.copy( scope.target0 );
  		scope.object.position.copy( scope.position0 );
  		scope.object.up.copy( scope.up0 );
  		scope.object.zoom = scope.zoom0;

  		scope.object.updateProjectionMatrix();

  		_eye.subVectors( scope.object.position, scope.target );

  		scope.object.lookAt( scope.target );

  		scope.dispatchEvent( changeEvent );

  		lastPosition.copy( scope.object.position );
  		lastZoom = scope.object.zoom;

  	};

  	// listeners

  	function keydown( event ) {

  		if ( scope.enabled === false ) return;

  		window.removeEventListener( 'keydown', keydown );

  		if ( _keyState !== STATE.NONE ) {

  			return;

  		} else if ( event.keyCode === scope.keys[ STATE.ROTATE ] && ! scope.noRotate ) {

  			_keyState = STATE.ROTATE;

  		} else if ( event.keyCode === scope.keys[ STATE.ZOOM ] && ! scope.noZoom ) {

  			_keyState = STATE.ZOOM;

  		} else if ( event.keyCode === scope.keys[ STATE.PAN ] && ! scope.noPan ) {

  			_keyState = STATE.PAN;

  		}

  	}

  	function keyup() {

  		if ( scope.enabled === false ) return;

  		_keyState = STATE.NONE;

  		window.addEventListener( 'keydown', keydown, false );

  	}

  	function mousedown( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();
  		event.stopPropagation();

  		if ( _state === STATE.NONE ) {

  			switch ( event.button ) {

  				case scope.mouseButtons.LEFT:
  					_state = STATE.ROTATE;
  					break;

  				case scope.mouseButtons.MIDDLE:
  					_state = STATE.ZOOM;
  					break;

  				case scope.mouseButtons.RIGHT:
  					_state = STATE.PAN;
  					break;

  				default:
  					_state = STATE.NONE;

  			}

  		}

  		var state = ( _keyState !== STATE.NONE ) ? _keyState : _state;

  		if ( state === STATE.ROTATE && ! scope.noRotate ) {

  			_moveCurr.copy( getMouseOnCircle( event.pageX, event.pageY ) );
  			_movePrev.copy( _moveCurr );

  		} else if ( state === STATE.ZOOM && ! scope.noZoom ) {

  			_zoomStart.copy( getMouseOnScreen( event.pageX, event.pageY ) );
  			_zoomEnd.copy( _zoomStart );

  		} else if ( state === STATE.PAN && ! scope.noPan ) {

  			_panStart.copy( getMouseOnScreen( event.pageX, event.pageY ) );
  			_panEnd.copy( _panStart );

  		}

  		scope.domElement.ownerDocument.addEventListener( 'mousemove', mousemove, false );
  		scope.domElement.ownerDocument.addEventListener( 'mouseup', mouseup, false );

  		scope.dispatchEvent( startEvent );

  	}

  	function mousemove( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();
  		event.stopPropagation();

  		var state = ( _keyState !== STATE.NONE ) ? _keyState : _state;

  		if ( state === STATE.ROTATE && ! scope.noRotate ) {

  			_movePrev.copy( _moveCurr );
  			_moveCurr.copy( getMouseOnCircle( event.pageX, event.pageY ) );

  		} else if ( state === STATE.ZOOM && ! scope.noZoom ) {

  			_zoomEnd.copy( getMouseOnScreen( event.pageX, event.pageY ) );

  		} else if ( state === STATE.PAN && ! scope.noPan ) {

  			_panEnd.copy( getMouseOnScreen( event.pageX, event.pageY ) );

  		}

  	}

  	function mouseup( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();
  		event.stopPropagation();

  		_state = STATE.NONE;

  		scope.domElement.ownerDocument.removeEventListener( 'mousemove', mousemove );
  		scope.domElement.ownerDocument.removeEventListener( 'mouseup', mouseup );
  		scope.dispatchEvent( endEvent );

  	}

  	function mousewheel( event ) {

  		if ( scope.enabled === false ) return;

  		if ( scope.noZoom === true ) return;

  		event.preventDefault();
  		event.stopPropagation();

  		switch ( event.deltaMode ) {

  			case 2:
  				// Zoom in pages
  				_zoomStart.y -= event.deltaY * 0.025;
  				break;

  			case 1:
  				// Zoom in lines
  				_zoomStart.y -= event.deltaY * 0.01;
  				break;

  			default:
  				// undefined, 0, assume pixels
  				_zoomStart.y -= event.deltaY * 0.00025;
  				break;

  		}

  		scope.dispatchEvent( startEvent );
  		scope.dispatchEvent( endEvent );

  	}

  	function touchstart( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();

  		switch ( event.touches.length ) {

  			case 1:
  				_state = STATE.TOUCH_ROTATE;
  				_moveCurr.copy( getMouseOnCircle( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ) );
  				_movePrev.copy( _moveCurr );
  				break;

  			default: // 2 or more
  				_state = STATE.TOUCH_ZOOM_PAN;
  				var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
  				var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;
  				_touchZoomDistanceEnd = _touchZoomDistanceStart = Math.sqrt( dx * dx + dy * dy );

  				var x = ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX ) / 2;
  				var y = ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY ) / 2;
  				_panStart.copy( getMouseOnScreen( x, y ) );
  				_panEnd.copy( _panStart );
  				break;

  		}

  		scope.dispatchEvent( startEvent );

  	}

  	function touchmove( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();
  		event.stopPropagation();

  		switch ( event.touches.length ) {

  			case 1:
  				_movePrev.copy( _moveCurr );
  				_moveCurr.copy( getMouseOnCircle( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ) );
  				break;

  			default: // 2 or more
  				var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
  				var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;
  				_touchZoomDistanceEnd = Math.sqrt( dx * dx + dy * dy );

  				var x = ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX ) / 2;
  				var y = ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY ) / 2;
  				_panEnd.copy( getMouseOnScreen( x, y ) );
  				break;

  		}

  	}

  	function touchend( event ) {

  		if ( scope.enabled === false ) return;

  		switch ( event.touches.length ) {

  			case 0:
  				_state = STATE.NONE;
  				break;

  			case 1:
  				_state = STATE.TOUCH_ROTATE;
  				_moveCurr.copy( getMouseOnCircle( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY ) );
  				_movePrev.copy( _moveCurr );
  				break;

  		}

  		scope.dispatchEvent( endEvent );

  	}

  	function contextmenu( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();

  	}

  	this.dispose = function () {

  		scope.domElement.removeEventListener( 'contextmenu', contextmenu, false );
  		scope.domElement.removeEventListener( 'mousedown', mousedown, false );
  		scope.domElement.removeEventListener( 'wheel', mousewheel, false );

  		scope.domElement.removeEventListener( 'touchstart', touchstart, false );
  		scope.domElement.removeEventListener( 'touchend', touchend, false );
  		scope.domElement.removeEventListener( 'touchmove', touchmove, false );

  		scope.domElement.ownerDocument.removeEventListener( 'mousemove', mousemove, false );
  		scope.domElement.ownerDocument.removeEventListener( 'mouseup', mouseup, false );

  		window.removeEventListener( 'keydown', keydown, false );
  		window.removeEventListener( 'keyup', keyup, false );

  	};

  	this.domElement.addEventListener( 'contextmenu', contextmenu, false );
  	this.domElement.addEventListener( 'mousedown', mousedown, false );
  	this.domElement.addEventListener( 'wheel', mousewheel, false );

  	this.domElement.addEventListener( 'touchstart', touchstart, false );
  	this.domElement.addEventListener( 'touchend', touchend, false );
  	this.domElement.addEventListener( 'touchmove', touchmove, false );

  	window.addEventListener( 'keydown', keydown, false );
  	window.addEventListener( 'keyup', keyup, false );

  	this.handleResize();

  	// force an update at start
  	this.update();

  };

  TrackballControls.prototype = Object.create( EventDispatcher.prototype );
  TrackballControls.prototype.constructor = TrackballControls;

  /**
   * @author qiao / https://github.com/qiao
   * @author mrdoob / http://mrdoob.com
   * @author alteredq / http://alteredqualia.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author erich666 / http://erichaines.com
   * @author ScieCode / http://github.com/sciecode
   */

  // This set of controls performs orbiting, dollying (zooming), and panning.
  // Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
  //
  //    Orbit - left mouse / touch: one-finger move
  //    Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
  //    Pan - right mouse, or left mouse + ctrl/meta/shiftKey, or arrow keys / touch: two-finger move

  var OrbitControls = function ( object, domElement ) {

  	if ( domElement === undefined ) console.warn( 'THREE.OrbitControls: The second parameter "domElement" is now mandatory.' );
  	if ( domElement === document ) console.error( 'THREE.OrbitControls: "document" should not be used as the target "domElement". Please use "renderer.domElement" instead.' );

  	this.object = object;
  	this.domElement = domElement;

  	// Set to false to disable this control
  	this.enabled = true;

  	// "target" sets the location of focus, where the object orbits around
  	this.target = new Vector3();

  	// How far you can dolly in and out ( PerspectiveCamera only )
  	this.minDistance = 0;
  	this.maxDistance = Infinity;

  	// How far you can zoom in and out ( OrthographicCamera only )
  	this.minZoom = 0;
  	this.maxZoom = Infinity;

  	// How far you can orbit vertically, upper and lower limits.
  	// Range is 0 to Math.PI radians.
  	this.minPolarAngle = 0; // radians
  	this.maxPolarAngle = Math.PI; // radians

  	// How far you can orbit horizontally, upper and lower limits.
  	// If set, the interval [ min, max ] must be a sub-interval of [ - 2 PI, 2 PI ], with ( max - min < 2 PI )
  	this.minAzimuthAngle = - Infinity; // radians
  	this.maxAzimuthAngle = Infinity; // radians

  	// Set to true to enable damping (inertia)
  	// If damping is enabled, you must call controls.update() in your animation loop
  	this.enableDamping = false;
  	this.dampingFactor = 0.05;

  	// This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
  	// Set to false to disable zooming
  	this.enableZoom = true;
  	this.zoomSpeed = 1.0;

  	// Set to false to disable rotating
  	this.enableRotate = true;
  	this.rotateSpeed = 1.0;

  	// Set to false to disable panning
  	this.enablePan = true;
  	this.panSpeed = 1.0;
  	this.screenSpacePanning = true; // if false, pan orthogonal to world-space direction camera.up
  	this.keyPanSpeed = 7.0;	// pixels moved per arrow key push

  	// Set to true to automatically rotate around the target
  	// If auto-rotate is enabled, you must call controls.update() in your animation loop
  	this.autoRotate = false;
  	this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60

  	// Set to false to disable use of the keys
  	this.enableKeys = true;

  	// The four arrow keys
  	this.keys = { LEFT: 37, UP: 38, RIGHT: 39, BOTTOM: 40 };

  	// Mouse buttons
  	this.mouseButtons = { LEFT: MOUSE.ROTATE, MIDDLE: MOUSE.DOLLY, RIGHT: MOUSE.PAN };

  	// Touch fingers
  	this.touches = { ONE: TOUCH.ROTATE, TWO: TOUCH.DOLLY_PAN };

  	// for reset
  	this.target0 = this.target.clone();
  	this.position0 = this.object.position.clone();
  	this.zoom0 = this.object.zoom;

  	//
  	// public methods
  	//

  	this.getPolarAngle = function () {

  		return spherical.phi;

  	};

  	this.getAzimuthalAngle = function () {

  		return spherical.theta;

  	};

  	this.saveState = function () {

  		scope.target0.copy( scope.target );
  		scope.position0.copy( scope.object.position );
  		scope.zoom0 = scope.object.zoom;

  	};

  	this.reset = function () {

  		scope.target.copy( scope.target0 );
  		scope.object.position.copy( scope.position0 );
  		scope.object.zoom = scope.zoom0;

  		scope.object.updateProjectionMatrix();
  		scope.dispatchEvent( changeEvent );

  		scope.update();

  		state = STATE.NONE;

  	};

  	// this method is exposed, but perhaps it would be better if we can make it private...
  	this.update = function () {

  		var offset = new Vector3();

  		// so camera.up is the orbit axis
  		var quat = new Quaternion().setFromUnitVectors( object.up, new Vector3( 0, 1, 0 ) );
  		var quatInverse = quat.clone().inverse();

  		var lastPosition = new Vector3();
  		var lastQuaternion = new Quaternion();

  		var twoPI = 2 * Math.PI;

  		return function update() {

  			var position = scope.object.position;

  			offset.copy( position ).sub( scope.target );

  			// rotate offset to "y-axis-is-up" space
  			offset.applyQuaternion( quat );

  			// angle from z-axis around y-axis
  			spherical.setFromVector3( offset );

  			if ( scope.autoRotate && state === STATE.NONE ) {

  				rotateLeft( getAutoRotationAngle() );

  			}

  			if ( scope.enableDamping ) {

  				spherical.theta += sphericalDelta.theta * scope.dampingFactor;
  				spherical.phi += sphericalDelta.phi * scope.dampingFactor;

  			} else {

  				spherical.theta += sphericalDelta.theta;
  				spherical.phi += sphericalDelta.phi;

  			}

  			// restrict theta to be between desired limits

  			var min = scope.minAzimuthAngle;
  			var max = scope.maxAzimuthAngle;

  			if ( isFinite ( min ) && isFinite( max ) ) {

  				if ( min < - Math.PI ) min += twoPI; else if ( min > Math.PI ) min -= twoPI;

  				if ( max < - Math.PI ) max += twoPI; else if ( max > Math.PI ) max -= twoPI;

  				if ( min < max ) {

  					spherical.theta = Math.max( min, Math.min( max, spherical.theta ) );

  				} else {

  					spherical.theta = ( spherical.theta > ( min + max ) / 2 ) ?
  						Math.max( min, spherical.theta ) :
  						Math.min( max, spherical.theta );

  				}

  			}

  			// restrict phi to be between desired limits
  			spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) );

  			spherical.makeSafe();


  			spherical.radius *= scale;

  			// restrict radius to be between desired limits
  			spherical.radius = Math.max( scope.minDistance, Math.min( scope.maxDistance, spherical.radius ) );

  			// move target to panned location

  			if ( scope.enableDamping === true ) {

  				scope.target.addScaledVector( panOffset, scope.dampingFactor );

  			} else {

  				scope.target.add( panOffset );

  			}

  			offset.setFromSpherical( spherical );

  			// rotate offset back to "camera-up-vector-is-up" space
  			offset.applyQuaternion( quatInverse );

  			position.copy( scope.target ).add( offset );

  			scope.object.lookAt( scope.target );

  			if ( scope.enableDamping === true ) {

  				sphericalDelta.theta *= ( 1 - scope.dampingFactor );
  				sphericalDelta.phi *= ( 1 - scope.dampingFactor );

  				panOffset.multiplyScalar( 1 - scope.dampingFactor );

  			} else {

  				sphericalDelta.set( 0, 0, 0 );

  				panOffset.set( 0, 0, 0 );

  			}

  			scale = 1;

  			// update condition is:
  			// min(camera displacement, camera rotation in radians)^2 > EPS
  			// using small-angle approximation cos(x/2) = 1 - x^2 / 8

  			if ( zoomChanged ||
  				lastPosition.distanceToSquared( scope.object.position ) > EPS ||
  				8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ) {

  				scope.dispatchEvent( changeEvent );

  				lastPosition.copy( scope.object.position );
  				lastQuaternion.copy( scope.object.quaternion );
  				zoomChanged = false;

  				return true;

  			}

  			return false;

  		};

  	}();

  	this.dispose = function () {

  		scope.domElement.removeEventListener( 'contextmenu', onContextMenu, false );
  		scope.domElement.removeEventListener( 'mousedown', onMouseDown, false );
  		scope.domElement.removeEventListener( 'wheel', onMouseWheel, false );

  		scope.domElement.removeEventListener( 'touchstart', onTouchStart, false );
  		scope.domElement.removeEventListener( 'touchend', onTouchEnd, false );
  		scope.domElement.removeEventListener( 'touchmove', onTouchMove, false );

  		scope.domElement.ownerDocument.removeEventListener( 'mousemove', onMouseMove, false );
  		scope.domElement.ownerDocument.removeEventListener( 'mouseup', onMouseUp, false );

  		scope.domElement.removeEventListener( 'keydown', onKeyDown, false );

  		//scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?

  	};

  	//
  	// internals
  	//

  	var scope = this;

  	var changeEvent = { type: 'change' };
  	var startEvent = { type: 'start' };
  	var endEvent = { type: 'end' };

  	var STATE = {
  		NONE: - 1,
  		ROTATE: 0,
  		DOLLY: 1,
  		PAN: 2,
  		TOUCH_ROTATE: 3,
  		TOUCH_PAN: 4,
  		TOUCH_DOLLY_PAN: 5,
  		TOUCH_DOLLY_ROTATE: 6
  	};

  	var state = STATE.NONE;

  	var EPS = 0.000001;

  	// current position in spherical coordinates
  	var spherical = new Spherical();
  	var sphericalDelta = new Spherical();

  	var scale = 1;
  	var panOffset = new Vector3();
  	var zoomChanged = false;

  	var rotateStart = new Vector2();
  	var rotateEnd = new Vector2();
  	var rotateDelta = new Vector2();

  	var panStart = new Vector2();
  	var panEnd = new Vector2();
  	var panDelta = new Vector2();

  	var dollyStart = new Vector2();
  	var dollyEnd = new Vector2();
  	var dollyDelta = new Vector2();

  	function getAutoRotationAngle() {

  		return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;

  	}

  	function getZoomScale() {

  		return Math.pow( 0.95, scope.zoomSpeed );

  	}

  	function rotateLeft( angle ) {

  		sphericalDelta.theta -= angle;

  	}

  	function rotateUp( angle ) {

  		sphericalDelta.phi -= angle;

  	}

  	var panLeft = function () {

  		var v = new Vector3();

  		return function panLeft( distance, objectMatrix ) {

  			v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix
  			v.multiplyScalar( - distance );

  			panOffset.add( v );

  		};

  	}();

  	var panUp = function () {

  		var v = new Vector3();

  		return function panUp( distance, objectMatrix ) {

  			if ( scope.screenSpacePanning === true ) {

  				v.setFromMatrixColumn( objectMatrix, 1 );

  			} else {

  				v.setFromMatrixColumn( objectMatrix, 0 );
  				v.crossVectors( scope.object.up, v );

  			}

  			v.multiplyScalar( distance );

  			panOffset.add( v );

  		};

  	}();

  	// deltaX and deltaY are in pixels; right and down are positive
  	var pan = function () {

  		var offset = new Vector3();

  		return function pan( deltaX, deltaY ) {

  			var element = scope.domElement;

  			if ( scope.object.isPerspectiveCamera ) {

  				// perspective
  				var position = scope.object.position;
  				offset.copy( position ).sub( scope.target );
  				var targetDistance = offset.length();

  				// half of the fov is center to top of screen
  				targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 );

  				// we use only clientHeight here so aspect ratio does not distort speed
  				panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix );
  				panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix );

  			} else if ( scope.object.isOrthographicCamera ) {

  				// orthographic
  				panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix );
  				panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix );

  			} else {

  				// camera neither orthographic nor perspective
  				console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' );
  				scope.enablePan = false;

  			}

  		};

  	}();

  	function dollyOut( dollyScale ) {

  		if ( scope.object.isPerspectiveCamera ) {

  			scale /= dollyScale;

  		} else if ( scope.object.isOrthographicCamera ) {

  			scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom * dollyScale ) );
  			scope.object.updateProjectionMatrix();
  			zoomChanged = true;

  		} else {

  			console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
  			scope.enableZoom = false;

  		}

  	}

  	function dollyIn( dollyScale ) {

  		if ( scope.object.isPerspectiveCamera ) {

  			scale *= dollyScale;

  		} else if ( scope.object.isOrthographicCamera ) {

  			scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / dollyScale ) );
  			scope.object.updateProjectionMatrix();
  			zoomChanged = true;

  		} else {

  			console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
  			scope.enableZoom = false;

  		}

  	}

  	//
  	// event callbacks - update the object state
  	//

  	function handleMouseDownRotate( event ) {

  		rotateStart.set( event.clientX, event.clientY );

  	}

  	function handleMouseDownDolly( event ) {

  		dollyStart.set( event.clientX, event.clientY );

  	}

  	function handleMouseDownPan( event ) {

  		panStart.set( event.clientX, event.clientY );

  	}

  	function handleMouseMoveRotate( event ) {

  		rotateEnd.set( event.clientX, event.clientY );

  		rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );

  		var element = scope.domElement;

  		rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height

  		rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );

  		rotateStart.copy( rotateEnd );

  		scope.update();

  	}

  	function handleMouseMoveDolly( event ) {

  		dollyEnd.set( event.clientX, event.clientY );

  		dollyDelta.subVectors( dollyEnd, dollyStart );

  		if ( dollyDelta.y > 0 ) {

  			dollyOut( getZoomScale() );

  		} else if ( dollyDelta.y < 0 ) {

  			dollyIn( getZoomScale() );

  		}

  		dollyStart.copy( dollyEnd );

  		scope.update();

  	}

  	function handleMouseMovePan( event ) {

  		panEnd.set( event.clientX, event.clientY );

  		panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );

  		pan( panDelta.x, panDelta.y );

  		panStart.copy( panEnd );

  		scope.update();

  	}

  	function handleMouseWheel( event ) {

  		if ( event.deltaY < 0 ) {

  			dollyIn( getZoomScale() );

  		} else if ( event.deltaY > 0 ) {

  			dollyOut( getZoomScale() );

  		}

  		scope.update();

  	}

  	function handleKeyDown( event ) {

  		var needsUpdate = false;

  		switch ( event.keyCode ) {

  			case scope.keys.UP:
  				pan( 0, scope.keyPanSpeed );
  				needsUpdate = true;
  				break;

  			case scope.keys.BOTTOM:
  				pan( 0, - scope.keyPanSpeed );
  				needsUpdate = true;
  				break;

  			case scope.keys.LEFT:
  				pan( scope.keyPanSpeed, 0 );
  				needsUpdate = true;
  				break;

  			case scope.keys.RIGHT:
  				pan( - scope.keyPanSpeed, 0 );
  				needsUpdate = true;
  				break;

  		}

  		if ( needsUpdate ) {

  			// prevent the browser from scrolling on cursor keys
  			event.preventDefault();

  			scope.update();

  		}


  	}

  	function handleTouchStartRotate( event ) {

  		if ( event.touches.length == 1 ) {

  			rotateStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );

  		} else {

  			var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
  			var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );

  			rotateStart.set( x, y );

  		}

  	}

  	function handleTouchStartPan( event ) {

  		if ( event.touches.length == 1 ) {

  			panStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );

  		} else {

  			var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
  			var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );

  			panStart.set( x, y );

  		}

  	}

  	function handleTouchStartDolly( event ) {

  		var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
  		var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;

  		var distance = Math.sqrt( dx * dx + dy * dy );

  		dollyStart.set( 0, distance );

  	}

  	function handleTouchStartDollyPan( event ) {

  		if ( scope.enableZoom ) handleTouchStartDolly( event );

  		if ( scope.enablePan ) handleTouchStartPan( event );

  	}

  	function handleTouchStartDollyRotate( event ) {

  		if ( scope.enableZoom ) handleTouchStartDolly( event );

  		if ( scope.enableRotate ) handleTouchStartRotate( event );

  	}

  	function handleTouchMoveRotate( event ) {

  		if ( event.touches.length == 1 ) {

  			rotateEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );

  		} else {

  			var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
  			var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );

  			rotateEnd.set( x, y );

  		}

  		rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );

  		var element = scope.domElement;

  		rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height

  		rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );

  		rotateStart.copy( rotateEnd );

  	}

  	function handleTouchMovePan( event ) {

  		if ( event.touches.length == 1 ) {

  			panEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );

  		} else {

  			var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
  			var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );

  			panEnd.set( x, y );

  		}

  		panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );

  		pan( panDelta.x, panDelta.y );

  		panStart.copy( panEnd );

  	}

  	function handleTouchMoveDolly( event ) {

  		var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
  		var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;

  		var distance = Math.sqrt( dx * dx + dy * dy );

  		dollyEnd.set( 0, distance );

  		dollyDelta.set( 0, Math.pow( dollyEnd.y / dollyStart.y, scope.zoomSpeed ) );

  		dollyOut( dollyDelta.y );

  		dollyStart.copy( dollyEnd );

  	}

  	function handleTouchMoveDollyPan( event ) {

  		if ( scope.enableZoom ) handleTouchMoveDolly( event );

  		if ( scope.enablePan ) handleTouchMovePan( event );

  	}

  	function handleTouchMoveDollyRotate( event ) {

  		if ( scope.enableZoom ) handleTouchMoveDolly( event );

  		if ( scope.enableRotate ) handleTouchMoveRotate( event );

  	}

  	//
  	// event handlers - FSM: listen for events and reset state
  	//

  	function onMouseDown( event ) {

  		if ( scope.enabled === false ) return;

  		// Prevent the browser from scrolling.
  		event.preventDefault();

  		// Manually set the focus since calling preventDefault above
  		// prevents the browser from setting it automatically.

  		scope.domElement.focus ? scope.domElement.focus() : window.focus();

  		var mouseAction;

  		switch ( event.button ) {

  			case 0:

  				mouseAction = scope.mouseButtons.LEFT;
  				break;

  			case 1:

  				mouseAction = scope.mouseButtons.MIDDLE;
  				break;

  			case 2:

  				mouseAction = scope.mouseButtons.RIGHT;
  				break;

  			default:

  				mouseAction = - 1;

  		}

  		switch ( mouseAction ) {

  			case MOUSE.DOLLY:

  				if ( scope.enableZoom === false ) return;

  				handleMouseDownDolly( event );

  				state = STATE.DOLLY;

  				break;

  			case MOUSE.ROTATE:

  				if ( event.ctrlKey || event.metaKey || event.shiftKey ) {

  					if ( scope.enablePan === false ) return;

  					handleMouseDownPan( event );

  					state = STATE.PAN;

  				} else {

  					if ( scope.enableRotate === false ) return;

  					handleMouseDownRotate( event );

  					state = STATE.ROTATE;

  				}

  				break;

  			case MOUSE.PAN:

  				if ( event.ctrlKey || event.metaKey || event.shiftKey ) {

  					if ( scope.enableRotate === false ) return;

  					handleMouseDownRotate( event );

  					state = STATE.ROTATE;

  				} else {

  					if ( scope.enablePan === false ) return;

  					handleMouseDownPan( event );

  					state = STATE.PAN;

  				}

  				break;

  			default:

  				state = STATE.NONE;

  		}

  		if ( state !== STATE.NONE ) {

  			scope.domElement.ownerDocument.addEventListener( 'mousemove', onMouseMove, false );
  			scope.domElement.ownerDocument.addEventListener( 'mouseup', onMouseUp, false );

  			scope.dispatchEvent( startEvent );

  		}

  	}

  	function onMouseMove( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();

  		switch ( state ) {

  			case STATE.ROTATE:

  				if ( scope.enableRotate === false ) return;

  				handleMouseMoveRotate( event );

  				break;

  			case STATE.DOLLY:

  				if ( scope.enableZoom === false ) return;

  				handleMouseMoveDolly( event );

  				break;

  			case STATE.PAN:

  				if ( scope.enablePan === false ) return;

  				handleMouseMovePan( event );

  				break;

  		}

  	}

  	function onMouseUp( event ) {

  		if ( scope.enabled === false ) return;

  		scope.domElement.ownerDocument.removeEventListener( 'mousemove', onMouseMove, false );
  		scope.domElement.ownerDocument.removeEventListener( 'mouseup', onMouseUp, false );

  		scope.dispatchEvent( endEvent );

  		state = STATE.NONE;

  	}

  	function onMouseWheel( event ) {

  		if ( scope.enabled === false || scope.enableZoom === false || ( state !== STATE.NONE && state !== STATE.ROTATE ) ) return;

  		event.preventDefault();
  		event.stopPropagation();

  		scope.dispatchEvent( startEvent );

  		handleMouseWheel( event );

  		scope.dispatchEvent( endEvent );

  	}

  	function onKeyDown( event ) {

  		if ( scope.enabled === false || scope.enableKeys === false || scope.enablePan === false ) return;

  		handleKeyDown( event );

  	}

  	function onTouchStart( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault(); // prevent scrolling

  		switch ( event.touches.length ) {

  			case 1:

  				switch ( scope.touches.ONE ) {

  					case TOUCH.ROTATE:

  						if ( scope.enableRotate === false ) return;

  						handleTouchStartRotate( event );

  						state = STATE.TOUCH_ROTATE;

  						break;

  					case TOUCH.PAN:

  						if ( scope.enablePan === false ) return;

  						handleTouchStartPan( event );

  						state = STATE.TOUCH_PAN;

  						break;

  					default:

  						state = STATE.NONE;

  				}

  				break;

  			case 2:

  				switch ( scope.touches.TWO ) {

  					case TOUCH.DOLLY_PAN:

  						if ( scope.enableZoom === false && scope.enablePan === false ) return;

  						handleTouchStartDollyPan( event );

  						state = STATE.TOUCH_DOLLY_PAN;

  						break;

  					case TOUCH.DOLLY_ROTATE:

  						if ( scope.enableZoom === false && scope.enableRotate === false ) return;

  						handleTouchStartDollyRotate( event );

  						state = STATE.TOUCH_DOLLY_ROTATE;

  						break;

  					default:

  						state = STATE.NONE;

  				}

  				break;

  			default:

  				state = STATE.NONE;

  		}

  		if ( state !== STATE.NONE ) {

  			scope.dispatchEvent( startEvent );

  		}

  	}

  	function onTouchMove( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault(); // prevent scrolling
  		event.stopPropagation();

  		switch ( state ) {

  			case STATE.TOUCH_ROTATE:

  				if ( scope.enableRotate === false ) return;

  				handleTouchMoveRotate( event );

  				scope.update();

  				break;

  			case STATE.TOUCH_PAN:

  				if ( scope.enablePan === false ) return;

  				handleTouchMovePan( event );

  				scope.update();

  				break;

  			case STATE.TOUCH_DOLLY_PAN:

  				if ( scope.enableZoom === false && scope.enablePan === false ) return;

  				handleTouchMoveDollyPan( event );

  				scope.update();

  				break;

  			case STATE.TOUCH_DOLLY_ROTATE:

  				if ( scope.enableZoom === false && scope.enableRotate === false ) return;

  				handleTouchMoveDollyRotate( event );

  				scope.update();

  				break;

  			default:

  				state = STATE.NONE;

  		}

  	}

  	function onTouchEnd( event ) {

  		if ( scope.enabled === false ) return;

  		scope.dispatchEvent( endEvent );

  		state = STATE.NONE;

  	}

  	function onContextMenu( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();

  	}

  	//

  	scope.domElement.addEventListener( 'contextmenu', onContextMenu, false );

  	scope.domElement.addEventListener( 'mousedown', onMouseDown, false );
  	scope.domElement.addEventListener( 'wheel', onMouseWheel, false );

  	scope.domElement.addEventListener( 'touchstart', onTouchStart, false );
  	scope.domElement.addEventListener( 'touchend', onTouchEnd, false );
  	scope.domElement.addEventListener( 'touchmove', onTouchMove, false );

  	scope.domElement.addEventListener( 'keydown', onKeyDown, false );

  	// make sure element can receive keys.

  	if ( scope.domElement.tabIndex === - 1 ) {

  		scope.domElement.tabIndex = 0;

  	}

  	// force an update at start

  	this.update();

  };

  OrbitControls.prototype = Object.create( EventDispatcher.prototype );
  OrbitControls.prototype.constructor = OrbitControls;


  // This set of controls performs orbiting, dollying (zooming), and panning.
  // Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
  // This is very similar to OrbitControls, another set of touch behavior
  //
  //    Orbit - right mouse, or left mouse + ctrl/meta/shiftKey / touch: two-finger rotate
  //    Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
  //    Pan - left mouse, or arrow keys / touch: one-finger move

  var MapControls = function ( object, domElement ) {

  	OrbitControls.call( this, object, domElement );

  	this.screenSpacePanning = false; // pan orthogonal to world-space direction camera.up

  	this.mouseButtons.LEFT = MOUSE.PAN;
  	this.mouseButtons.RIGHT = MOUSE.ROTATE;

  	this.touches.ONE = TOUCH.PAN;
  	this.touches.TWO = TOUCH.DOLLY_ROTATE;

  };

  MapControls.prototype = Object.create( EventDispatcher.prototype );
  MapControls.prototype.constructor = MapControls;

  /**
   * @author James Baicoianu / http://www.baicoianu.com/
   */

  var FlyControls = function ( object, domElement ) {

  	if ( domElement === undefined ) {

  		console.warn( 'THREE.FlyControls: The second parameter "domElement" is now mandatory.' );
  		domElement = document;

  	}

  	this.object = object;
  	this.domElement = domElement;

  	if ( domElement ) this.domElement.setAttribute( 'tabindex', - 1 );

  	// API

  	this.movementSpeed = 1.0;
  	this.rollSpeed = 0.005;

  	this.dragToLook = false;
  	this.autoForward = false;

  	// disable default target object behavior

  	// internals

  	this.tmpQuaternion = new Quaternion();

  	this.mouseStatus = 0;

  	this.moveState = { up: 0, down: 0, left: 0, right: 0, forward: 0, back: 0, pitchUp: 0, pitchDown: 0, yawLeft: 0, yawRight: 0, rollLeft: 0, rollRight: 0 };
  	this.moveVector = new Vector3( 0, 0, 0 );
  	this.rotationVector = new Vector3( 0, 0, 0 );

  	this.keydown = function ( event ) {

  		if ( event.altKey ) {

  			return;

  		}

  		//event.preventDefault();

  		switch ( event.keyCode ) {

  			case 16: /* shift */ this.movementSpeedMultiplier = .1; break;

  			case 87: /*W*/ this.moveState.forward = 1; break;
  			case 83: /*S*/ this.moveState.back = 1; break;

  			case 65: /*A*/ this.moveState.left = 1; break;
  			case 68: /*D*/ this.moveState.right = 1; break;

  			case 82: /*R*/ this.moveState.up = 1; break;
  			case 70: /*F*/ this.moveState.down = 1; break;

  			case 38: /*up*/ this.moveState.pitchUp = 1; break;
  			case 40: /*down*/ this.moveState.pitchDown = 1; break;

  			case 37: /*left*/ this.moveState.yawLeft = 1; break;
  			case 39: /*right*/ this.moveState.yawRight = 1; break;

  			case 81: /*Q*/ this.moveState.rollLeft = 1; break;
  			case 69: /*E*/ this.moveState.rollRight = 1; break;

  		}

  		this.updateMovementVector();
  		this.updateRotationVector();

  	};

  	this.keyup = function ( event ) {

  		switch ( event.keyCode ) {

  			case 16: /* shift */ this.movementSpeedMultiplier = 1; break;

  			case 87: /*W*/ this.moveState.forward = 0; break;
  			case 83: /*S*/ this.moveState.back = 0; break;

  			case 65: /*A*/ this.moveState.left = 0; break;
  			case 68: /*D*/ this.moveState.right = 0; break;

  			case 82: /*R*/ this.moveState.up = 0; break;
  			case 70: /*F*/ this.moveState.down = 0; break;

  			case 38: /*up*/ this.moveState.pitchUp = 0; break;
  			case 40: /*down*/ this.moveState.pitchDown = 0; break;

  			case 37: /*left*/ this.moveState.yawLeft = 0; break;
  			case 39: /*right*/ this.moveState.yawRight = 0; break;

  			case 81: /*Q*/ this.moveState.rollLeft = 0; break;
  			case 69: /*E*/ this.moveState.rollRight = 0; break;

  		}

  		this.updateMovementVector();
  		this.updateRotationVector();

  	};

  	this.mousedown = function ( event ) {

  		if ( this.domElement !== document ) {

  			this.domElement.focus();

  		}

  		event.preventDefault();
  		event.stopPropagation();

  		if ( this.dragToLook ) {

  			this.mouseStatus ++;

  		} else {

  			switch ( event.button ) {

  				case 0: this.moveState.forward = 1; break;
  				case 2: this.moveState.back = 1; break;

  			}

  			this.updateMovementVector();

  		}

  	};

  	this.mousemove = function ( event ) {

  		if ( ! this.dragToLook || this.mouseStatus > 0 ) {

  			var container = this.getContainerDimensions();
  			var halfWidth = container.size[ 0 ] / 2;
  			var halfHeight = container.size[ 1 ] / 2;

  			this.moveState.yawLeft = - ( ( event.pageX - container.offset[ 0 ] ) - halfWidth ) / halfWidth;
  			this.moveState.pitchDown = ( ( event.pageY - container.offset[ 1 ] ) - halfHeight ) / halfHeight;

  			this.updateRotationVector();

  		}

  	};

  	this.mouseup = function ( event ) {

  		event.preventDefault();
  		event.stopPropagation();

  		if ( this.dragToLook ) {

  			this.mouseStatus --;

  			this.moveState.yawLeft = this.moveState.pitchDown = 0;

  		} else {

  			switch ( event.button ) {

  				case 0: this.moveState.forward = 0; break;
  				case 2: this.moveState.back = 0; break;

  			}

  			this.updateMovementVector();

  		}

  		this.updateRotationVector();

  	};

  	this.update = function ( delta ) {

  		var moveMult = delta * this.movementSpeed;
  		var rotMult = delta * this.rollSpeed;

  		this.object.translateX( this.moveVector.x * moveMult );
  		this.object.translateY( this.moveVector.y * moveMult );
  		this.object.translateZ( this.moveVector.z * moveMult );

  		this.tmpQuaternion.set( this.rotationVector.x * rotMult, this.rotationVector.y * rotMult, this.rotationVector.z * rotMult, 1 ).normalize();
  		this.object.quaternion.multiply( this.tmpQuaternion );

  		// expose the rotation vector for convenience
  		this.object.rotation.setFromQuaternion( this.object.quaternion, this.object.rotation.order );


  	};

  	this.updateMovementVector = function () {

  		var forward = ( this.moveState.forward || ( this.autoForward && ! this.moveState.back ) ) ? 1 : 0;

  		this.moveVector.x = ( - this.moveState.left + this.moveState.right );
  		this.moveVector.y = ( - this.moveState.down + this.moveState.up );
  		this.moveVector.z = ( - forward + this.moveState.back );

  		//console.log( 'move:', [ this.moveVector.x, this.moveVector.y, this.moveVector.z ] );

  	};

  	this.updateRotationVector = function () {

  		this.rotationVector.x = ( - this.moveState.pitchDown + this.moveState.pitchUp );
  		this.rotationVector.y = ( - this.moveState.yawRight + this.moveState.yawLeft );
  		this.rotationVector.z = ( - this.moveState.rollRight + this.moveState.rollLeft );

  		//console.log( 'rotate:', [ this.rotationVector.x, this.rotationVector.y, this.rotationVector.z ] );

  	};

  	this.getContainerDimensions = function () {

  		if ( this.domElement != document ) {

  			return {
  				size: [ this.domElement.offsetWidth, this.domElement.offsetHeight ],
  				offset: [ this.domElement.offsetLeft, this.domElement.offsetTop ]
  			};

  		} else {

  			return {
  				size: [ window.innerWidth, window.innerHeight ],
  				offset: [ 0, 0 ]
  			};

  		}

  	};

  	function bind( scope, fn ) {

  		return function () {

  			fn.apply( scope, arguments );

  		};

  	}

  	function contextmenu( event ) {

  		event.preventDefault();

  	}

  	this.dispose = function () {

  		this.domElement.removeEventListener( 'contextmenu', contextmenu, false );
  		this.domElement.removeEventListener( 'mousedown', _mousedown, false );
  		this.domElement.removeEventListener( 'mousemove', _mousemove, false );
  		this.domElement.removeEventListener( 'mouseup', _mouseup, false );

  		window.removeEventListener( 'keydown', _keydown, false );
  		window.removeEventListener( 'keyup', _keyup, false );

  	};

  	var _mousemove = bind( this, this.mousemove );
  	var _mousedown = bind( this, this.mousedown );
  	var _mouseup = bind( this, this.mouseup );
  	var _keydown = bind( this, this.keydown );
  	var _keyup = bind( this, this.keyup );

  	this.domElement.addEventListener( 'contextmenu', contextmenu, false );

  	this.domElement.addEventListener( 'mousemove', _mousemove, false );
  	this.domElement.addEventListener( 'mousedown', _mousedown, false );
  	this.domElement.addEventListener( 'mouseup', _mouseup, false );

  	window.addEventListener( 'keydown', _keydown, false );
  	window.addEventListener( 'keyup', _keyup, false );

  	this.updateMovementVector();
  	this.updateRotationVector();

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   *
   * Full-screen textured quad shader
   */



  var CopyShader = {

  	uniforms: {

  		"tDiffuse": { value: null },
  		"opacity": { value: 1.0 }

  	},

  	vertexShader: [

  		"varying vec2 vUv;",

  		"void main() {",

  		"	vUv = uv;",
  		"	gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",

  		"}"

  	].join( "\n" ),

  	fragmentShader: [

  		"uniform float opacity;",

  		"uniform sampler2D tDiffuse;",

  		"varying vec2 vUv;",

  		"void main() {",

  		"	vec4 texel = texture2D( tDiffuse, vUv );",
  		"	gl_FragColor = opacity * texel;",

  		"}"

  	].join( "\n" )

  };

  function Pass() {

  	// if set to true, the pass is processed by the composer
  	this.enabled = true;

  	// if set to true, the pass indicates to swap read and write buffer after rendering
  	this.needsSwap = true;

  	// if set to true, the pass clears its buffer before rendering
  	this.clear = false;

  	// if set to true, the result of the pass is rendered to screen. This is set automatically by EffectComposer.
  	this.renderToScreen = false;

  }

  Object.assign( Pass.prototype, {

  	setSize: function ( /* width, height */ ) {},

  	render: function ( /* renderer, writeBuffer, readBuffer, deltaTime, maskActive */ ) {

  		console.error( 'THREE.Pass: .render() must be implemented in derived pass.' );

  	}

  } );

  // Helper for passes that need to fill the viewport with a single quad.

  Pass.FullScreenQuad = ( function () {

  	var camera = new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
  	var geometry = new PlaneBufferGeometry( 2, 2 );

  	var FullScreenQuad = function ( material ) {

  		this._mesh = new Mesh( geometry, material );

  	};

  	Object.defineProperty( FullScreenQuad.prototype, 'material', {

  		get: function () {

  			return this._mesh.material;

  		},

  		set: function ( value ) {

  			this._mesh.material = value;

  		}

  	} );

  	Object.assign( FullScreenQuad.prototype, {

  		dispose: function () {

  			this._mesh.geometry.dispose();

  		},

  		render: function ( renderer ) {

  			renderer.render( this._mesh, camera );

  		}

  	} );

  	return FullScreenQuad;

  } )();

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  var ShaderPass = function ( shader, textureID ) {

  	Pass.call( this );

  	this.textureID = ( textureID !== undefined ) ? textureID : "tDiffuse";

  	if ( shader instanceof ShaderMaterial ) {

  		this.uniforms = shader.uniforms;

  		this.material = shader;

  	} else if ( shader ) {

  		this.uniforms = UniformsUtils.clone( shader.uniforms );

  		this.material = new ShaderMaterial( {

  			defines: Object.assign( {}, shader.defines ),
  			uniforms: this.uniforms,
  			vertexShader: shader.vertexShader,
  			fragmentShader: shader.fragmentShader

  		} );

  	}

  	this.fsQuad = new Pass.FullScreenQuad( this.material );

  };

  ShaderPass.prototype = Object.assign( Object.create( Pass.prototype ), {

  	constructor: ShaderPass,

  	render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {

  		if ( this.uniforms[ this.textureID ] ) {

  			this.uniforms[ this.textureID ].value = readBuffer.texture;

  		}

  		this.fsQuad.material = this.material;

  		if ( this.renderToScreen ) {

  			renderer.setRenderTarget( null );
  			this.fsQuad.render( renderer );

  		} else {

  			renderer.setRenderTarget( writeBuffer );
  			// TODO: Avoid using autoClear properties, see https://github.com/mrdoob/three.js/pull/15571#issuecomment-465669600
  			if ( this.clear ) renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );
  			this.fsQuad.render( renderer );

  		}

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  var MaskPass = function ( scene, camera ) {

  	Pass.call( this );

  	this.scene = scene;
  	this.camera = camera;

  	this.clear = true;
  	this.needsSwap = false;

  	this.inverse = false;

  };

  MaskPass.prototype = Object.assign( Object.create( Pass.prototype ), {

  	constructor: MaskPass,

  	render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {

  		var context = renderer.getContext();
  		var state = renderer.state;

  		// don't update color or depth

  		state.buffers.color.setMask( false );
  		state.buffers.depth.setMask( false );

  		// lock buffers

  		state.buffers.color.setLocked( true );
  		state.buffers.depth.setLocked( true );

  		// set up stencil

  		var writeValue, clearValue;

  		if ( this.inverse ) {

  			writeValue = 0;
  			clearValue = 1;

  		} else {

  			writeValue = 1;
  			clearValue = 0;

  		}

  		state.buffers.stencil.setTest( true );
  		state.buffers.stencil.setOp( context.REPLACE, context.REPLACE, context.REPLACE );
  		state.buffers.stencil.setFunc( context.ALWAYS, writeValue, 0xffffffff );
  		state.buffers.stencil.setClear( clearValue );
  		state.buffers.stencil.setLocked( true );

  		// draw into the stencil buffer

  		renderer.setRenderTarget( readBuffer );
  		if ( this.clear ) renderer.clear();
  		renderer.render( this.scene, this.camera );

  		renderer.setRenderTarget( writeBuffer );
  		if ( this.clear ) renderer.clear();
  		renderer.render( this.scene, this.camera );

  		// unlock color and depth buffer for subsequent rendering

  		state.buffers.color.setLocked( false );
  		state.buffers.depth.setLocked( false );

  		// only render where stencil is set to 1

  		state.buffers.stencil.setLocked( false );
  		state.buffers.stencil.setFunc( context.EQUAL, 1, 0xffffffff ); // draw if == 1
  		state.buffers.stencil.setOp( context.KEEP, context.KEEP, context.KEEP );
  		state.buffers.stencil.setLocked( true );

  	}

  } );


  var ClearMaskPass = function () {

  	Pass.call( this );

  	this.needsSwap = false;

  };

  ClearMaskPass.prototype = Object.create( Pass.prototype );

  Object.assign( ClearMaskPass.prototype, {

  	render: function ( renderer /*, writeBuffer, readBuffer, deltaTime, maskActive */ ) {

  		renderer.state.buffers.stencil.setLocked( false );
  		renderer.state.buffers.stencil.setTest( false );

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  var EffectComposer = function ( renderer, renderTarget ) {

  	this.renderer = renderer;

  	if ( renderTarget === undefined ) {

  		var parameters = {
  			minFilter: LinearFilter,
  			magFilter: LinearFilter,
  			format: RGBAFormat,
  			stencilBuffer: false
  		};

  		var size = renderer.getSize( new Vector2() );
  		this._pixelRatio = renderer.getPixelRatio();
  		this._width = size.width;
  		this._height = size.height;

  		renderTarget = new WebGLRenderTarget( this._width * this._pixelRatio, this._height * this._pixelRatio, parameters );
  		renderTarget.texture.name = 'EffectComposer.rt1';

  	} else {

  		this._pixelRatio = 1;
  		this._width = renderTarget.width;
  		this._height = renderTarget.height;

  	}

  	this.renderTarget1 = renderTarget;
  	this.renderTarget2 = renderTarget.clone();
  	this.renderTarget2.texture.name = 'EffectComposer.rt2';

  	this.writeBuffer = this.renderTarget1;
  	this.readBuffer = this.renderTarget2;

  	this.renderToScreen = true;

  	this.passes = [];

  	// dependencies

  	if ( CopyShader === undefined ) {

  		console.error( 'THREE.EffectComposer relies on CopyShader' );

  	}

  	if ( ShaderPass === undefined ) {

  		console.error( 'THREE.EffectComposer relies on ShaderPass' );

  	}

  	this.copyPass = new ShaderPass( CopyShader );

  	this.clock = new Clock();

  };

  Object.assign( EffectComposer.prototype, {

  	swapBuffers: function () {

  		var tmp = this.readBuffer;
  		this.readBuffer = this.writeBuffer;
  		this.writeBuffer = tmp;

  	},

  	addPass: function ( pass ) {

  		this.passes.push( pass );
  		pass.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio );

  	},

  	insertPass: function ( pass, index ) {

  		this.passes.splice( index, 0, pass );
  		pass.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio );

  	},

  	isLastEnabledPass: function ( passIndex ) {

  		for ( var i = passIndex + 1; i < this.passes.length; i ++ ) {

  			if ( this.passes[ i ].enabled ) {

  				return false;

  			}

  		}

  		return true;

  	},

  	render: function ( deltaTime ) {

  		// deltaTime value is in seconds

  		if ( deltaTime === undefined ) {

  			deltaTime = this.clock.getDelta();

  		}

  		var currentRenderTarget = this.renderer.getRenderTarget();

  		var maskActive = false;

  		var pass, i, il = this.passes.length;

  		for ( i = 0; i < il; i ++ ) {

  			pass = this.passes[ i ];

  			if ( pass.enabled === false ) continue;

  			pass.renderToScreen = ( this.renderToScreen && this.isLastEnabledPass( i ) );
  			pass.render( this.renderer, this.writeBuffer, this.readBuffer, deltaTime, maskActive );

  			if ( pass.needsSwap ) {

  				if ( maskActive ) {

  					var context = this.renderer.getContext();
  					var stencil = this.renderer.state.buffers.stencil;

  					//context.stencilFunc( context.NOTEQUAL, 1, 0xffffffff );
  					stencil.setFunc( context.NOTEQUAL, 1, 0xffffffff );

  					this.copyPass.render( this.renderer, this.writeBuffer, this.readBuffer, deltaTime );

  					//context.stencilFunc( context.EQUAL, 1, 0xffffffff );
  					stencil.setFunc( context.EQUAL, 1, 0xffffffff );

  				}

  				this.swapBuffers();

  			}

  			if ( MaskPass !== undefined ) {

  				if ( pass instanceof MaskPass ) {

  					maskActive = true;

  				} else if ( pass instanceof ClearMaskPass ) {

  					maskActive = false;

  				}

  			}

  		}

  		this.renderer.setRenderTarget( currentRenderTarget );

  	},

  	reset: function ( renderTarget ) {

  		if ( renderTarget === undefined ) {

  			var size = this.renderer.getSize( new Vector2() );
  			this._pixelRatio = this.renderer.getPixelRatio();
  			this._width = size.width;
  			this._height = size.height;

  			renderTarget = this.renderTarget1.clone();
  			renderTarget.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio );

  		}

  		this.renderTarget1.dispose();
  		this.renderTarget2.dispose();
  		this.renderTarget1 = renderTarget;
  		this.renderTarget2 = renderTarget.clone();

  		this.writeBuffer = this.renderTarget1;
  		this.readBuffer = this.renderTarget2;

  	},

  	setSize: function ( width, height ) {

  		this._width = width;
  		this._height = height;

  		var effectiveWidth = this._width * this._pixelRatio;
  		var effectiveHeight = this._height * this._pixelRatio;

  		this.renderTarget1.setSize( effectiveWidth, effectiveHeight );
  		this.renderTarget2.setSize( effectiveWidth, effectiveHeight );

  		for ( var i = 0; i < this.passes.length; i ++ ) {

  			this.passes[ i ].setSize( effectiveWidth, effectiveHeight );

  		}

  	},

  	setPixelRatio: function ( pixelRatio ) {

  		this._pixelRatio = pixelRatio;

  		this.setSize( this._width, this._height );

  	}

  } );


  var Pass$1 = function () {

  	// if set to true, the pass is processed by the composer
  	this.enabled = true;

  	// if set to true, the pass indicates to swap read and write buffer after rendering
  	this.needsSwap = true;

  	// if set to true, the pass clears its buffer before rendering
  	this.clear = false;

  	// if set to true, the result of the pass is rendered to screen. This is set automatically by EffectComposer.
  	this.renderToScreen = false;

  };

  Object.assign( Pass$1.prototype, {

  	setSize: function ( /* width, height */ ) {},

  	render: function ( /* renderer, writeBuffer, readBuffer, deltaTime, maskActive */ ) {

  		console.error( 'THREE.Pass: .render() must be implemented in derived pass.' );

  	}

  } );

  // Helper for passes that need to fill the viewport with a single quad.
  Pass$1.FullScreenQuad = ( function () {

  	var camera = new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
  	var geometry = new PlaneBufferGeometry( 2, 2 );

  	var FullScreenQuad = function ( material ) {

  		this._mesh = new Mesh( geometry, material );

  	};

  	Object.defineProperty( FullScreenQuad.prototype, 'material', {

  		get: function () {

  			return this._mesh.material;

  		},

  		set: function ( value ) {

  			this._mesh.material = value;

  		}

  	} );

  	Object.assign( FullScreenQuad.prototype, {

  		dispose: function () {

  			this._mesh.geometry.dispose();

  		},

  		render: function ( renderer ) {

  			renderer.render( this._mesh, camera );

  		}

  	} );

  	return FullScreenQuad;

  } )();

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  var RenderPass = function ( scene, camera, overrideMaterial, clearColor, clearAlpha ) {

  	Pass.call( this );

  	this.scene = scene;
  	this.camera = camera;

  	this.overrideMaterial = overrideMaterial;

  	this.clearColor = clearColor;
  	this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0;

  	this.clear = true;
  	this.clearDepth = false;
  	this.needsSwap = false;

  };

  RenderPass.prototype = Object.assign( Object.create( Pass.prototype ), {

  	constructor: RenderPass,

  	render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {

  		var oldAutoClear = renderer.autoClear;
  		renderer.autoClear = false;

  		var oldClearColor, oldClearAlpha, oldOverrideMaterial;

  		if ( this.overrideMaterial !== undefined ) {

  			oldOverrideMaterial = this.scene.overrideMaterial;

  			this.scene.overrideMaterial = this.overrideMaterial;

  		}

  		if ( this.clearColor ) {

  			oldClearColor = renderer.getClearColor().getHex();
  			oldClearAlpha = renderer.getClearAlpha();

  			renderer.setClearColor( this.clearColor, this.clearAlpha );

  		}

  		if ( this.clearDepth ) {

  			renderer.clearDepth();

  		}

  		renderer.setRenderTarget( this.renderToScreen ? null : readBuffer );

  		// TODO: Avoid using autoClear properties, see https://github.com/mrdoob/three.js/pull/15571#issuecomment-465669600
  		if ( this.clear ) renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );
  		renderer.render( this.scene, this.camera );

  		if ( this.clearColor ) {

  			renderer.setClearColor( oldClearColor, oldClearAlpha );

  		}

  		if ( this.overrideMaterial !== undefined ) {

  			this.scene.overrideMaterial = oldOverrideMaterial;

  		}

  		renderer.autoClear = oldAutoClear;

  	}

  } );

  function _extends() {
    _extends = Object.assign || function (target) {
      for (var i = 1; i < arguments.length; i++) {
        var source = arguments[i];

        for (var key in source) {
          if (Object.prototype.hasOwnProperty.call(source, key)) {
            target[key] = source[key];
          }
        }
      }

      return target;
    };

    return _extends.apply(this, arguments);
  }

  function _assertThisInitialized$1(self) {
    if (self === void 0) {
      throw new ReferenceError("this hasn't been initialised - super() hasn't been called");
    }

    return self;
  }

  function _inheritsLoose(subClass, superClass) {
    subClass.prototype = Object.create(superClass.prototype);
    subClass.prototype.constructor = subClass;
    subClass.__proto__ = superClass;
  }

  function _getPrototypeOf$1(o) {
    _getPrototypeOf$1 = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) {
      return o.__proto__ || Object.getPrototypeOf(o);
    };
    return _getPrototypeOf$1(o);
  }

  function _setPrototypeOf$1(o, p) {
    _setPrototypeOf$1 = Object.setPrototypeOf || function _setPrototypeOf(o, p) {
      o.__proto__ = p;
      return o;
    };

    return _setPrototypeOf$1(o, p);
  }

  function _isNativeFunction(fn) {
    return Function.toString.call(fn).indexOf("[native code]") !== -1;
  }

  function _isNativeReflectConstruct$1() {
    if (typeof Reflect === "undefined" || !Reflect.construct) return false;
    if (Reflect.construct.sham) return false;
    if (typeof Proxy === "function") return true;

    try {
      Date.prototype.toString.call(Reflect.construct(Date, [], function () {}));
      return true;
    } catch (e) {
      return false;
    }
  }

  function _construct$1(Parent, args, Class) {
    if (_isNativeReflectConstruct$1()) {
      _construct$1 = Reflect.construct;
    } else {
      _construct$1 = function _construct(Parent, args, Class) {
        var a = [null];
        a.push.apply(a, args);
        var Constructor = Function.bind.apply(Parent, a);
        var instance = new Constructor();
        if (Class) _setPrototypeOf$1(instance, Class.prototype);
        return instance;
      };
    }

    return _construct$1.apply(null, arguments);
  }

  function _wrapNativeSuper(Class) {
    var _cache = typeof Map === "function" ? new Map() : undefined;

    _wrapNativeSuper = function _wrapNativeSuper(Class) {
      if (Class === null || !_isNativeFunction(Class)) return Class;

      if (typeof Class !== "function") {
        throw new TypeError("Super expression must either be null or a function");
      }

      if (typeof _cache !== "undefined") {
        if (_cache.has(Class)) return _cache.get(Class);

        _cache.set(Class, Wrapper);
      }

      function Wrapper() {
        return _construct$1(Class, arguments, _getPrototypeOf$1(this).constructor);
      }

      Wrapper.prototype = Object.create(Class.prototype, {
        constructor: {
          value: Wrapper,
          enumerable: false,
          writable: true,
          configurable: true
        }
      });
      return _setPrototypeOf$1(Wrapper, Class);
    };

    return _wrapNativeSuper(Class);
  }

  // based on https://github.com/styled-components/styled-components/blob/fcf6f3804c57a14dd7984dfab7bc06ee2edca044/src/utils/error.js

  /**
   * Parse errors.md and turn it into a simple hash of code: message
   * @private
   */
  var ERRORS = {
    "1": "Passed invalid arguments to hsl, please pass multiple numbers e.g. hsl(360, 0.75, 0.4) or an object e.g. rgb({ hue: 255, saturation: 0.4, lightness: 0.75 }).\n\n",
    "2": "Passed invalid arguments to hsla, please pass multiple numbers e.g. hsla(360, 0.75, 0.4, 0.7) or an object e.g. rgb({ hue: 255, saturation: 0.4, lightness: 0.75, alpha: 0.7 }).\n\n",
    "3": "Passed an incorrect argument to a color function, please pass a string representation of a color.\n\n",
    "4": "Couldn't generate valid rgb string from %s, it returned %s.\n\n",
    "5": "Couldn't parse the color string. Please provide the color as a string in hex, rgb, rgba, hsl or hsla notation.\n\n",
    "6": "Passed invalid arguments to rgb, please pass multiple numbers e.g. rgb(255, 205, 100) or an object e.g. rgb({ red: 255, green: 205, blue: 100 }).\n\n",
    "7": "Passed invalid arguments to rgba, please pass multiple numbers e.g. rgb(255, 205, 100, 0.75) or an object e.g. rgb({ red: 255, green: 205, blue: 100, alpha: 0.75 }).\n\n",
    "8": "Passed invalid argument to toColorString, please pass a RgbColor, RgbaColor, HslColor or HslaColor object.\n\n",
    "9": "Please provide a number of steps to the modularScale helper.\n\n",
    "10": "Please pass a number or one of the predefined scales to the modularScale helper as the ratio.\n\n",
    "11": "Invalid value passed as base to modularScale, expected number or em string but got \"%s\"\n\n",
    "12": "Expected a string ending in \"px\" or a number passed as the first argument to %s(), got \"%s\" instead.\n\n",
    "13": "Expected a string ending in \"px\" or a number passed as the second argument to %s(), got \"%s\" instead.\n\n",
    "14": "Passed invalid pixel value (\"%s\") to %s(), please pass a value like \"12px\" or 12.\n\n",
    "15": "Passed invalid base value (\"%s\") to %s(), please pass a value like \"12px\" or 12.\n\n",
    "16": "You must provide a template to this method.\n\n",
    "17": "You passed an unsupported selector state to this method.\n\n",
    "18": "minScreen and maxScreen must be provided as stringified numbers with the same units.\n\n",
    "19": "fromSize and toSize must be provided as stringified numbers with the same units.\n\n",
    "20": "expects either an array of objects or a single object with the properties prop, fromSize, and toSize.\n\n",
    "21": "expects the objects in the first argument array to have the properties `prop`, `fromSize`, and `toSize`.\n\n",
    "22": "expects the first argument object to have the properties `prop`, `fromSize`, and `toSize`.\n\n",
    "23": "fontFace expects a name of a font-family.\n\n",
    "24": "fontFace expects either the path to the font file(s) or a name of a local copy.\n\n",
    "25": "fontFace expects localFonts to be an array.\n\n",
    "26": "fontFace expects fileFormats to be an array.\n\n",
    "27": "radialGradient requries at least 2 color-stops to properly render.\n\n",
    "28": "Please supply a filename to retinaImage() as the first argument.\n\n",
    "29": "Passed invalid argument to triangle, please pass correct pointingDirection e.g. 'right'.\n\n",
    "30": "Passed an invalid value to `height` or `width`. Please provide a pixel based unit.\n\n",
    "31": "The animation shorthand only takes 8 arguments. See the specification for more information: http://mdn.io/animation\n\n",
    "32": "To pass multiple animations please supply them in arrays, e.g. animation(['rotate', '2s'], ['move', '1s'])\nTo pass a single animation please supply them in simple values, e.g. animation('rotate', '2s')\n\n",
    "33": "The animation shorthand arrays can only have 8 elements. See the specification for more information: http://mdn.io/animation\n\n",
    "34": "borderRadius expects a radius value as a string or number as the second argument.\n\n",
    "35": "borderRadius expects one of \"top\", \"bottom\", \"left\" or \"right\" as the first argument.\n\n",
    "36": "Property must be a string value.\n\n",
    "37": "Syntax Error at %s.\n\n",
    "38": "Formula contains a function that needs parentheses at %s.\n\n",
    "39": "Formula is missing closing parenthesis at %s.\n\n",
    "40": "Formula has too many closing parentheses at %s.\n\n",
    "41": "All values in a formula must have the same unit or be unitless.\n\n",
    "42": "Please provide a number of steps to the modularScale helper.\n\n",
    "43": "Please pass a number or one of the predefined scales to the modularScale helper as the ratio.\n\n",
    "44": "Invalid value passed as base to modularScale, expected number or em/rem string but got %s.\n\n",
    "45": "Passed invalid argument to hslToColorString, please pass a HslColor or HslaColor object.\n\n",
    "46": "Passed invalid argument to rgbToColorString, please pass a RgbColor or RgbaColor object.\n\n",
    "47": "minScreen and maxScreen must be provided as stringified numbers with the same units.\n\n",
    "48": "fromSize and toSize must be provided as stringified numbers with the same units.\n\n",
    "49": "Expects either an array of objects or a single object with the properties prop, fromSize, and toSize.\n\n",
    "50": "Expects the objects in the first argument array to have the properties prop, fromSize, and toSize.\n\n",
    "51": "Expects the first argument object to have the properties prop, fromSize, and toSize.\n\n",
    "52": "fontFace expects either the path to the font file(s) or a name of a local copy.\n\n",
    "53": "fontFace expects localFonts to be an array.\n\n",
    "54": "fontFace expects fileFormats to be an array.\n\n",
    "55": "fontFace expects a name of a font-family.\n\n",
    "56": "linearGradient requries at least 2 color-stops to properly render.\n\n",
    "57": "radialGradient requries at least 2 color-stops to properly render.\n\n",
    "58": "Please supply a filename to retinaImage() as the first argument.\n\n",
    "59": "Passed invalid argument to triangle, please pass correct pointingDirection e.g. 'right'.\n\n",
    "60": "Passed an invalid value to `height` or `width`. Please provide a pixel based unit.\n\n",
    "61": "Property must be a string value.\n\n",
    "62": "borderRadius expects a radius value as a string or number as the second argument.\n\n",
    "63": "borderRadius expects one of \"top\", \"bottom\", \"left\" or \"right\" as the first argument.\n\n",
    "64": "The animation shorthand only takes 8 arguments. See the specification for more information: http://mdn.io/animation.\n\n",
    "65": "To pass multiple animations please supply them in arrays, e.g. animation(['rotate', '2s'], ['move', '1s'])\\nTo pass a single animation please supply them in simple values, e.g. animation('rotate', '2s').\n\n",
    "66": "The animation shorthand arrays can only have 8 elements. See the specification for more information: http://mdn.io/animation.\n\n",
    "67": "You must provide a template to this method.\n\n",
    "68": "You passed an unsupported selector state to this method.\n\n",
    "69": "Expected a string ending in \"px\" or a number passed as the first argument to %s(), got %s instead.\n\n",
    "70": "Expected a string ending in \"px\" or a number passed as the second argument to %s(), got %s instead.\n\n",
    "71": "Passed invalid pixel value %s to %s(), please pass a value like \"12px\" or 12.\n\n",
    "72": "Passed invalid base value %s to %s(), please pass a value like \"12px\" or 12.\n\n",
    "73": "Please provide a valid CSS variable.\n\n",
    "74": "CSS variable not found.\n"
  };
  /**
   * super basic version of sprintf
   * @private
   */

  function format() {
    for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {
      args[_key] = arguments[_key];
    }

    var a = args[0];
    var b = [];
    var c;

    for (c = 1; c < args.length; c += 1) {
      b.push(args[c]);
    }

    b.forEach(function (d) {
      a = a.replace(/%[a-z]/, d);
    });
    return a;
  }
  /**
   * Create an error file out of errors.md for development and a simple web link to the full errors
   * in production mode.
   * @private
   */


  var PolishedError = /*#__PURE__*/function (_Error) {
    _inheritsLoose(PolishedError, _Error);

    function PolishedError(code) {
      var _this;

      if (process.env.NODE_ENV === 'production') {
        _this = _Error.call(this, "An error occurred. See https://github.com/styled-components/polished/blob/master/src/internalHelpers/errors.md#" + code + " for more information.") || this;
      } else {
        for (var _len2 = arguments.length, args = new Array(_len2 > 1 ? _len2 - 1 : 0), _key2 = 1; _key2 < _len2; _key2++) {
          args[_key2 - 1] = arguments[_key2];
        }

        _this = _Error.call(this, format.apply(void 0, [ERRORS[code]].concat(args))) || this;
      }

      return _assertThisInitialized$1(_this);
    }

    return PolishedError;
  }( /*#__PURE__*/_wrapNativeSuper(Error));

  function colorToInt(color) {
    return Math.round(color * 255);
  }

  function convertToInt(red, green, blue) {
    return colorToInt(red) + "," + colorToInt(green) + "," + colorToInt(blue);
  }

  function hslToRgb(hue, saturation, lightness, convert) {
    if (convert === void 0) {
      convert = convertToInt;
    }

    if (saturation === 0) {
      // achromatic
      return convert(lightness, lightness, lightness);
    } // formulae from https://en.wikipedia.org/wiki/HSL_and_HSV


    var huePrime = (hue % 360 + 360) % 360 / 60;
    var chroma = (1 - Math.abs(2 * lightness - 1)) * saturation;
    var secondComponent = chroma * (1 - Math.abs(huePrime % 2 - 1));
    var red = 0;
    var green = 0;
    var blue = 0;

    if (huePrime >= 0 && huePrime < 1) {
      red = chroma;
      green = secondComponent;
    } else if (huePrime >= 1 && huePrime < 2) {
      red = secondComponent;
      green = chroma;
    } else if (huePrime >= 2 && huePrime < 3) {
      green = chroma;
      blue = secondComponent;
    } else if (huePrime >= 3 && huePrime < 4) {
      green = secondComponent;
      blue = chroma;
    } else if (huePrime >= 4 && huePrime < 5) {
      red = secondComponent;
      blue = chroma;
    } else if (huePrime >= 5 && huePrime < 6) {
      red = chroma;
      blue = secondComponent;
    }

    var lightnessModification = lightness - chroma / 2;
    var finalRed = red + lightnessModification;
    var finalGreen = green + lightnessModification;
    var finalBlue = blue + lightnessModification;
    return convert(finalRed, finalGreen, finalBlue);
  }

  var namedColorMap = {
    aliceblue: 'f0f8ff',
    antiquewhite: 'faebd7',
    aqua: '00ffff',
    aquamarine: '7fffd4',
    azure: 'f0ffff',
    beige: 'f5f5dc',
    bisque: 'ffe4c4',
    black: '000',
    blanchedalmond: 'ffebcd',
    blue: '0000ff',
    blueviolet: '8a2be2',
    brown: 'a52a2a',
    burlywood: 'deb887',
    cadetblue: '5f9ea0',
    chartreuse: '7fff00',
    chocolate: 'd2691e',
    coral: 'ff7f50',
    cornflowerblue: '6495ed',
    cornsilk: 'fff8dc',
    crimson: 'dc143c',
    cyan: '00ffff',
    darkblue: '00008b',
    darkcyan: '008b8b',
    darkgoldenrod: 'b8860b',
    darkgray: 'a9a9a9',
    darkgreen: '006400',
    darkgrey: 'a9a9a9',
    darkkhaki: 'bdb76b',
    darkmagenta: '8b008b',
    darkolivegreen: '556b2f',
    darkorange: 'ff8c00',
    darkorchid: '9932cc',
    darkred: '8b0000',
    darksalmon: 'e9967a',
    darkseagreen: '8fbc8f',
    darkslateblue: '483d8b',
    darkslategray: '2f4f4f',
    darkslategrey: '2f4f4f',
    darkturquoise: '00ced1',
    darkviolet: '9400d3',
    deeppink: 'ff1493',
    deepskyblue: '00bfff',
    dimgray: '696969',
    dimgrey: '696969',
    dodgerblue: '1e90ff',
    firebrick: 'b22222',
    floralwhite: 'fffaf0',
    forestgreen: '228b22',
    fuchsia: 'ff00ff',
    gainsboro: 'dcdcdc',
    ghostwhite: 'f8f8ff',
    gold: 'ffd700',
    goldenrod: 'daa520',
    gray: '808080',
    green: '008000',
    greenyellow: 'adff2f',
    grey: '808080',
    honeydew: 'f0fff0',
    hotpink: 'ff69b4',
    indianred: 'cd5c5c',
    indigo: '4b0082',
    ivory: 'fffff0',
    khaki: 'f0e68c',
    lavender: 'e6e6fa',
    lavenderblush: 'fff0f5',
    lawngreen: '7cfc00',
    lemonchiffon: 'fffacd',
    lightblue: 'add8e6',
    lightcoral: 'f08080',
    lightcyan: 'e0ffff',
    lightgoldenrodyellow: 'fafad2',
    lightgray: 'd3d3d3',
    lightgreen: '90ee90',
    lightgrey: 'd3d3d3',
    lightpink: 'ffb6c1',
    lightsalmon: 'ffa07a',
    lightseagreen: '20b2aa',
    lightskyblue: '87cefa',
    lightslategray: '789',
    lightslategrey: '789',
    lightsteelblue: 'b0c4de',
    lightyellow: 'ffffe0',
    lime: '0f0',
    limegreen: '32cd32',
    linen: 'faf0e6',
    magenta: 'f0f',
    maroon: '800000',
    mediumaquamarine: '66cdaa',
    mediumblue: '0000cd',
    mediumorchid: 'ba55d3',
    mediumpurple: '9370db',
    mediumseagreen: '3cb371',
    mediumslateblue: '7b68ee',
    mediumspringgreen: '00fa9a',
    mediumturquoise: '48d1cc',
    mediumvioletred: 'c71585',
    midnightblue: '191970',
    mintcream: 'f5fffa',
    mistyrose: 'ffe4e1',
    moccasin: 'ffe4b5',
    navajowhite: 'ffdead',
    navy: '000080',
    oldlace: 'fdf5e6',
    olive: '808000',
    olivedrab: '6b8e23',
    orange: 'ffa500',
    orangered: 'ff4500',
    orchid: 'da70d6',
    palegoldenrod: 'eee8aa',
    palegreen: '98fb98',
    paleturquoise: 'afeeee',
    palevioletred: 'db7093',
    papayawhip: 'ffefd5',
    peachpuff: 'ffdab9',
    peru: 'cd853f',
    pink: 'ffc0cb',
    plum: 'dda0dd',
    powderblue: 'b0e0e6',
    purple: '800080',
    rebeccapurple: '639',
    red: 'f00',
    rosybrown: 'bc8f8f',
    royalblue: '4169e1',
    saddlebrown: '8b4513',
    salmon: 'fa8072',
    sandybrown: 'f4a460',
    seagreen: '2e8b57',
    seashell: 'fff5ee',
    sienna: 'a0522d',
    silver: 'c0c0c0',
    skyblue: '87ceeb',
    slateblue: '6a5acd',
    slategray: '708090',
    slategrey: '708090',
    snow: 'fffafa',
    springgreen: '00ff7f',
    steelblue: '4682b4',
    tan: 'd2b48c',
    teal: '008080',
    thistle: 'd8bfd8',
    tomato: 'ff6347',
    turquoise: '40e0d0',
    violet: 'ee82ee',
    wheat: 'f5deb3',
    white: 'fff',
    whitesmoke: 'f5f5f5',
    yellow: 'ff0',
    yellowgreen: '9acd32'
  };
  /**
   * Checks if a string is a CSS named color and returns its equivalent hex value, otherwise returns the original color.
   * @private
   */

  function nameToHex(color) {
    if (typeof color !== 'string') return color;
    var normalizedColorName = color.toLowerCase();
    return namedColorMap[normalizedColorName] ? "#" + namedColorMap[normalizedColorName] : color;
  }

  var hexRegex = /^#[a-fA-F0-9]{6}$/;
  var hexRgbaRegex = /^#[a-fA-F0-9]{8}$/;
  var reducedHexRegex = /^#[a-fA-F0-9]{3}$/;
  var reducedRgbaHexRegex = /^#[a-fA-F0-9]{4}$/;
  var rgbRegex = /^rgb\(\s*(\d{1,3})\s*,\s*(\d{1,3})\s*,\s*(\d{1,3})\s*\)$/i;
  var rgbaRegex = /^rgba\(\s*(\d{1,3})\s*,\s*(\d{1,3})\s*,\s*(\d{1,3})\s*,\s*([-+]?[0-9]*[.]?[0-9]+)\s*\)$/i;
  var hslRegex = /^hsl\(\s*(\d{0,3}[.]?[0-9]+)\s*,\s*(\d{1,3}[.]?[0-9]?)%\s*,\s*(\d{1,3}[.]?[0-9]?)%\s*\)$/i;
  var hslaRegex = /^hsla\(\s*(\d{0,3}[.]?[0-9]+)\s*,\s*(\d{1,3}[.]?[0-9]?)%\s*,\s*(\d{1,3}[.]?[0-9]?)%\s*,\s*([-+]?[0-9]*[.]?[0-9]+)\s*\)$/i;
  /**
   * Returns an RgbColor or RgbaColor object. This utility function is only useful
   * if want to extract a color component. With the color util `toColorString` you
   * can convert a RgbColor or RgbaColor object back to a string.
   *
   * @example
   * // Assigns `{ red: 255, green: 0, blue: 0 }` to color1
   * const color1 = parseToRgb('rgb(255, 0, 0)');
   * // Assigns `{ red: 92, green: 102, blue: 112, alpha: 0.75 }` to color2
   * const color2 = parseToRgb('hsla(210, 10%, 40%, 0.75)');
   */

  function parseToRgb(color) {
    if (typeof color !== 'string') {
      throw new PolishedError(3);
    }

    var normalizedColor = nameToHex(color);

    if (normalizedColor.match(hexRegex)) {
      return {
        red: parseInt("" + normalizedColor[1] + normalizedColor[2], 16),
        green: parseInt("" + normalizedColor[3] + normalizedColor[4], 16),
        blue: parseInt("" + normalizedColor[5] + normalizedColor[6], 16)
      };
    }

    if (normalizedColor.match(hexRgbaRegex)) {
      var alpha = parseFloat((parseInt("" + normalizedColor[7] + normalizedColor[8], 16) / 255).toFixed(2));
      return {
        red: parseInt("" + normalizedColor[1] + normalizedColor[2], 16),
        green: parseInt("" + normalizedColor[3] + normalizedColor[4], 16),
        blue: parseInt("" + normalizedColor[5] + normalizedColor[6], 16),
        alpha: alpha
      };
    }

    if (normalizedColor.match(reducedHexRegex)) {
      return {
        red: parseInt("" + normalizedColor[1] + normalizedColor[1], 16),
        green: parseInt("" + normalizedColor[2] + normalizedColor[2], 16),
        blue: parseInt("" + normalizedColor[3] + normalizedColor[3], 16)
      };
    }

    if (normalizedColor.match(reducedRgbaHexRegex)) {
      var _alpha = parseFloat((parseInt("" + normalizedColor[4] + normalizedColor[4], 16) / 255).toFixed(2));

      return {
        red: parseInt("" + normalizedColor[1] + normalizedColor[1], 16),
        green: parseInt("" + normalizedColor[2] + normalizedColor[2], 16),
        blue: parseInt("" + normalizedColor[3] + normalizedColor[3], 16),
        alpha: _alpha
      };
    }

    var rgbMatched = rgbRegex.exec(normalizedColor);

    if (rgbMatched) {
      return {
        red: parseInt("" + rgbMatched[1], 10),
        green: parseInt("" + rgbMatched[2], 10),
        blue: parseInt("" + rgbMatched[3], 10)
      };
    }

    var rgbaMatched = rgbaRegex.exec(normalizedColor);

    if (rgbaMatched) {
      return {
        red: parseInt("" + rgbaMatched[1], 10),
        green: parseInt("" + rgbaMatched[2], 10),
        blue: parseInt("" + rgbaMatched[3], 10),
        alpha: parseFloat("" + rgbaMatched[4])
      };
    }

    var hslMatched = hslRegex.exec(normalizedColor);

    if (hslMatched) {
      var hue = parseInt("" + hslMatched[1], 10);
      var saturation = parseInt("" + hslMatched[2], 10) / 100;
      var lightness = parseInt("" + hslMatched[3], 10) / 100;
      var rgbColorString = "rgb(" + hslToRgb(hue, saturation, lightness) + ")";
      var hslRgbMatched = rgbRegex.exec(rgbColorString);

      if (!hslRgbMatched) {
        throw new PolishedError(4, normalizedColor, rgbColorString);
      }

      return {
        red: parseInt("" + hslRgbMatched[1], 10),
        green: parseInt("" + hslRgbMatched[2], 10),
        blue: parseInt("" + hslRgbMatched[3], 10)
      };
    }

    var hslaMatched = hslaRegex.exec(normalizedColor);

    if (hslaMatched) {
      var _hue = parseInt("" + hslaMatched[1], 10);

      var _saturation = parseInt("" + hslaMatched[2], 10) / 100;

      var _lightness = parseInt("" + hslaMatched[3], 10) / 100;

      var _rgbColorString = "rgb(" + hslToRgb(_hue, _saturation, _lightness) + ")";

      var _hslRgbMatched = rgbRegex.exec(_rgbColorString);

      if (!_hslRgbMatched) {
        throw new PolishedError(4, normalizedColor, _rgbColorString);
      }

      return {
        red: parseInt("" + _hslRgbMatched[1], 10),
        green: parseInt("" + _hslRgbMatched[2], 10),
        blue: parseInt("" + _hslRgbMatched[3], 10),
        alpha: parseFloat("" + hslaMatched[4])
      };
    }

    throw new PolishedError(5);
  }

  /**
   * Reduces hex values if possible e.g. #ff8866 to #f86
   * @private
   */
  var reduceHexValue = function reduceHexValue(value) {
    if (value.length === 7 && value[1] === value[2] && value[3] === value[4] && value[5] === value[6]) {
      return "#" + value[1] + value[3] + value[5];
    }

    return value;
  };

  function numberToHex(value) {
    var hex = value.toString(16);
    return hex.length === 1 ? "0" + hex : hex;
  }

  /**
   * Returns a string value for the color. The returned result is the smallest possible hex notation.
   *
   * @example
   * // Styles as object usage
   * const styles = {
   *   background: rgb(255, 205, 100),
   *   background: rgb({ red: 255, green: 205, blue: 100 }),
   * }
   *
   * // styled-components usage
   * const div = styled.div`
   *   background: ${rgb(255, 205, 100)};
   *   background: ${rgb({ red: 255, green: 205, blue: 100 })};
   * `
   *
   * // CSS in JS Output
   *
   * element {
   *   background: "#ffcd64";
   *   background: "#ffcd64";
   * }
   */
  function rgb(value, green, blue) {
    if (typeof value === 'number' && typeof green === 'number' && typeof blue === 'number') {
      return reduceHexValue("#" + numberToHex(value) + numberToHex(green) + numberToHex(blue));
    } else if (typeof value === 'object' && green === undefined && blue === undefined) {
      return reduceHexValue("#" + numberToHex(value.red) + numberToHex(value.green) + numberToHex(value.blue));
    }

    throw new PolishedError(6);
  }

  /**
   * Returns a string value for the color. The returned result is the smallest possible rgba or hex notation.
   *
   * Can also be used to fade a color by passing a hex value or named CSS color along with an alpha value.
   *
   * @example
   * // Styles as object usage
   * const styles = {
   *   background: rgba(255, 205, 100, 0.7),
   *   background: rgba({ red: 255, green: 205, blue: 100, alpha: 0.7 }),
   *   background: rgba(255, 205, 100, 1),
   *   background: rgba('#ffffff', 0.4),
   *   background: rgba('black', 0.7),
   * }
   *
   * // styled-components usage
   * const div = styled.div`
   *   background: ${rgba(255, 205, 100, 0.7)};
   *   background: ${rgba({ red: 255, green: 205, blue: 100, alpha: 0.7 })};
   *   background: ${rgba(255, 205, 100, 1)};
   *   background: ${rgba('#ffffff', 0.4)};
   *   background: ${rgba('black', 0.7)};
   * `
   *
   * // CSS in JS Output
   *
   * element {
   *   background: "rgba(255,205,100,0.7)";
   *   background: "rgba(255,205,100,0.7)";
   *   background: "#ffcd64";
   *   background: "rgba(255,255,255,0.4)";
   *   background: "rgba(0,0,0,0.7)";
   * }
   */
  function rgba(firstValue, secondValue, thirdValue, fourthValue) {
    if (typeof firstValue === 'string' && typeof secondValue === 'number') {
      var rgbValue = parseToRgb(firstValue);
      return "rgba(" + rgbValue.red + "," + rgbValue.green + "," + rgbValue.blue + "," + secondValue + ")";
    } else if (typeof firstValue === 'number' && typeof secondValue === 'number' && typeof thirdValue === 'number' && typeof fourthValue === 'number') {
      return fourthValue >= 1 ? rgb(firstValue, secondValue, thirdValue) : "rgba(" + firstValue + "," + secondValue + "," + thirdValue + "," + fourthValue + ")";
    } else if (typeof firstValue === 'object' && secondValue === undefined && thirdValue === undefined && fourthValue === undefined) {
      return firstValue.alpha >= 1 ? rgb(firstValue.red, firstValue.green, firstValue.blue) : "rgba(" + firstValue.red + "," + firstValue.green + "," + firstValue.blue + "," + firstValue.alpha + ")";
    }

    throw new PolishedError(7);
  }

  // Type definitions taken from https://github.com/gcanti/flow-static-land/blob/master/src/Fun.js
  // eslint-disable-next-line no-unused-vars
  // eslint-disable-next-line no-unused-vars
  // eslint-disable-next-line no-redeclare
  function curried(f, length, acc) {
    return function fn() {
      // eslint-disable-next-line prefer-rest-params
      var combined = acc.concat(Array.prototype.slice.call(arguments));
      return combined.length >= length ? f.apply(this, combined) : curried(f, length, combined);
    };
  } // eslint-disable-next-line no-redeclare


  function curry(f) {
    // eslint-disable-line no-redeclare
    return curried(f, f.length, []);
  }

  function guard(lowerBoundary, upperBoundary, value) {
    return Math.max(lowerBoundary, Math.min(upperBoundary, value));
  }

  /**
   * Increases the opacity of a color. Its range for the amount is between 0 to 1.
   *
   *
   * @example
   * // Styles as object usage
   * const styles = {
   *   background: opacify(0.1, 'rgba(255, 255, 255, 0.9)');
   *   background: opacify(0.2, 'hsla(0, 0%, 100%, 0.5)'),
   *   background: opacify('0.5', 'rgba(255, 0, 0, 0.2)'),
   * }
   *
   * // styled-components usage
   * const div = styled.div`
   *   background: ${opacify(0.1, 'rgba(255, 255, 255, 0.9)')};
   *   background: ${opacify(0.2, 'hsla(0, 0%, 100%, 0.5)')},
   *   background: ${opacify('0.5', 'rgba(255, 0, 0, 0.2)')},
   * `
   *
   * // CSS in JS Output
   *
   * element {
   *   background: "#fff";
   *   background: "rgba(255,255,255,0.7)";
   *   background: "rgba(255,0,0,0.7)";
   * }
   */

  function opacify(amount, color) {
    if (color === 'transparent') return color;
    var parsedColor = parseToRgb(color);
    var alpha = typeof parsedColor.alpha === 'number' ? parsedColor.alpha : 1;

    var colorWithAlpha = _extends({}, parsedColor, {
      alpha: guard(0, 1, (alpha * 100 + parseFloat(amount) * 100) / 100)
    });

    return rgba(colorWithAlpha);
  } // prettier-ignore


  var curriedOpacify = /*#__PURE__*/curry
  /* ::<number | string, string, string> */
  (opacify);

  var NOW;
  // Include a performance.now polyfill.
  // In node.js, use process.hrtime.
  // eslint-disable-next-line
  // @ts-ignore
  if (typeof self === 'undefined' && typeof process !== 'undefined' && process.hrtime) {
      NOW = function () {
          // eslint-disable-next-line
          // @ts-ignore
          var time = process.hrtime();
          // Convert [seconds, nanoseconds] to milliseconds.
          return time[0] * 1000 + time[1] / 1000000;
      };
  }
  // In a browser, use self.performance.now if it is available.
  else if (typeof self !== 'undefined' && self.performance !== undefined && self.performance.now !== undefined) {
      // This must be bound, because directly assigning this function
      // leads to an invocation exception in Chrome.
      NOW = self.performance.now.bind(self.performance);
  }
  // Use Date.now if it is available.
  else if (Date.now !== undefined) {
      NOW = Date.now;
  }
  // Otherwise, use 'new Date().getTime()'.
  else {
      NOW = function () {
          return new Date().getTime();
      };
  }
  var NOW$1 = NOW;

  /**
   * Controlling groups of tweens
   *
   * Using the TWEEN singleton to manage your tweens can cause issues in large apps with many components.
   * In these cases, you may want to create your own smaller groups of tween
   */
  var Group$1 = /** @class */ (function () {
      function Group() {
          this._tweens = {};
          this._tweensAddedDuringUpdate = {};
      }
      Group.prototype.getAll = function () {
          var _this = this;
          return Object.keys(this._tweens).map(function (tweenId) {
              return _this._tweens[tweenId];
          });
      };
      Group.prototype.removeAll = function () {
          this._tweens = {};
      };
      Group.prototype.add = function (tween) {
          this._tweens[tween.getId()] = tween;
          this._tweensAddedDuringUpdate[tween.getId()] = tween;
      };
      Group.prototype.remove = function (tween) {
          delete this._tweens[tween.getId()];
          delete this._tweensAddedDuringUpdate[tween.getId()];
      };
      Group.prototype.update = function (time, preserve) {
          var tweenIds = Object.keys(this._tweens);
          if (tweenIds.length === 0) {
              return false;
          }
          time = time !== undefined ? time : NOW$1();
          // Tweens are updated in "batches". If you add a new tween during an
          // update, then the new tween will be updated in the next batch.
          // If you remove a tween during an update, it may or may not be updated.
          // However, if the removed tween was added during the current batch,
          // then it will not be updated.
          while (tweenIds.length > 0) {
              this._tweensAddedDuringUpdate = {};
              for (var i = 0; i < tweenIds.length; i++) {
                  var tween = this._tweens[tweenIds[i]];
                  if (tween && tween.update(time) === false && !preserve) {
                      delete this._tweens[tweenIds[i]];
                  }
              }
              tweenIds = Object.keys(this._tweensAddedDuringUpdate);
          }
          return true;
      };
      return Group;
  }());

  /**
   * The Ease class provides a collection of easing functions for use with tween.js.
   */
  var Easing = {
      Linear: {
          None: function (amount) {
              return amount;
          },
      },
      Quadratic: {
          In: function (amount) {
              return amount * amount;
          },
          Out: function (amount) {
              return amount * (2 - amount);
          },
          InOut: function (amount) {
              if ((amount *= 2) < 1) {
                  return 0.5 * amount * amount;
              }
              return -0.5 * (--amount * (amount - 2) - 1);
          },
      },
      Cubic: {
          In: function (amount) {
              return amount * amount * amount;
          },
          Out: function (amount) {
              return --amount * amount * amount + 1;
          },
          InOut: function (amount) {
              if ((amount *= 2) < 1) {
                  return 0.5 * amount * amount * amount;
              }
              return 0.5 * ((amount -= 2) * amount * amount + 2);
          },
      },
      Quartic: {
          In: function (amount) {
              return amount * amount * amount * amount;
          },
          Out: function (amount) {
              return 1 - --amount * amount * amount * amount;
          },
          InOut: function (amount) {
              if ((amount *= 2) < 1) {
                  return 0.5 * amount * amount * amount * amount;
              }
              return -0.5 * ((amount -= 2) * amount * amount * amount - 2);
          },
      },
      Quintic: {
          In: function (amount) {
              return amount * amount * amount * amount * amount;
          },
          Out: function (amount) {
              return --amount * amount * amount * amount * amount + 1;
          },
          InOut: function (amount) {
              if ((amount *= 2) < 1) {
                  return 0.5 * amount * amount * amount * amount * amount;
              }
              return 0.5 * ((amount -= 2) * amount * amount * amount * amount + 2);
          },
      },
      Sinusoidal: {
          In: function (amount) {
              return 1 - Math.cos((amount * Math.PI) / 2);
          },
          Out: function (amount) {
              return Math.sin((amount * Math.PI) / 2);
          },
          InOut: function (amount) {
              return 0.5 * (1 - Math.cos(Math.PI * amount));
          },
      },
      Exponential: {
          In: function (amount) {
              return amount === 0 ? 0 : Math.pow(1024, amount - 1);
          },
          Out: function (amount) {
              return amount === 1 ? 1 : 1 - Math.pow(2, -10 * amount);
          },
          InOut: function (amount) {
              if (amount === 0) {
                  return 0;
              }
              if (amount === 1) {
                  return 1;
              }
              if ((amount *= 2) < 1) {
                  return 0.5 * Math.pow(1024, amount - 1);
              }
              return 0.5 * (-Math.pow(2, -10 * (amount - 1)) + 2);
          },
      },
      Circular: {
          In: function (amount) {
              return 1 - Math.sqrt(1 - amount * amount);
          },
          Out: function (amount) {
              return Math.sqrt(1 - --amount * amount);
          },
          InOut: function (amount) {
              if ((amount *= 2) < 1) {
                  return -0.5 * (Math.sqrt(1 - amount * amount) - 1);
              }
              return 0.5 * (Math.sqrt(1 - (amount -= 2) * amount) + 1);
          },
      },
      Elastic: {
          In: function (amount) {
              if (amount === 0) {
                  return 0;
              }
              if (amount === 1) {
                  return 1;
              }
              return -Math.pow(2, 10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI);
          },
          Out: function (amount) {
              if (amount === 0) {
                  return 0;
              }
              if (amount === 1) {
                  return 1;
              }
              return Math.pow(2, -10 * amount) * Math.sin((amount - 0.1) * 5 * Math.PI) + 1;
          },
          InOut: function (amount) {
              if (amount === 0) {
                  return 0;
              }
              if (amount === 1) {
                  return 1;
              }
              amount *= 2;
              if (amount < 1) {
                  return -0.5 * Math.pow(2, 10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI);
              }
              return 0.5 * Math.pow(2, -10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI) + 1;
          },
      },
      Back: {
          In: function (amount) {
              var s = 1.70158;
              return amount * amount * ((s + 1) * amount - s);
          },
          Out: function (amount) {
              var s = 1.70158;
              return --amount * amount * ((s + 1) * amount + s) + 1;
          },
          InOut: function (amount) {
              var s = 1.70158 * 1.525;
              if ((amount *= 2) < 1) {
                  return 0.5 * (amount * amount * ((s + 1) * amount - s));
              }
              return 0.5 * ((amount -= 2) * amount * ((s + 1) * amount + s) + 2);
          },
      },
      Bounce: {
          In: function (amount) {
              return 1 - Easing.Bounce.Out(1 - amount);
          },
          Out: function (amount) {
              if (amount < 1 / 2.75) {
                  return 7.5625 * amount * amount;
              }
              else if (amount < 2 / 2.75) {
                  return 7.5625 * (amount -= 1.5 / 2.75) * amount + 0.75;
              }
              else if (amount < 2.5 / 2.75) {
                  return 7.5625 * (amount -= 2.25 / 2.75) * amount + 0.9375;
              }
              else {
                  return 7.5625 * (amount -= 2.625 / 2.75) * amount + 0.984375;
              }
          },
          InOut: function (amount) {
              if (amount < 0.5) {
                  return Easing.Bounce.In(amount * 2) * 0.5;
              }
              return Easing.Bounce.Out(amount * 2 - 1) * 0.5 + 0.5;
          },
      },
  };

  /**
   *
   */
  var Interpolation = {
      Linear: function (v, k) {
          var m = v.length - 1;
          var f = m * k;
          var i = Math.floor(f);
          var fn = Interpolation.Utils.Linear;
          if (k < 0) {
              return fn(v[0], v[1], f);
          }
          if (k > 1) {
              return fn(v[m], v[m - 1], m - f);
          }
          return fn(v[i], v[i + 1 > m ? m : i + 1], f - i);
      },
      Bezier: function (v, k) {
          var b = 0;
          var n = v.length - 1;
          var pw = Math.pow;
          var bn = Interpolation.Utils.Bernstein;
          for (var i = 0; i <= n; i++) {
              b += pw(1 - k, n - i) * pw(k, i) * v[i] * bn(n, i);
          }
          return b;
      },
      CatmullRom: function (v, k) {
          var m = v.length - 1;
          var f = m * k;
          var i = Math.floor(f);
          var fn = Interpolation.Utils.CatmullRom;
          if (v[0] === v[m]) {
              if (k < 0) {
                  i = Math.floor((f = m * (1 + k)));
              }
              return fn(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i);
          }
          else {
              if (k < 0) {
                  return v[0] - (fn(v[0], v[0], v[1], v[1], -f) - v[0]);
              }
              if (k > 1) {
                  return v[m] - (fn(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]);
              }
              return fn(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i);
          }
      },
      Utils: {
          Linear: function (p0, p1, t) {
              return (p1 - p0) * t + p0;
          },
          Bernstein: function (n, i) {
              var fc = Interpolation.Utils.Factorial;
              return fc(n) / fc(i) / fc(n - i);
          },
          Factorial: (function () {
              var a = [1];
              return function (n) {
                  var s = 1;
                  if (a[n]) {
                      return a[n];
                  }
                  for (var i = n; i > 1; i--) {
                      s *= i;
                  }
                  a[n] = s;
                  return s;
              };
          })(),
          CatmullRom: function (p0, p1, p2, p3, t) {
              var v0 = (p2 - p0) * 0.5;
              var v1 = (p3 - p1) * 0.5;
              var t2 = t * t;
              var t3 = t * t2;
              return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
          },
      },
  };

  /**
   * Utils
   */
  var Sequence = /** @class */ (function () {
      function Sequence() {
      }
      Sequence.nextId = function () {
          return Sequence._nextId++;
      };
      Sequence._nextId = 0;
      return Sequence;
  }());

  /**
   * Tween.js - Licensed under the MIT license
   * https://github.com/tweenjs/tween.js
   * ----------------------------------------------
   *
   * See https://github.com/tweenjs/tween.js/graphs/contributors for the full list of contributors.
   * Thank you all, you're awesome!
   */
  var Tween = /** @class */ (function () {
      function Tween(_object, _group) {
          if (_group === void 0) { _group = TWEEN; }
          this._object = _object;
          this._group = _group;
          this._isPaused = false;
          this._pauseStart = 0;
          this._valuesStart = {};
          this._valuesEnd = {};
          this._valuesStartRepeat = {};
          this._duration = 1000;
          this._initialRepeat = 0;
          this._repeat = 0;
          this._yoyo = false;
          this._isPlaying = false;
          this._reversed = false;
          this._delayTime = 0;
          this._startTime = 0;
          this._easingFunction = TWEEN.Easing.Linear.None;
          this._interpolationFunction = TWEEN.Interpolation.Linear;
          this._chainedTweens = [];
          this._onStartCallbackFired = false;
          this._id = TWEEN.nextId();
          this._isChainStopped = false;
      }
      Tween.prototype.getId = function () {
          return this._id;
      };
      Tween.prototype.isPlaying = function () {
          return this._isPlaying;
      };
      Tween.prototype.isPaused = function () {
          return this._isPaused;
      };
      Tween.prototype.to = function (properties, duration) {
          for (var prop in properties) {
              this._valuesEnd[prop] = properties[prop];
          }
          if (duration !== undefined) {
              this._duration = duration;
          }
          return this;
      };
      Tween.prototype.duration = function (d) {
          this._duration = d;
          return this;
      };
      Tween.prototype.start = function (time) {
          if (this._isPlaying) {
              return this;
          }
          // eslint-disable-next-line
          // @ts-ignore FIXME?
          this._group.add(this);
          this._repeat = this._initialRepeat;
          if (this._reversed) {
              // If we were reversed (f.e. using the yoyo feature) then we need to
              // flip the tween direction back to forward.
              this._reversed = false;
              for (var property in this._valuesStartRepeat) {
                  this._swapEndStartRepeatValues(property);
                  this._valuesStart[property] = this._valuesStartRepeat[property];
              }
          }
          this._isPlaying = true;
          this._isPaused = false;
          this._onStartCallbackFired = false;
          this._isChainStopped = false;
          this._startTime =
              time !== undefined ? (typeof time === 'string' ? TWEEN.now() + parseFloat(time) : time) : TWEEN.now();
          this._startTime += this._delayTime;
          this._setupProperties(this._object, this._valuesStart, this._valuesEnd, this._valuesStartRepeat);
          return this;
      };
      Tween.prototype._setupProperties = function (_object, _valuesStart, _valuesEnd, _valuesStartRepeat) {
          for (var property in _valuesEnd) {
              var startValue = _object[property];
              var startValueIsArray = Array.isArray(startValue);
              var propType = startValueIsArray ? 'array' : typeof startValue;
              var isInterpolationList = !startValueIsArray && Array.isArray(_valuesEnd[property]);
              // If `to()` specifies a property that doesn't exist in the source object,
              // we should not set that property in the object
              if (propType === 'undefined' || propType === 'function') {
                  continue;
              }
              // Check if an Array was provided as property value
              if (isInterpolationList) {
                  var endValues = _valuesEnd[property];
                  if (endValues.length === 0) {
                      continue;
                  }
                  // handle an array of relative values
                  endValues = endValues.map(this._handleRelativeValue.bind(this, startValue));
                  // Create a local copy of the Array with the start value at the front
                  _valuesEnd[property] = [startValue].concat(endValues);
              }
              // handle the deepness of the values
              if ((propType === 'object' || startValueIsArray) && startValue && !isInterpolationList) {
                  _valuesStart[property] = startValueIsArray ? [] : {};
                  // eslint-disable-next-line
                  for (var prop in startValue) {
                      // eslint-disable-next-line
                      // @ts-ignore FIXME?
                      _valuesStart[property][prop] = startValue[prop];
                  }
                  _valuesStartRepeat[property] = startValueIsArray ? [] : {}; // TODO? repeat nested values? And yoyo? And array values?
                  // eslint-disable-next-line
                  // @ts-ignore FIXME?
                  this._setupProperties(startValue, _valuesStart[property], _valuesEnd[property], _valuesStartRepeat[property]);
              }
              else {
                  // Save the starting value, but only once.
                  if (typeof _valuesStart[property] === 'undefined') {
                      _valuesStart[property] = startValue;
                  }
                  if (!startValueIsArray) {
                      // eslint-disable-next-line
                      // @ts-ignore FIXME?
                      _valuesStart[property] *= 1.0; // Ensures we're using numbers, not strings
                  }
                  if (isInterpolationList) {
                      // eslint-disable-next-line
                      // @ts-ignore FIXME?
                      _valuesStartRepeat[property] = _valuesEnd[property].slice().reverse();
                  }
                  else {
                      _valuesStartRepeat[property] = _valuesStart[property] || 0;
                  }
              }
          }
      };
      Tween.prototype.stop = function () {
          if (!this._isChainStopped) {
              this._isChainStopped = true;
              this.stopChainedTweens();
          }
          if (!this._isPlaying) {
              return this;
          }
          // eslint-disable-next-line
          // @ts-ignore FIXME?
          this._group.remove(this);
          this._isPlaying = false;
          this._isPaused = false;
          if (this._onStopCallback) {
              this._onStopCallback(this._object);
          }
          return this;
      };
      Tween.prototype.end = function () {
          this.update(Infinity);
          return this;
      };
      Tween.prototype.pause = function (time) {
          if (this._isPaused || !this._isPlaying) {
              return this;
          }
          this._isPaused = true;
          this._pauseStart = time === undefined ? TWEEN.now() : time;
          // eslint-disable-next-line
          // @ts-ignore FIXME?
          this._group.remove(this);
          return this;
      };
      Tween.prototype.resume = function (time) {
          if (!this._isPaused || !this._isPlaying) {
              return this;
          }
          this._isPaused = false;
          this._startTime += (time === undefined ? TWEEN.now() : time) - this._pauseStart;
          this._pauseStart = 0;
          // eslint-disable-next-line
          // @ts-ignore FIXME?
          this._group.add(this);
          return this;
      };
      Tween.prototype.stopChainedTweens = function () {
          for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) {
              this._chainedTweens[i].stop();
          }
          return this;
      };
      Tween.prototype.group = function (group) {
          this._group = group;
          return this;
      };
      Tween.prototype.delay = function (amount) {
          this._delayTime = amount;
          return this;
      };
      Tween.prototype.repeat = function (times) {
          this._initialRepeat = times;
          this._repeat = times;
          return this;
      };
      Tween.prototype.repeatDelay = function (amount) {
          this._repeatDelayTime = amount;
          return this;
      };
      Tween.prototype.yoyo = function (yoyo) {
          this._yoyo = yoyo;
          return this;
      };
      Tween.prototype.easing = function (easingFunction) {
          this._easingFunction = easingFunction;
          return this;
      };
      Tween.prototype.interpolation = function (interpolationFunction) {
          this._interpolationFunction = interpolationFunction;
          return this;
      };
      Tween.prototype.chain = function () {
          var tweens = [];
          for (var _i = 0; _i < arguments.length; _i++) {
              tweens[_i] = arguments[_i];
          }
          this._chainedTweens = tweens;
          return this;
      };
      Tween.prototype.onStart = function (callback) {
          this._onStartCallback = callback;
          return this;
      };
      Tween.prototype.onUpdate = function (callback) {
          this._onUpdateCallback = callback;
          return this;
      };
      Tween.prototype.onRepeat = function (callback) {
          this._onRepeatCallback = callback;
          return this;
      };
      Tween.prototype.onComplete = function (callback) {
          this._onCompleteCallback = callback;
          return this;
      };
      Tween.prototype.onStop = function (callback) {
          this._onStopCallback = callback;
          return this;
      };
      Tween.prototype.update = function (time) {
          var property;
          var elapsed;
          var endTime = this._startTime + this._duration;
          if (time > endTime && !this._isPlaying) {
              return false;
          }
          // If the tween was already finished,
          if (!this.isPlaying) {
              this.start(time);
          }
          if (time < this._startTime) {
              return true;
          }
          if (this._onStartCallbackFired === false) {
              if (this._onStartCallback) {
                  this._onStartCallback(this._object);
              }
              this._onStartCallbackFired = true;
          }
          elapsed = (time - this._startTime) / this._duration;
          elapsed = this._duration === 0 || elapsed > 1 ? 1 : elapsed;
          var value = this._easingFunction(elapsed);
          // properties transformations
          this._updateProperties(this._object, this._valuesStart, this._valuesEnd, value);
          if (this._onUpdateCallback) {
              this._onUpdateCallback(this._object, elapsed);
          }
          if (elapsed === 1) {
              if (this._repeat > 0) {
                  if (isFinite(this._repeat)) {
                      this._repeat--;
                  }
                  // Reassign starting values, restart by making startTime = now
                  for (property in this._valuesStartRepeat) {
                      if (!this._yoyo && typeof this._valuesEnd[property] === 'string') {
                          this._valuesStartRepeat[property] =
                              // eslint-disable-next-line
                              // @ts-ignore FIXME?
                              this._valuesStartRepeat[property] + parseFloat(this._valuesEnd[property]);
                      }
                      if (this._yoyo) {
                          this._swapEndStartRepeatValues(property);
                      }
                      this._valuesStart[property] = this._valuesStartRepeat[property];
                  }
                  if (this._yoyo) {
                      this._reversed = !this._reversed;
                  }
                  if (this._repeatDelayTime !== undefined) {
                      this._startTime = time + this._repeatDelayTime;
                  }
                  else {
                      this._startTime = time + this._delayTime;
                  }
                  if (this._onRepeatCallback) {
                      this._onRepeatCallback(this._object);
                  }
                  return true;
              }
              else {
                  if (this._onCompleteCallback) {
                      this._onCompleteCallback(this._object);
                  }
                  for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) {
                      // Make the chained tweens start exactly at the time they should,
                      // even if the `update()` method was called way past the duration of the tween
                      this._chainedTweens[i].start(this._startTime + this._duration);
                  }
                  this._isPlaying = false;
                  return false;
              }
          }
          return true;
      };
      Tween.prototype._updateProperties = function (_object, _valuesStart, _valuesEnd, value) {
          for (var property in _valuesEnd) {
              // Don't update properties that do not exist in the source object
              if (_valuesStart[property] === undefined) {
                  continue;
              }
              var start = _valuesStart[property] || 0;
              var end = _valuesEnd[property];
              var startIsArray = Array.isArray(_object[property]);
              var endIsArray = Array.isArray(end);
              var isInterpolationList = !startIsArray && endIsArray;
              if (isInterpolationList) {
                  _object[property] = this._interpolationFunction(end, value);
              }
              else if (typeof end === 'object' && end) {
                  // eslint-disable-next-line
                  // @ts-ignore FIXME?
                  this._updateProperties(_object[property], start, end, value);
              }
              else {
                  // Parses relative end values with start as base (e.g.: +10, -3)
                  end = this._handleRelativeValue(start, end);
                  // Protect against non numeric properties.
                  if (typeof end === 'number') {
                      // eslint-disable-next-line
                      // @ts-ignore FIXME?
                      _object[property] = start + (end - start) * value;
                  }
              }
          }
      };
      Tween.prototype._handleRelativeValue = function (start, end) {
          if (typeof end !== 'string') {
              return end;
          }
          if (end.charAt(0) === '+' || end.charAt(0) === '-') {
              return start + parseFloat(end);
          }
          else {
              return parseFloat(end);
          }
      };
      Tween.prototype._swapEndStartRepeatValues = function (property) {
          var tmp = this._valuesStartRepeat[property];
          if (typeof this._valuesEnd[property] === 'string') {
              // eslint-disable-next-line
              // @ts-ignore FIXME?
              this._valuesStartRepeat[property] = this._valuesStartRepeat[property] + parseFloat(this._valuesEnd[property]);
          }
          else {
              this._valuesStartRepeat[property] = this._valuesEnd[property];
          }
          this._valuesEnd[property] = tmp;
      };
      return Tween;
  }());

  var VERSION = '18.6.0';

  /**
   * Tween.js - Licensed under the MIT license
   * https://github.com/tweenjs/tween.js
   * ----------------------------------------------
   *
   * See https://github.com/tweenjs/tween.js/graphs/contributors for the full list of contributors.
   * Thank you all, you're awesome!
   */
  var __extends = (undefined && undefined.__extends) || (function () {
      var extendStatics = function (d, b) {
          extendStatics = Object.setPrototypeOf ||
              ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
              function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; };
          return extendStatics(d, b);
      };
      return function (d, b) {
          extendStatics(d, b);
          function __() { this.constructor = d; }
          d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
      };
  })();
  /**
   * Controlling groups of tweens
   *
   * Using the TWEEN singleton to manage your tweens can cause issues in large apps with many components.
   * In these cases, you may want to create your own smaller groups of tween
   */
  var Main = /** @class */ (function (_super) {
      __extends(Main, _super);
      function Main() {
          var _this = _super !== null && _super.apply(this, arguments) || this;
          _this.version = VERSION;
          _this.now = NOW$1;
          _this.Group = Group$1;
          _this.Easing = Easing;
          _this.Interpolation = Interpolation;
          _this.nextId = Sequence.nextId;
          _this.Tween = Tween;
          return _this;
      }
      return Main;
  }(Group$1));
  var TWEEN = new Main();

  function styleInject$1(css, ref) {
    if (ref === void 0) ref = {};
    var insertAt = ref.insertAt;

    if (!css || typeof document === 'undefined') {
      return;
    }

    var head = document.head || document.getElementsByTagName('head')[0];
    var style = document.createElement('style');
    style.type = 'text/css';

    if (insertAt === 'top') {
      if (head.firstChild) {
        head.insertBefore(style, head.firstChild);
      } else {
        head.appendChild(style);
      }
    } else {
      head.appendChild(style);
    }

    if (style.styleSheet) {
      style.styleSheet.cssText = css;
    } else {
      style.appendChild(document.createTextNode(css));
    }
  }

  var css_248z$1 = ".scene-nav-info {\n  bottom: 5px;\n  width: 100%;\n  text-align: center;\n  color: slategrey;\n  opacity: 0.7;\n  font-size: 10px;\n}\n\n.scene-tooltip {\n  color: lavender;\n  font-size: 15px;\n}\n\n.scene-nav-info, .scene-tooltip {\n  position: absolute;\n  font-family: sans-serif;\n  pointer-events: none;\n}";
  styleInject$1(css_248z$1);

  function _defineProperty$3(obj, key, value) {
    if (key in obj) {
      Object.defineProperty(obj, key, {
        value: value,
        enumerable: true,
        configurable: true,
        writable: true
      });
    } else {
      obj[key] = value;
    }

    return obj;
  }

  function _slicedToArray$4(arr, i) {
    return _arrayWithHoles$4(arr) || _iterableToArrayLimit$4(arr, i) || _unsupportedIterableToArray$2(arr, i) || _nonIterableRest$4();
  }

  function _toConsumableArray$4(arr) {
    return _arrayWithoutHoles$4(arr) || _iterableToArray$4(arr) || _unsupportedIterableToArray$2(arr) || _nonIterableSpread$4();
  }

  function _arrayWithoutHoles$4(arr) {
    if (Array.isArray(arr)) return _arrayLikeToArray$2(arr);
  }

  function _arrayWithHoles$4(arr) {
    if (Array.isArray(arr)) return arr;
  }

  function _iterableToArray$4(iter) {
    if (typeof Symbol !== "undefined" && Symbol.iterator in Object(iter)) return Array.from(iter);
  }

  function _iterableToArrayLimit$4(arr, i) {
    if (typeof Symbol === "undefined" || !(Symbol.iterator in Object(arr))) return;
    var _arr = [];
    var _n = true;
    var _d = false;
    var _e = undefined;

    try {
      for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) {
        _arr.push(_s.value);

        if (i && _arr.length === i) break;
      }
    } catch (err) {
      _d = true;
      _e = err;
    } finally {
      try {
        if (!_n && _i["return"] != null) _i["return"]();
      } finally {
        if (_d) throw _e;
      }
    }

    return _arr;
  }

  function _unsupportedIterableToArray$2(o, minLen) {
    if (!o) return;
    if (typeof o === "string") return _arrayLikeToArray$2(o, minLen);
    var n = Object.prototype.toString.call(o).slice(8, -1);
    if (n === "Object" && o.constructor) n = o.constructor.name;
    if (n === "Map" || n === "Set") return Array.from(o);
    if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$2(o, minLen);
  }

  function _arrayLikeToArray$2(arr, len) {
    if (len == null || len > arr.length) len = arr.length;

    for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i];

    return arr2;
  }

  function _nonIterableSpread$4() {
    throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
  }

  function _nonIterableRest$4() {
    throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
  }

  var three$2 = window.THREE ? window.THREE // Prefer consumption from global THREE, if exists
  : {
    WebGLRenderer: WebGLRenderer,
    Scene: Scene,
    PerspectiveCamera: PerspectiveCamera,
    Raycaster: Raycaster,
    TextureLoader: TextureLoader,
    Vector2: Vector2,
    Vector3: Vector3,
    Box3: Box3,
    Color: Color,
    Mesh: Mesh,
    SphereGeometry: SphereGeometry,
    MeshBasicMaterial: MeshBasicMaterial,
    BackSide: BackSide,
    EventDispatcher: EventDispatcher,
    MOUSE: MOUSE,
    Quaternion: Quaternion,
    Spherical: Spherical,
    Clock: Clock
  };
  var threeRenderObjects = index$1({
    props: {
      width: {
        "default": window.innerWidth,
        onChange: function onChange(width, state, prevWidth) {
          isNaN(width) && (state.width = prevWidth);
        }
      },
      height: {
        "default": window.innerHeight,
        onChange: function onChange(height, state, prevHeight) {
          isNaN(height) && (state.height = prevHeight);
        }
      },
      backgroundColor: {
        "default": '#000011'
      },
      backgroundImageUrl: {},
      onBackgroundImageLoaded: {},
      showNavInfo: {
        "default": true
      },
      skyRadius: {
        "default": 50000
      },
      objects: {
        "default": []
      },
      enablePointerInteraction: {
        "default": true,
        onChange: function onChange(_, state) {
          // Reset hover state
          state.hoverObj = null;
          if (state.toolTipElem) state.toolTipElem.innerHTML = '';
        },
        triggerUpdate: false
      },
      lineHoverPrecision: {
        "default": 1,
        triggerUpdate: false
      },
      hoverOrderComparator: {
        "default": function _default() {
          return -1;
        },
        triggerUpdate: false
      },
      // keep existing order by default
      hoverFilter: {
        "default": function _default() {
          return true;
        },
        triggerUpdate: false
      },
      // exclude objects from interaction
      tooltipContent: {
        triggerUpdate: false
      },
      hoverDuringDrag: {
        "default": false,
        triggerUpdate: false
      },
      clickAfterDrag: {
        "default": false,
        triggerUpdate: false
      },
      onHover: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onClick: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onRightClick: {
        triggerUpdate: false
      }
    },
    methods: {
      tick: function tick(state) {
        if (state.initialised) {
          state.controls.update && state.controls.update(state.clock.getDelta()); // timedelta is required for fly controls

          state.postProcessingComposer ? state.postProcessingComposer.render() // if using postprocessing, switch the output to it
          : state.renderer.render(state.scene, state.camera);

          if (state.enablePointerInteraction) {
            // Update tooltip and trigger onHover events
            var topObject = null;

            if (state.hoverDuringDrag || !state.isPointerDragging) {
              var intersects = this.intersectingObjects(state.pointerPos.x, state.pointerPos.y).filter(function (d) {
                return state.hoverFilter(d.object);
              }).sort(function (a, b) {
                return state.hoverOrderComparator(a.object, b.object);
              });
              var topIntersect = intersects.length ? intersects[0] : null;
              topObject = topIntersect ? topIntersect.object : null;
              state.intersectionPoint = topIntersect ? topIntersect.point : null;
            }

            if (topObject !== state.hoverObj) {
              state.onHover(topObject, state.hoverObj);
              state.toolTipElem.innerHTML = topObject ? index$2(state.tooltipContent)(topObject) || '' : '';
              state.hoverObj = topObject;
            }
          }

          TWEEN.update(); // update camera animation tweens
        }

        return this;
      },
      getPointerPos: function getPointerPos(state) {
        var _state$pointerPos = state.pointerPos,
            x = _state$pointerPos.x,
            y = _state$pointerPos.y;
        return {
          x: x,
          y: y
        };
      },
      cameraPosition: function cameraPosition(state, position, lookAt, transitionDuration) {
        var camera = state.camera; // Setter

        if (position && state.initialised) {
          var finalPos = position;
          var finalLookAt = lookAt || {
            x: 0,
            y: 0,
            z: 0
          };

          if (!transitionDuration) {
            // no animation
            setCameraPos(finalPos);
            setLookAt(finalLookAt);
          } else {
            var camPos = Object.assign({}, camera.position);
            var camLookAt = getLookAt();
            new TWEEN.Tween(camPos).to(finalPos, transitionDuration).easing(TWEEN.Easing.Quadratic.Out).onUpdate(setCameraPos).start(); // Face direction in 1/3rd of time

            new TWEEN.Tween(camLookAt).to(finalLookAt, transitionDuration / 3).easing(TWEEN.Easing.Quadratic.Out).onUpdate(setLookAt).start();
          }

          return this;
        } // Getter


        return Object.assign({}, camera.position, {
          lookAt: getLookAt()
        }); //

        function setCameraPos(pos) {
          var x = pos.x,
              y = pos.y,
              z = pos.z;
          if (x !== undefined) camera.position.x = x;
          if (y !== undefined) camera.position.y = y;
          if (z !== undefined) camera.position.z = z;
        }

        function setLookAt(lookAt) {
          state.controls.target = new three$2.Vector3(lookAt.x, lookAt.y, lookAt.z);
        }

        function getLookAt() {
          return Object.assign(new three$2.Vector3(0, 0, -1000).applyQuaternion(camera.quaternion).add(camera.position));
        }
      },
      zoomToFit: function zoomToFit(state) {
        var transitionDuration = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 0;
        var padding = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 10;

        for (var _len = arguments.length, bboxArgs = new Array(_len > 3 ? _len - 3 : 0), _key = 3; _key < _len; _key++) {
          bboxArgs[_key - 3] = arguments[_key];
        }

        return this.fitToBbox(this.getBbox.apply(this, bboxArgs), transitionDuration, padding);
      },
      fitToBbox: function fitToBbox(state, bbox) {
        var transitionDuration = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 0;
        var padding = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 10;
        // based on https://discourse.threejs.org/t/camera-zoom-to-fit-object/936/24
        var camera = state.camera;

        if (bbox) {
          var center = new three$2.Vector3(0, 0, 0); // reset camera aim to center

          var maxBoxSide = Math.max.apply(Math, _toConsumableArray$4(Object.entries(bbox).map(function (_ref) {
            var _ref2 = _slicedToArray$4(_ref, 2),
                coordType = _ref2[0],
                coords = _ref2[1];

            return Math.max.apply(Math, _toConsumableArray$4(coords.map(function (c) {
              return Math.abs(center[coordType] - c);
            })));
          }))) * 2; // find distance that fits whole bbox within padded fov

          var paddedFov = (1 - padding * 2 / state.height) * camera.fov;
          var fitHeightDistance = maxBoxSide / Math.atan(paddedFov * Math.PI / 180);
          var fitWidthDistance = fitHeightDistance / camera.aspect;
          var distance = Math.max(fitHeightDistance, fitWidthDistance);

          if (distance > 0) {
            var newCameraPosition = center.clone().sub(camera.position).normalize().multiplyScalar(-distance);
            this.cameraPosition(newCameraPosition, center, transitionDuration);
          }
        }

        return this;
      },
      getBbox: function getBbox(state) {
        var objFilter = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : function () {
          return true;
        };
        var box = new three$2.Box3(new three$2.Vector3(0, 0, 0), new three$2.Vector3(0, 0, 0));
        var objs = state.objects.filter(objFilter);
        if (!objs.length) return null;
        objs.forEach(function (obj) {
          return box.expandByObject(obj);
        }); // extract global x,y,z min/max

        return Object.assign.apply(Object, _toConsumableArray$4(['x', 'y', 'z'].map(function (c) {
          return _defineProperty$3({}, c, [box.min[c], box.max[c]]);
        })));
      },
      getScreenCoords: function getScreenCoords(state, x, y, z) {
        var vec = new three$2.Vector3(x, y, z);
        vec.project(this.camera()); // project to the camera plane

        return {
          // align relative pos to canvas dimensions
          x: (vec.x + 1) * state.width / 2,
          y: -(vec.y - 1) * state.height / 2
        };
      },
      intersectingObjects: function intersectingObjects(state, x, y) {
        var relCoords = new three$2.Vector2(x / state.width * 2 - 1, -(y / state.height) * 2 + 1);
        var raycaster = new three$2.Raycaster();
        raycaster.params.Line.threshold = state.lineHoverPrecision; // set linePrecision

        raycaster.setFromCamera(relCoords, state.camera);
        return raycaster.intersectObjects(state.objects, true);
      },
      renderer: function renderer(state) {
        return state.renderer;
      },
      scene: function scene(state) {
        return state.scene;
      },
      camera: function camera(state) {
        return state.camera;
      },
      postProcessingComposer: function postProcessingComposer(state) {
        return state.postProcessingComposer;
      },
      controls: function controls(state) {
        return state.controls;
      },
      tbControls: function tbControls(state) {
        return state.controls;
      } // to be deprecated

    },
    stateInit: function stateInit() {
      return {
        scene: new three$2.Scene(),
        camera: new three$2.PerspectiveCamera(),
        clock: new three$2.Clock()
      };
    },
    init: function init(domNode, state, _ref4) {
      var _ref4$controlType = _ref4.controlType,
          controlType = _ref4$controlType === void 0 ? 'trackball' : _ref4$controlType,
          _ref4$rendererConfig = _ref4.rendererConfig,
          rendererConfig = _ref4$rendererConfig === void 0 ? {} : _ref4$rendererConfig,
          _ref4$waitForLoadComp = _ref4.waitForLoadComplete,
          waitForLoadComplete = _ref4$waitForLoadComp === void 0 ? true : _ref4$waitForLoadComp;
      // Wipe DOM
      domNode.innerHTML = ''; // Add relative container

      domNode.appendChild(state.container = document.createElement('div'));
      state.container.style.position = 'relative'; // Add nav info section

      state.container.appendChild(state.navInfo = document.createElement('div'));
      state.navInfo.className = 'scene-nav-info';
      state.navInfo.textContent = {
        orbit: 'Left-click: rotate, Mouse-wheel/middle-click: zoom, Right-click: pan ... \n "W" translate | "E" rotate | "R" scale | "+/-" adjust size',
        trackball: 'Left-click: rotate, Mouse-wheel/middle-click: zoom, Right-click: pan',
        fly: 'WASD: move, R|F: up | down, Q|E: roll, up|down: pitch, left|right: yaw'
      }[controlType] || '';
      state.navInfo.style.display = state.showNavInfo ? null : 'none'; // Setup tooltip

      state.toolTipElem = document.createElement('div');
      state.toolTipElem.classList.add('scene-tooltip');
      state.container.appendChild(state.toolTipElem); // Capture pointer coords on move or touchstart

      state.pointerPos = new three$2.Vector2();
      state.pointerPos.x = -2; // Initialize off canvas

      state.pointerPos.y = -2;
      ['pointermove', 'pointerdown'].forEach(function (evType) {
        return state.container.addEventListener(evType, function (ev) {
          // detect point drag
          !state.isPointerDragging && ev.type === 'pointermove' && ev.pressure > 0 && (ev.movementX !== 0 || ev.movementY !== 0) && (state.isPointerDragging = true);

          if (state.enablePointerInteraction) {
            // update the pointer pos
            var offset = getOffset(state.container);
            state.pointerPos.x = ev.pageX - offset.left;
            state.pointerPos.y = ev.pageY - offset.top; // Move tooltip

            state.toolTipElem.style.top = "".concat(state.pointerPos.y, "px");
            state.toolTipElem.style.left = "".concat(state.pointerPos.x, "px");
            state.toolTipElem.style.transform = "translate(-".concat(state.pointerPos.x / state.width * 100, "%, 21px)"); // adjust horizontal position to not exceed canvas boundaries
          }

          function getOffset(el) {
            var rect = el.getBoundingClientRect(),
                scrollLeft = window.pageXOffset || document.documentElement.scrollLeft,
                scrollTop = window.pageYOffset || document.documentElement.scrollTop;
            return {
              top: rect.top + scrollTop,
              left: rect.left + scrollLeft
            };
          }
        }, false);
      }); // Handle click events on objs

      state.container.addEventListener('pointerup', function (ev) {
        if (state.isPointerDragging) {
          state.isPointerDragging = false;
          if (!state.clickAfterDrag) return; // don't trigger onClick after pointer drag (camera motion via controls)
        }

        requestAnimationFrame(function () {
          // trigger click events asynchronously, to allow hoverObj to be set (on frame)
          if (ev.button === 0) {
            // left-click
            state.onClick(state.hoverObj || null, ev, state.intersectionPoint); // trigger background clicks with null
          }

          if (ev.button === 2 && state.onRightClick) {
            // right-click
            state.onRightClick(state.hoverObj || null, ev, state.intersectionPoint);
          }
        });
      }, true); // use capture phase to prevent propagation blocking from controls (specifically for fly)

      state.container.addEventListener('contextmenu', function (ev) {
        if (state.onRightClick) ev.preventDefault(); // prevent default contextmenu behavior and allow pointerup to fire instead
      }, false); // Setup renderer, camera and controls

      state.renderer = new three$2.WebGLRenderer(Object.assign({
        antialias: true,
        alpha: true
      }, rendererConfig));
      state.renderer.setPixelRatio(window.devicePixelRatio);
      state.container.appendChild(state.renderer.domElement); // configure post-processing composer

      state.postProcessingComposer = new EffectComposer(state.renderer);
      state.postProcessingComposer.addPass(new RenderPass(state.scene, state.camera)); // render scene as first pass
      // configure controls

      state.controls = new {
        trackball: TrackballControls,
        orbit: OrbitControls,
        fly: FlyControls
      }[controlType](state.camera, state.renderer.domElement);

      if (controlType === 'fly') {
        state.controls.movementSpeed = 300;
        state.controls.rollSpeed = Math.PI / 6;
        state.controls.dragToLook = true;
      }

      if (controlType === 'trackball' || controlType === 'orbit') {
        state.controls.minDistance = 0.1;
        state.controls.maxDistance = state.skyRadius;
        state.controls.addEventListener('start', function () {
          return state.controlsEngaged = true;
        });
        state.controls.addEventListener('change', function () {
          if (state.controlsEngaged) {
            state.controlsDragging = true;
          }
        });
        state.controls.addEventListener('end', function () {
          state.controlsEngaged = false;
          state.controlsDragging = false;
        });
      }

      state.renderer.setSize(state.width, state.height);
      state.postProcessingComposer.setSize(state.width, state.height);
      state.camera.aspect = state.width / state.height;
      state.camera.updateProjectionMatrix();
      state.camera.position.z = 1000; // add sky

      state.scene.add(state.skysphere = new three$2.Mesh());
      state.skysphere.visible = false;
      state.loadComplete = state.scene.visible = !waitForLoadComplete;
      window.scene = state.scene;
    },
    update: function update(state, changedProps) {
      // resize canvas
      if (state.width && state.height && (changedProps.hasOwnProperty('width') || changedProps.hasOwnProperty('height'))) {
        state.container.style.width = state.width;
        state.container.style.height = state.height;
        state.renderer.setSize(state.width, state.height);
        state.postProcessingComposer.setSize(state.width, state.height);
        state.camera.aspect = state.width / state.height;
        state.camera.updateProjectionMatrix();
      }

      if (changedProps.hasOwnProperty('skyRadius') && state.skyRadius) {
        state.controls.hasOwnProperty('maxDistance') && changedProps.skyRadius && (state.controls.maxDistance = state.skyRadius);
        state.camera.far = state.skyRadius * 2.5;
        state.camera.updateProjectionMatrix();
        state.skysphere.geometry = new three$2.SphereGeometry(state.skyRadius);
      }

      if (changedProps.hasOwnProperty('backgroundColor')) {
        var alpha = parseToRgb(state.backgroundColor).alpha;
        if (alpha === undefined) alpha = 1;
        state.renderer.setClearColor(new three$2.Color(curriedOpacify(1, state.backgroundColor)), alpha);
      }

      if (changedProps.hasOwnProperty('backgroundImageUrl')) {
        if (!state.backgroundImageUrl) {
          state.skysphere.visible = false;
          state.skysphere.material.map = null;
          !state.loadComplete && finishLoad();
        } else {
          new three$2.TextureLoader().load(state.backgroundImageUrl, function (texture) {
            state.skysphere.material = new three$2.MeshBasicMaterial({
              map: texture,
              side: three$2.BackSide
            });
            state.skysphere.visible = true; // triggered when background image finishes loading (asynchronously to allow 1 frame to load texture)

            state.onBackgroundImageLoaded && setTimeout(state.onBackgroundImageLoaded);
            !state.loadComplete && finishLoad();
          });
        }
      }

      changedProps.hasOwnProperty('showNavInfo') && (state.navInfo.style.display = state.showNavInfo ? null : 'none');

      if (changedProps.hasOwnProperty('objects')) {
        (changedProps.objects || []).forEach(function (obj) {
          return state.scene.remove(obj);
        }); // Clear the place

        state.objects.forEach(function (obj) {
          return state.scene.add(obj);
        }); // Add to scene
      } //


      function finishLoad() {
        state.loadComplete = state.scene.visible = true;
      }
    }
  });

  function linkKapsule (kapsulePropName, kapsuleType) {
    var dummyK = new kapsuleType(); // To extract defaults

    return {
      linkProp: function linkProp(prop) {
        // link property config
        return {
          "default": dummyK[prop](),
          onChange: function onChange(v, state) {
            state[kapsulePropName][prop](v);
          },
          triggerUpdate: false
        };
      },
      linkMethod: function linkMethod(method) {
        // link method pass-through
        return function (state) {
          var kapsuleInstance = state[kapsulePropName];

          for (var _len = arguments.length, args = new Array(_len > 1 ? _len - 1 : 0), _key = 1; _key < _len; _key++) {
            args[_key - 1] = arguments[_key];
          }

          var returnVal = kapsuleInstance[method].apply(kapsuleInstance, args);
          return returnVal === kapsuleInstance ? this // chain based on the parent object, not the inner kapsule
          : returnVal;
        };
      }
    };
  }

  var three$3 = window.THREE ? window.THREE // Prefer consumption from global THREE, if exists
  : {
    AmbientLight: AmbientLight,
    DirectionalLight: DirectionalLight,
    Vector3: Vector3
  };

  var CAMERA_DISTANCE2NODES_FACTOR = 170; //
  // Expose config from forceGraph

  var bindFG = linkKapsule('forceGraph', threeForcegraph);
  var linkedFGProps = Object.assign.apply(Object, _toConsumableArray(['jsonUrl', 'graphData', 'numDimensions', 'dagMode', 'dagLevelDistance', 'dagNodeFilter', 'onDagError', 'nodeRelSize', 'nodeId', 'nodeVal', 'nodeResolution', 'nodeColor', 'nodeAutoColorBy', 'nodeOpacity', 'nodeVisibility', 'nodeThreeObject', 'nodeThreeObjectExtend', 'linkSource', 'linkTarget', 'linkVisibility', 'linkColor', 'linkAutoColorBy', 'linkOpacity', 'linkWidth', 'linkResolution', 'linkCurvature', 'linkCurveRotation', 'linkMaterial', 'linkThreeObject', 'linkThreeObjectExtend', 'linkPositionUpdate', 'linkDirectionalArrowLength', 'linkDirectionalArrowColor', 'linkDirectionalArrowRelPos', 'linkDirectionalArrowResolution', 'linkDirectionalParticles', 'linkDirectionalParticleSpeed', 'linkDirectionalParticleWidth', 'linkDirectionalParticleColor', 'linkDirectionalParticleResolution', 'forceEngine', 'd3AlphaDecay', 'd3VelocityDecay', 'd3AlphaMin', 'ngraphPhysics', 'warmupTicks', 'cooldownTicks', 'cooldownTime', 'onEngineTick', 'onEngineStop'].map(function (p) {
    return _defineProperty({}, p, bindFG.linkProp(p));
  })));
  var linkedFGMethods = Object.assign.apply(Object, _toConsumableArray(['refresh', 'getGraphBbox', 'd3Force', 'd3ReheatSimulation', 'emitParticle'].map(function (p) {
    return _defineProperty({}, p, bindFG.linkMethod(p));
  }))); // Expose config from renderObjs

  var bindRenderObjs = linkKapsule('renderObjs', threeRenderObjects);
  var linkedRenderObjsProps = Object.assign.apply(Object, _toConsumableArray(['width', 'height', 'backgroundColor', 'showNavInfo', 'enablePointerInteraction'].map(function (p) {
    return _defineProperty({}, p, bindRenderObjs.linkProp(p));
  })));
  var linkedRenderObjsMethods = Object.assign.apply(Object, _toConsumableArray(['cameraPosition', 'postProcessingComposer'].map(function (p) {
    return _defineProperty({}, p, bindRenderObjs.linkMethod(p));
  })).concat([{
    graph2ScreenCoords: bindRenderObjs.linkMethod('getScreenCoords')
  }])); //

  var _3dForceGraph = index$1({
    props: _objectSpread2(_objectSpread2({
      nodeLabel: {
        "default": 'name',
        triggerUpdate: false
      },
      linkLabel: {
        "default": 'name',
        triggerUpdate: false
      },
      linkHoverPrecision: {
        "default": 1,
        onChange: function onChange(p, state) {
          return state.renderObjs.lineHoverPrecision(p);
        },
        triggerUpdate: false
      },
      enableNavigationControls: {
        "default": true,
        onChange: function onChange(enable, state) {
          var controls = state.renderObjs.controls();

          if (controls) {
            controls.enabled = enable;
          }
        },
        triggerUpdate: false
      },
      enableNodeDrag: {
        "default": true,
        triggerUpdate: false
      },
      onNodeDrag: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onNodeDragEnd: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onNodeClick: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onNodeRightClick: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onNodeHover: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onLinkClick: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onLinkRightClick: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onLinkHover: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onBackgroundClick: {
        "default": function _default() {},
        triggerUpdate: false
      },
      onBackgroundRightClick: {
        "default": function _default() {},
        triggerUpdate: false
      }
    }, linkedFGProps), linkedRenderObjsProps),
    methods: _objectSpread2(_objectSpread2({
      zoomToFit: function zoomToFit(state, transitionDuration, padding) {
        var _state$forceGraph;

        for (var _len = arguments.length, bboxArgs = new Array(_len > 3 ? _len - 3 : 0), _key = 3; _key < _len; _key++) {
          bboxArgs[_key - 3] = arguments[_key];
        }

        state.renderObjs.fitToBbox((_state$forceGraph = state.forceGraph).getGraphBbox.apply(_state$forceGraph, bboxArgs), transitionDuration, padding);
        return this;
      },
      pauseAnimation: function pauseAnimation(state) {
        if (state.animationFrameRequestId !== null) {
          cancelAnimationFrame(state.animationFrameRequestId);
          state.animationFrameRequestId = null;
        }

        return this;
      },
      resumeAnimation: function resumeAnimation(state) {
        if (state.animationFrameRequestId === null) {
          this._animationCycle();
        }

        return this;
      },
      _animationCycle: function _animationCycle(state) {
        if (state.enablePointerInteraction) {
          // reset canvas cursor (override dragControls cursor)
          this.renderer().domElement.style.cursor = null;
        } // Frame cycle


        state.forceGraph.tickFrame();
        state.renderObjs.tick();
        state.animationFrameRequestId = requestAnimationFrame(this._animationCycle);
      },
      scene: function scene(state) {
        return state.renderObjs.scene();
      },
      // Expose scene
      camera: function camera(state) {
        return state.renderObjs.camera();
      },
      // Expose camera
      renderer: function renderer(state) {
        return state.renderObjs.renderer();
      },
      // Expose renderer
      controls: function controls(state) {
        return state.renderObjs.controls();
      },
      // Expose controls
      tbControls: function tbControls(state) {
        return state.renderObjs.tbControls();
      },
      // To be deprecated
      _destructor: function _destructor() {
        this.pauseAnimation();
        this.graphData({
          nodes: [],
          links: []
        });
      }
    }, linkedFGMethods), linkedRenderObjsMethods),
    stateInit: function stateInit(_ref5) {
      var controlType = _ref5.controlType,
          rendererConfig = _ref5.rendererConfig;
      return {
        forceGraph: new threeForcegraph(),
        renderObjs: threeRenderObjects({
          controlType: controlType,
          rendererConfig: rendererConfig
        })
      };
    },
    init: function init(domNode, state) {
      // Wipe DOM
      domNode.innerHTML = ''; // Add relative container

      domNode.appendChild(state.container = document.createElement('div'));
      state.container.style.position = 'relative'; // Add renderObjs

      var roDomNode = document.createElement('div');
      state.container.appendChild(roDomNode);
      state.renderObjs(roDomNode);
      var camera = state.renderObjs.camera();
      var renderer = state.renderObjs.renderer();
      var controls = state.renderObjs.controls();
      controls.enabled = !!state.enableNavigationControls;
      state.lastSetCameraZ = camera.position.z; // Add info space

      var infoElem;
      state.container.appendChild(infoElem = document.createElement('div'));
      infoElem.className = 'graph-info-msg';
      infoElem.textContent = ''; // config forcegraph

      state.forceGraph.onLoading(function () {
        infoElem.textContent = 'Loading...';
      }).onFinishLoading(function () {
        infoElem.textContent = '';
      }).onUpdate(function () {
        // sync graph data structures
        state.graphData = state.forceGraph.graphData(); // re-aim camera, if still in default position (not user modified)

        if (camera.position.x === 0 && camera.position.y === 0 && camera.position.z === state.lastSetCameraZ && state.graphData.nodes.length) {
          camera.lookAt(state.forceGraph.position);
          state.lastSetCameraZ = camera.position.z = Math.cbrt(state.graphData.nodes.length) * CAMERA_DISTANCE2NODES_FACTOR;
        }
      }).onFinishUpdate(function () {
        // Setup node drag interaction
        if (state._dragControls) {
          var curNodeDrag = state.graphData.nodes.find(function (node) {
            return node.__initialFixedPos && !node.__disposeControlsAfterDrag;
          }); // detect if there's a node being dragged using the existing drag controls

          if (curNodeDrag) {
            curNodeDrag.__disposeControlsAfterDrag = true; // postpone previous controls disposal until drag ends
          } else {
            state._dragControls.dispose(); // cancel previous drag controls

          }

          state._dragControls = undefined;
        }

        if (state.enableNodeDrag && state.enablePointerInteraction && state.forceEngine === 'd3') {
          // Can't access node positions programatically in ngraph
          var dragControls = state._dragControls = new DragControls(state.graphData.nodes.map(function (node) {
            return node.__threeObj;
          }).filter(function (obj) {
            return obj;
          }), camera, renderer.domElement);
          dragControls.addEventListener('dragstart', function (event) {
            controls.enabled = false; // Disable controls while dragging

            var node = event.object.__data;
            !node.__initialFixedPos && (node.__initialFixedPos = {
              fx: node.fx,
              fy: node.fy,
              fz: node.fz
            });
            !node.__initialPos && (node.__initialPos = {
              x: node.x,
              y: node.y,
              z: node.z
            }); // lock node

            ['x', 'y', 'z'].forEach(function (c) {
              return node["f".concat(c)] = node[c];
            }); // drag cursor

            renderer.domElement.classList.add('grabbable');
          });
          dragControls.addEventListener('drag', function (event) {
            var node = event.object.__data;
            var newPos = event.object.position;
            var translate = {
              x: newPos.x - node.x,
              y: newPos.y - node.y,
              z: newPos.z - node.z
            }; // Move fx/fy/fz (and x/y/z) of nodes based on object new position

            ['x', 'y', 'z'].forEach(function (c) {
              return node["f".concat(c)] = node[c] = newPos[c];
            });
            state.forceGraph.d3AlphaTarget(0.3) // keep engine running at low intensity throughout drag
            .resetCountdown(); // prevent freeze while dragging

            node.__dragged = true;
            state.onNodeDrag(node, translate);
          });
          dragControls.addEventListener('dragend', function (event) {
            var node = event.object.__data; // dispose previous controls if needed

            if (node.__disposeControlsAfterDrag) {
              dragControls.dispose();
              delete node.__disposeControlsAfterDrag;
            }

            var initFixedPos = node.__initialFixedPos;
            var initPos = node.__initialPos;
            var translate = {
              x: initPos.x - node.x,
              y: initPos.y - node.y,
              z: initPos.z - node.z
            };

            if (initFixedPos) {
              ['x', 'y', 'z'].forEach(function (c) {
                var fc = "f".concat(c);

                if (initFixedPos[fc] === undefined) {
                  delete node[fc];
                }
              });
              delete node.__initialFixedPos;
              delete node.__initialPos;

              if (node.__dragged) {
                delete node.__dragged;
                state.onNodeDragEnd(node, translate);
              }
            }

            state.forceGraph.d3AlphaTarget(0) // release engine low intensity
            .resetCountdown(); // let the engine readjust after releasing fixed nodes

            if (state.enableNavigationControls) {
              controls.enabled = true; // Re-enable controls
            } // clear cursor


            renderer.domElement.classList.remove('grabbable');
          });
        }
      }); // config renderObjs

      var getGraphObj = function getGraphObj(object) {
        var obj = object; // recurse up object chain until finding the graph object

        while (obj && !obj.hasOwnProperty('__graphObjType')) {
          obj = obj.parent;
        }

        return obj;
      };

      state.renderObjs.objects([// Populate scene
      new three$3.AmbientLight(0xbbbbbb), new three$3.DirectionalLight(0xffffff, 0.6), state.forceGraph]).hoverOrderComparator(function (a, b) {
        // Prioritize graph objects
        var aObj = getGraphObj(a);
        if (!aObj) return 1;
        var bObj = getGraphObj(b);
        if (!bObj) return -1; // Prioritize nodes over links

        var isNode = function isNode(o) {
          return o.__graphObjType === 'node';
        };

        return isNode(bObj) - isNode(aObj);
      }).tooltipContent(function (obj) {
        var graphObj = getGraphObj(obj);
        return graphObj ? index$2(state["".concat(graphObj.__graphObjType, "Label")])(graphObj.__data) || '' : '';
      }).hoverDuringDrag(false).onHover(function (obj) {
        // Update tooltip and trigger onHover events
        var hoverObj = getGraphObj(obj);

        if (hoverObj !== state.hoverObj) {
          var prevObjType = state.hoverObj ? state.hoverObj.__graphObjType : null;
          var prevObjData = state.hoverObj ? state.hoverObj.__data : null;
          var objType = hoverObj ? hoverObj.__graphObjType : null;
          var objData = hoverObj ? hoverObj.__data : null;

          if (prevObjType && prevObjType !== objType) {
            // Hover out
            state["on".concat(prevObjType === 'node' ? 'Node' : 'Link', "Hover")](null, prevObjData);
          }

          if (objType) {
            // Hover in
            state["on".concat(objType === 'node' ? 'Node' : 'Link', "Hover")](objData, prevObjType === objType ? prevObjData : null);
          }

          state.hoverObj = hoverObj;
        }
      }).clickAfterDrag(false).onClick(function (obj, ev) {
        var graphObj = getGraphObj(obj);

        if (graphObj) {
          state["on".concat(graphObj.__graphObjType === 'node' ? 'Node' : 'Link', "Click")](graphObj.__data, ev);
        } else {
          state.onBackgroundClick(ev);
        }
      }).onRightClick(function (obj, ev) {
        // Handle right-click events
        var graphObj = getGraphObj(obj);

        if (graphObj) {
          state["on".concat(graphObj.__graphObjType === 'node' ? 'Node' : 'Link', "RightClick")](graphObj.__data, ev);
        } else {
          state.onBackgroundRightClick(ev);
        }
      }); //
      // Kick-off renderer

      this._animationCycle();
    }
  });

  return _3dForceGraph;

})));
//# sourceMappingURL=3d-force-graph.js.map