Skip to content
Snippets Groups Projects
README.md 5.53 KiB

2.47 Bio-Inspired Robotics Final Project

Presentation

Proposal



Simulation

q   = [\theta_1  ; \theta_2; x; y]; \\
\dot{q}   = [\dot{\theta}_1  ; \dot{\theta}_2; \dot{x}; \dot{y}];

Control

simulation/optimization

All torque control with bezier curves

hardware control

Get Bezier curve path of the leg from simulation/optimization and have an Impedance control (flight stage) and torque control (stance phase)


Optimization

Variables

Two Bezier curves for torques:

ctrl_1=[T_1,T_2,..T_n] \\
ctrl_2=[T_1,T_2,..T_n] \\
n=6 \\
-0.85<T_i<085

Starting Conditions:

ground \ height = -0.164; \\
\theta_1=-36*\pi/180; \\
\theta_2=90*\pi/180;\\
x=y=0\\
\dot{\theta}_1=\dot{\theta}_2= 0\\
\dot{x}=\dot{y}= 0\\

Constraints

x^{end}>=x^{start} \\
q_1^{end}=q_1^{start} \\
q_2^{end}=q_2^{start} \\
y^{end}=y^{start} \\

\dot{q}_1^{end}=\dot{q}_1^{start} \\
\dot{q}_2^{end}=\dot{q}_2^{start} \\
\dot{x}^{end}=\dot{x}^{start} \\
\dot{y}^{end}=\dot{y}^{start} \\

Objective Function

  1. First objective: maximize height h' to push it to go up, got the max x'
  2. Then I added to the constraints:
    apex \ height = h' \\
    x_{end}=x' \\
    and minimized cost of transport by minimizing:
    E/(m*g*d)
    which is the similar as minimizing sum of torque squared as m, g and d is fixed

Updates and Results

5 December








2 December