Skip to content
Snippets Groups Projects
parallelFEA.jl 39.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • Amira Abdel-Rahman's avatar
    Amira Abdel-Rahman committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    # Amira Abdel-Rahman
    # (c) Massachusetts Institute of Technology 2020
    
    using LinearAlgebra
    using Plots
    import JSON
    using StaticArrays, Rotations
    # BASED ON https://github.com/jonhiller/Voxelyze
    
    
    function simulateParallel(setup,numTimeSteps,dt,static=true,saveInterval=10)
    	initialize(setup)
        for i in 1:numTimeSteps
            # println("Timestep:",i)
            doTimeStep(setup,dt,static,i,saveInterval);
        end
    end
    
    function initialize(setup)
    	nodes      = setup["nodes"]
        edges      = setup["edges"]
    	# pre-calculate current position
    	for node in nodes
            # element=parse(Int,node["id"][2:end])
    
            append!(N_position,[[node["position"]["x"] node["position"]["y"] node["position"]["z"]]])
            append!(N_degrees_of_freedom,[node["degrees_of_freedom"]])
            append!(N_restrained_degrees_of_freedom, [node["restrained_degrees_of_freedom"]])
            append!(N_displacement,[[node["displacement"]["x"] node["displacement"]["y"] node["displacement"]["z"]]])
            append!(N_angle,[[node["angle"]["x"] node["angle"]["y"] node["angle"]["z"]]])
            append!(N_force,[[node["force"]["x"] node["force"]["y"] node["force"]["z"]]])
            append!(N_currPosition,[[node["position"]["x"] node["position"]["y"] node["position"]["z"]]])
            append!(N_orient,[Quat(1.0,0.0,0.0,0.0)])#quat
            append!(N_linMom,[[0 0 0]])
            append!(N_angMom,[[0 0 0]])
            append!(N_intForce,[[0 0 0]])
            append!(N_intMoment,[[0 0 0]])
            append!(N_moment,[[0 0 0]])
            
            # for dynamic simulations
            append!(N_posTimeSteps,[[]])
            append!(N_angTimeSteps,[[]])
            
    	end 
    	# pre-calculate the axis
    	for edge in edges
            # element=parse(Int,edge["id"][2:end])
            
            # find the nodes that the lements connects
            fromNode = nodes[edge["source"]+1]
            toNode = nodes[edge["target"]+1]
    
            
            node1 = [fromNode["position"]["x"] fromNode["position"]["y"] fromNode["position"]["z"]]
            node2 = [toNode["position"]["x"] toNode["position"]["y"] toNode["position"]["z"]]
            
            length=norm(node2-node1)
            axis=normalize(collect(Iterators.flatten(node2-node1)))
            
            append!(E_source,[edge["source"]+1])
            append!(E_target,[edge["target"]+1])
            append!(E_area,[edge["area"]])
            append!(E_density,[edge["density"]])
            append!(E_stiffness,[edge["stiffness"]])
            append!(E_stress,[0])
            append!(E_axis,[axis])
            append!(E_currentRestLength,[length])
            append!(E_pos2,[[0 0 0]])
            append!(E_angle1v,[[0 0 0]])
            append!(E_angle2v,[[0 0 0]])
            append!(E_angle1,[Quat(1.0,0,0,0)]) #quat
            append!(E_angle2,[Quat(1.0,0,0,0)]) #quat
            append!(E_currentTransverseStrainSum,[0])
            
            # for dynamic simulations
            append!(E_stressTimeSteps,[[]])
            
    	end 
    	
    end
    
    function doTimeStep(setup,dt,static,currentTimeStep,saveInterval)
        
        nodes      = setup["nodes"]
        edges      = setup["edges"]
        voxCount=size(nodes)[1]
        linkCount=size(edges)[1]
    
    	if dt==0 
    		return true
    	elseif (dt<0) 
    		dt = recommendedTimeStep()
        end
    
    	# if (collisions) updateCollisions();
    	collisions=false
    
    	# Euler integration:
    	Diverged = false
        #  for edge in edges
        
    	for i in 1:linkCount
            # fromNode = nodes[edge["source"]+1]
            # toNode = nodes[edge["target"]+1]
            # node1 = [fromNode["position"]["x"] fromNode["position"]["y"] fromNode["position"]["z"]]
            # node2 = [toNode["position"]["x"] toNode["position"]["y"] toNode["position"]["z"]]
            # updateForces(setup,edge,node1,node2,static)# element numbers??
            updateForces(setup,i,static)# element numbers??
            #  todo: update forces and whatever
    		if axialStrain(true) > 100
    			Diverged = true; # catch divergent condition! (if any thread sets true we will fail, so don't need mutex...
            end
        end
        
        if Diverged
    		println("Divergedd!!!!!")
    		return false
        end
                    
    	for i in 1:voxCount
    		timeStep(dt,i,static,currentTimeStep)
            # timeStep(dt,node,static,currentTimeStep)
    		if(!static&& currentTimeStep%saveInterval==0)
                append!(N_posTimeSteps[i],[N_displacement[i]])
                append!(N_angTimeSteps[i],[N_angle[i]])
    
            end
    		#  todo: update linMom,angMom, orient and whatever
        end
    
    	
    	currentTimeStep = currentTimeStep+dt
    	return true
    end
    
    function updateForces(setup,edge,static=true)
        
    	# pVNeg=new THREE.Vector3(node1.position.x,node1.position.y,node1.position.z);
    	# pVPos=new THREE.Vector3(node2.position.x,node2.position.y,node2.position.z);
        # currentRestLength=pVPos.clone().sub(pVNeg).length();
    	# edge.currentRestLength=currentRestLength; # todo make sure updated
        
        
    	node1=E_source[edge]
        node2=E_target[edge]
        
        currentRestLength=E_currentRestLength[edge]
        
        
    	pVNeg=copy(N_currPosition[node1])# todo change to be linked to edge not node 
    	pVPos=copy(N_currPosition[node2])# todo change to be linked to edge not node
        
        
        
    	#  Vec3D<double> three
    	oldPos2 = copy(E_pos2[edge])
        
    	oldAngle1v = copy(E_angle1v[edge])
    	oldAngle2v =  copy(E_angle2v[edge])# remember the positions/angles from last timestep to calculate velocity
    	#  var oldAngle1v=new THREE.Vector3(node1.angle.x,node1.angle.y,node1.angle.z);//?
    	#  var oldAngle2v=new THREE.Vector3(node2.angle.x,node2.angle.y,node2.angle.z); //??
        
        
    	totalRot= orientLink(edge) # sets pos2, angle1, angle2 /*restLength*/
        
        
    
    	dPos2=0.5*(copy(E_pos2[edge])-oldPos2)
    	dAngle1=0.5*(copy(E_angle1v[edge])-oldAngle1v)
    	dAngle2=0.5*(copy(E_angle2v[edge])-oldAngle2v)
        
        
    
    	# if volume effects...
        # if (!mat->isXyzIndependent() || currentTransverseStrainSum != 0) 
        # updateTransverseInfo(); //currentTransverseStrainSum != 0 catches when we disable poissons mid-simulation
    
    	
        _stress=updateStrain((E_pos2[edge][1]/E_currentRestLength[edge]),E_stiffness[edge])
        #  var _stress=updateStrain(1.0);
        
    
    	E_stress[edge] = _stress
    	if !static
            append!(E_stressTimeSteps[edge],[_stress])
        end
        
        ######### check this
    	if setup["viz"]["minStress"]>_stress
    		setup["viz"]["minStress"]=_stress
    	elseif setup["viz"]["maxStress"]<_stress
    		setup["viz"]["maxStress"]=_stress
        end
        
    
    	#  if (isFailed()){forceNeg = forcePos = momentNeg = momentPos = Vec3D<double>(0,0,0); return;}
    
    	#  var b1=mat->_b1, b2=mat->_b2, b3=mat->_b3, a2=mat->_a2; //local copies //todo get from where i had
    	
    	l   = currentRestLength # ??
    	rho = E_density[edge] 
    	A = E_area[edge] 
    	E = E_stiffness[edge] #  youngs modulus
    	G=1.0 # todo shear_modulus
    	ixx = 1.0 # todo section ixx
    	I=1.0
    	iyy = 1.0  # todo section.iyy//
    	#  var l0=length.dataSync();
    	J=1.0;# todo check
    	#  var l02 = l0 * l0;
    	#  var l03 = l0 * l0 * l0;
    	b1= 12*E*I/(l*l*l)
    	b2= 6*E*I/(l*l)
    	b3= 2*E*I/(l)
    	a1= E*A/l
    	a2= G*J/l
    	nu=0
    
    	b1= 5e6
    	b2= 1.25e7
    	b3= 2.08333e+07
    	a1= E*A/l
    	a2= 1.04167e+07
    
    	L = 5;
    	a1 = E*L # EA/L : Units of N/m
    	a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m
    	b1 = E*L # 12EI/L^3 : Units of N/m
    	b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)
    	b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m
    	# console.log("currentRestLength:"+currentRestLength);
    	# console.log("b1:"+b1/10e6);
    	# console.log("b2:"+b2/10e7);
    	# console.log("b3:"+b3/10e7);
    	# console.log("a2:"+a2/10e7);
    	# var b1= 5e6;
    	# var b2= 1.25e7;
    	# var b3= 2.08333e+07;
    	# var a1= E*A/l;
    	# var a2= 1.04167e+07;
    
    	currentTransverseArea=25.0 #  todo ?? later change
    	currentTransverseArea=A
    
    	# Beam equations. All relevant terms are here, even though some are zero for small angle and others are zero for large angle (profiled as negligible performance penalty)
        forceNeg = [(_stress*currentTransverseArea) (b1*E_pos2[edge][2]-b2*(E_angle1v[edge][3] + E_angle2v[edge][3])) (b1*E_pos2[edge][3] + b2*(E_angle1v[edge][2] + E_angle2v[edge][2]))] # Use Curstress instead of -a1*Pos2.x to account for non-linear deformation 
    	forcePos = -forceNeg;
    
    	momentNeg = [(a2*(E_angle2v[edge][1]-E_angle1v[edge][1])) (-b2*E_pos2[edge][3]-b3*(2*E_angle1v[edge][2]+E_angle2v[edge][2]))   (b2*E_pos2[edge][2] - b3*(2*E_angle1v[edge][3] + E_angle2v[edge][3]))]
    	momentPos = [(a2*(E_angle1v[edge][1]-E_angle2v[edge][1])) (-b2*E_pos2[edge][3]- b3*(E_angle1v[edge][2]+2*E_angle2v[edge][2]))  (b2*E_pos2[edge][2] - b3*(E_angle1v[edge][3] + 2*E_angle2v[edge][3]))]
    	
    								
    	# //local damping:
    	# if (isLocalVelocityValid()){ //if we don't have the basis for a good damping calculation, don't do any damping.
    	# 	float sqA1=mat->_sqA1, sqA2xIp=mat->_sqA2xIp,sqB1=mat->_sqB1, sqB2xFMp=mat->_sqB2xFMp, sqB3xIp=mat->_sqB3xIp;
    	# 	Vec3D<double> posCalc(	sqA1*dPos2.x,
    	# 							sqB1*dPos2.y - sqB2xFMp*(dAngle1.z+dAngle2.z),
    	# 							sqB1*dPos2.z + sqB2xFMp*(dAngle1.y+dAngle2.y));
    
    	# 	forceNeg += pVNeg->dampingMultiplier()*posCalc;
    	# 	forcePos -= pVPos->dampingMultiplier()*posCalc;
    
    	# 	momentNeg -= 0.5*pVNeg->dampingMultiplier()*Vec3D<>(	-sqA2xIp*(dAngle2.x - dAngle1.x),
    	# 															sqB2xFMp*dPos2.z + sqB3xIp*(2*dAngle1.y + dAngle2.y),
    	# 															-sqB2xFMp*dPos2.y + sqB3xIp*(2*dAngle1.z + dAngle2.z));
    	# 	momentPos -= 0.5*pVPos->dampingMultiplier()*Vec3D<>(	sqA2xIp*(dAngle2.x - dAngle1.x),
    	# 															sqB2xFMp*dPos2.z + sqB3xIp*(dAngle1.y + 2*dAngle2.y),
    	# 															-sqB2xFMp*dPos2.y + sqB3xIp*(dAngle1.z + 2*dAngle2.z));
    
    	# }
    	# else setBoolState(LOCAL_VELOCITY_VALID, true); //we're good for next go-around unless something changes
    
        #	transform forces and moments to local voxel coordinates
    	smallAngle=false # ?? todo check
        
    
    	if !smallAngle # ?? chech
    		forceNeg = RotateVec3DInv(E_angle1[edge],forceNeg)
    		momentNeg = RotateVec3DInv(E_angle1[edge],momentNeg)
        end
        
    
        
    
    
    	forcePos = RotateVec3DInv(E_angle2[edge],forcePos);
    	momentPos = RotateVec3DInv(E_angle2[edge],momentPos);
    
        # println(momentPos)
    
    	forceNeg =toAxisOriginalVector3(forceNeg,E_axis[edge]);
    	forcePos =toAxisOriginalVector3(forcePos,E_axis[edge]);
        
    	momentNeg=toAxisOriginalQuat(momentNeg,E_axis[edge]);# TODOO CHECKKKKKK
    	momentPos=toAxisOriginalQuat(momentPos,E_axis[edge]);
        
        # println(momentPos[2]," ",momentPos[3]," ",momentPos[4]," ",momentPos[1]," ")
    
    	N_intForce[node1] =N_intForce[node1] +(forceNeg) ;
    	N_intForce[node2] =N_intForce[node2] +(forcePos) ;
        # println(N_intMoment[node2])
    	N_intMoment[node1]=[(N_intMoment[node1][1]+momentNeg[2]) (N_intMoment[node1][2]+momentNeg[3]) (N_intMoment[node2][3]+momentPos[4])];
    	N_intMoment[node2]=[(N_intMoment[node2][1]+momentPos[2]) (N_intMoment[node2][2]+momentPos[3]) (N_intMoment[node2][3]+momentPos[4])];
        # println(N_intMoment[node2])
    	# assert(!(forceNeg.x != forceNeg.x) || !(forceNeg.y != forceNeg.y) || !(forceNeg.z != forceNeg.z)); //assert non QNAN
    	#  assert(!(forcePos.x != forcePos.x) || !(forcePos.y != forcePos.y) || !(forcePos.z != forcePos.z)); //assert non QNAN
    
    
    end
    
    function orientLink( edge)  # updates pos2, angle1, angle2, and smallAngle //Quat3D<double> /*double restLength*/
        node1=E_source[edge]
        node2=E_target[edge]
        
        currentRestLength=E_currentRestLength[edge]
    	pVNeg=copy(N_currPosition[node1])# todo change to be linked to edge not node 
    	pVPos=copy(N_currPosition[node2])# todo change to be linked to edge not node
        
    	pos2 = toAxisXVector3(pVPos-pVNeg,E_axis[edge]) # digit truncation happens here...
    	#  pos2.x = Math.round(pos2.x * 1e4) / 1e4; 
    	angle1 = toAxisXQuat(N_orient[node1],E_axis[edge])
    	angle2 = toAxisXQuat(N_orient[node2],E_axis[edge])
        # println(angle1[2]," ",angle1[3]," ",angle1[4]," ",angle1[1])
    
    	totalRot = conjugate(angle1) #keep track of the total rotation of this bond (after toAxisX()) # Quat3D<double>
        # println(totalRot.x," ",totalRot.y," ",totalRot.z," ",totalRot.w)
        pos2 = RotateVec3D(totalRot,pos2)
        
        
    
    	# angle2 = copy(totalRot) .* angle2 # todo .*
        angle2=Quat(angle2.w*totalRot.w,angle2.x*totalRot.x,angle2.y*totalRot.y,angle2.z*totalRot.z)
    	angle1 = Quat(1.0,0.0,0.0,0.0)#new THREE.Quaternion() #zero for now...
        
    
    	# small angle approximation?
    	#  var SmallTurn =  ((Math.abs(pos2.z)+Math.abs(pos2.y))/pos2.x);
    	#  var ExtendPerc = (Math.abs(1-pos2.x/currentRestLength));
    	#  if (!smallAngle /*&& angle2.IsSmallAngle()*/ && SmallTurn < SA_BOND_BEND_RAD && ExtendPerc < SA_BOND_EXT_PERC){
    	#  	smallAngle = true;
    	#  	setBoolState(LOCAL_VELOCITY_VALID, false);
    	#  }
    	#  else if (smallAngle && (/*!angle2.IsSmallishAngle() || */SmallTurn > HYSTERESIS_FACTOR*SA_BOND_BEND_RAD || ExtendPerc > HYSTERESIS_FACTOR*SA_BOND_EXT_PERC)){
    	#  	smallAngle = false;
    	#  	setBoolState(LOCAL_VELOCITY_VALID, false);
        #  }
        
        smallAngle=true #todo later remove
    
    	if (smallAngle)	 #Align so Angle1 is all zeros
    		pos2[1] =pos2[1]- currentRestLength #only valid for small angles
        else  #Large angle. Align so that Pos2.y, Pos2.z are zero.
    		# FromAngleToPosX(angle1,pos2) #get the angle to align Pos2 with the X axis
    		# totalRot = angle1.clone().multiply(totalRot)  #update our total rotation to reflect this
    		# angle2 = angle1.clone().multiply(  angle2) #rotate angle2
    		# pos2 = new THREE.Vector3(pos2.length() - currentRestLength, 0, 0);
        end
        
        
    
    	angle1v = ToRotationVector(angle1)
    	angle2v = ToRotationVector(angle2)
    
    	#  assert(!(angle1v.x != angle1v.x) || !(angle1v.y != angle1v.y) || !(angle1v.z != angle1v.z)); # assert non QNAN
    	#  assert(!(angle2v.x != angle2v.x) || !(angle2v.y != angle2v.y) || !(angle2v.z != angle2v.z)); # assert non QNAN
        
        E_pos2[edge]=copy(pos2)
        E_angle1v[edge]=copy(angle1v)
        E_angle2v[edge]=copy(angle2v)
        E_angle1[edge]=copy(angle1)
        E_angle2[edge]=copy(angle2)
        
        
    
    	return totalRot
    end
    
    function RotateVec3D(a, f)   
    	fx= (f[1]==-0) ? 0 : f[1]
        fy= (f[2]==-0) ? 0 : f[2]
        fz= (f[3]==-0) ? 0 : f[3]
        # fx= f[1]
        # fy= f[2]
        # fz= f[3]
    	tw = fx*a.x + fy*a.y + fz*a.z
    	tx = fx*a.w - fy*a.z + fz*a.y
    	ty = fx*a.z + fy*a.w - fz*a.x
    	tz = -fx*a.y + fy*a.x + fz*a.w
    
    	return [(a.w*tx+a.x*tw+a.y*tz-a.z*ty) (a.w*ty-a.x*tz+a.y*tw+a.z*tx) (a.w*tz+a.x*ty-a.y*tx + a.z*tw)]
    end
    #!< Returns a vector representing the specified vector "f" rotated by this quaternion. @param[in] f The vector to transform.
    function RotateVec3DInv(a, f)  
        fx=f[1]
        fy=f[2]
        fz=f[3]
        tw = a.x*fx + a.y*fy + a.z*fz
        tx = a.w*fx - a.y*fz + a.z*fy
        ty = a.w*fy + a.x*fz - a.z*fx
        tz = a.w*fz - a.x*fy + a.y*fx
        return [(tw*a.x + tx*a.w + ty*a.z - tz*a.y) (tw*a.y - tx*a.z + ty*a.w + tz*a.x) (tw*a.z + tx*a.y - ty*a.x + tz*a.w)]	
    end
    #!< Returns a vector representing the specified vector "f" rotated by the inverse of this quaternion. This is the opposite of RotateVec3D. @param[in] f The vector to transform.
    
    
    function setFromUnitVectors(vFrom, vTo )
        # assumes direction vectors vFrom and vTo are normalized
        EPS = 0.000001;
        r =  dot(vFrom,vTo)+1
    
        if r < EPS
            r = 0;
            if abs( vFrom.x ) > abs( vFrom.z ) 
                qx = - vFrom[2]
                qy = vFrom[1]
                qz = 0
                qw = r
            else 
                qx = 0
                qy = - vFrom[3]
                qz = vFrom[2]
                qw = r
            end
       else 
            # crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
            qx = vFrom[2] * vTo[3] - vFrom[3] * vTo[2]
            qy = vFrom[3] * vTo[1] - vFrom[1] * vTo[3]
            qz = vFrom[1] * vTo[2] - vFrom[2] * vTo[1]
            qw = r
    
        end
        qx= (qx==-0) ? 0 : qx
        qy= (qy==-0) ? 0 : qy
        qz= (qz==-0) ? 0 : qz
        qw= (qw==-0) ? 0 : qw
        nn=normalize(collect(Iterators.flatten([qw,qx,qy,qz])))
        return [nn[1] nn[2] nn[3] nn[4]]
        # return normalizeQ(Quat(qw,qx,qy,qz))
        # return Quat(nn[1], nn[2], nn[3], nn[4])
    
    end
    
    function normalizeQ(q) 
        l = norm(q)
        if l === 0 
            qx = 0
            qy = 0
            qz = 0
            qw = 1
        else 
            l = 1 / l
            qx = q.x * l
            qy = q.y * l
            qz = q.z * l
            qw = q.w * l
        end
        return Quat(qw,qx,qy,qz)
    end
    
    function conjugate(q)
        x= (-q.x==-0) ? 0 : -q.x
        y= (-q.y==-0) ? 0 : -q.y
        z= (-q.z==-0) ? 0 : -q.z
    
        return Quat(q.w, x, y, z)
    end
    #Returns a quaternion that is the conjugate of this quaternion. This quaternion is not modified.
    
    function applyQuaternion(q1,q2)
        x = q1[2]
        y = q1[3]
        z = q1[4]
        w = q1[1]
        qx = q2[2]
        qy = q2[3]
        qz = q2[4]
        qw = q2[1]
    
        # calculate quat * vector
    
        ix = qw * x + qy * z - qz * y
        iy = qw * y + qz * x - qx * z
        iz = qw * z + qx * y - qy * x
        iw = - qx * x - qy * y - qz * z
    
        # calculate result * inverse quat
    
        xx = ix * qw + iw * - qx + iy * - qz - iz * - qy
        yy = iy * qw + iw * - qy + iz * - qx - ix * - qz
        zz = iz * qw + iw * - qz + ix * - qy - iy * - qx
    
        mm=normalize(collect(Iterators.flatten([xx yy zz])))
        return [mm[1] mm[2] mm[3]]
    end
    
    function applyQuaternion1(e,q2)
        x = e[1]
        y = e[2]
        z = e[3]
    
        qx = q2[2]
        qy = q2[3]
        qz = q2[4]
        qw = q2[1]
    
        # calculate quat * vector
    
        ix = qw * x + qy * z - qz * y
        iy = qw * y + qz * x - qx * z
        iz = qw * z + qx * y - qy * x
        iw = - qx * x - qy * y - qz * z
    
        # calculate result * inverse quat
    
        xx = ix * qw + iw * - qx + iy * - qz - iz * - qy
        yy = iy * qw + iw * - qy + iz * - qx - ix * - qz
        zz = iz * qw + iw * - qz + ix * - qy - iy * - qx
    
        return [xx yy zz]
    end
    
    function setQuaternionFromEuler(euler)
        x=euler[1]
        y=euler[2]
        z=euler[3]
        
        c1 = cos( x / 2 )
        c2 = cos( y / 2 )
        c3 = cos( z / 2 )
    
        s1 = sin( x / 2 )
        s2 = sin( y / 2 )
        s3 = sin( z / 2 )
       
        x = s1 * c2 * c3 + c1 * s2 * s3
        y = c1 * s2 * c3 - s1 * c2 * s3
        z = c1 * c2 * s3 + s1 * s2 * c3
        w = c1 * c2 * c3 - s1 * s2 * s3
        
        return [w  x  y  z]
    end
    
    function quatToMatrix( quaternion )
    
        te = zeros(16)
    
        x = quaternion[2]
        y = quaternion[3]
        z = quaternion[4]
        w = quaternion[1]
        
        x2 = x + x
        y2 = y + y
        z2 = z + z
        xx = x * x2
        xy = x * y2
        xz = x * z2
        yy = y * y2
        yz = y * z2
        zz = z * z2
        wx = w * x2
        wy = w * y2
        wz = w * z2
    
        sx = 1
        sy = 1
        sz = 1
    
        te[ 1 ] = ( 1 - ( yy + zz ) ) * sx
        te[ 2 ] = ( xy + wz ) * sx
        te[ 3 ] = ( xz - wy ) * sx
        te[ 4 ] = 0;
    
        te[ 5 ] = ( xy - wz ) * sy
        te[ 6 ] = ( 1 - ( xx + zz ) ) * sy
        te[ 7 ] = ( yz + wx ) * sy
        te[ 8 ] = 0;
    
        te[ 9 ] = ( xz + wy ) * sz
        te[ 10 ] = ( yz - wx ) * sz
        te[ 11 ] = ( 1 - ( xx + yy ) ) * sz
        te[ 12 ] = 0
    
        te[ 13 ] = 0 #position.x;
        te[ 14 ] = 0 #position.y;
        te[ 15 ] = 0 #position.z;
        te[ 16 ] = 1
    
        return te
    
    end
    
    function  setFromRotationMatrix(m)
        te = m
        m11 = (te[ 1 ]== -0.0) ? 0.0 : te[ 1 ]
        m12 = (te[ 5 ]== -0.0) ? 0.0 : te[ 5 ]
        m13 = (te[ 9 ]== -0.0) ? 0.0 : te[ 9 ]
        m21 = (te[ 2 ]== -0.0) ? 0.0 : te[ 2 ]
        m22 = (te[ 6 ]== -0.0) ? 0.0 : te[ 6 ]
        m23 = (te[ 10]== -0.0) ? 0.0 : te[ 10]
        m31 = (te[ 3 ]== -0.0) ? 0.0 : te[ 3 ]
        m32 = (te[ 7 ]== -0.0) ? 0.0 : te[ 7 ]
        m33 = (te[ 11]== -0.0) ? 0.0 : te[ 11]
    
        m11 = te[ 1 ]
        m12 = te[ 5 ]
        m13 = te[ 9 ]
        m21 = te[ 2 ]
        m22 = te[ 6 ]
        m23 = te[ 10]
        m31 = te[ 3 ]
        m32 = te[ 7 ]
        m33 = te[ 11]
    
    
    
        y = asin( clamp( m13, - 1, 1 ) )
    
        if ( abs( m13 ) < 0.9999999 ) 
            
            x = atan( - m23, m33 )
            z = atan( - m12, m11 )#-m12, m11
            # if(m23==0.0)
            #     x = atan( m23, m33 )
            # end
            # if(m12==0.0)
            #     z = atan( m12, m11 )
            # end
    
        else
    
            x = atan( m32, m22 )
            z = 0;
    
        end
        
        return [x y z]
        
    end
    
    function toAxisOriginalVector3(pV,axis)
        # xaxis=[1 0 0]
        
        # vector=copy(axis)
        # vector=normalize(collect(Iterators.flatten(vector)))
    
        # p = SVector(pV[1],pV[2], pV[3])
        # q=setFromUnitVectors(xaxis, vector)
        
        # v= q * p
        # return [v[1] v[2] v[3]]
    
        xaxis=[1 0 0]
    
        vector=copy(axis)
        vector=normalize(collect(Iterators.flatten(vector)))
    
        p = SVector(pV[1],pV[2], pV[3])    
    
        q=setFromUnitVectors(xaxis, vector)
        
        qq=Quat(q[1],q[2],q[3],q[4])
        d=17
        qw=round(q[1], digits=d)
        qx=round(q[2], digits=d)
        qy=round(q[3], digits=d)
        qz=round(q[4], digits=d)
    
        rot=setFromRotationMatrix(copy(quatToMatrix( copy([qw qx qy qz])  )))
    
        return applyQuaternion1( copy(pV) ,setQuaternionFromEuler(copy(rot)) )
    end
    
    function toAxisXVector3(pV,axis) #TODO CHANGE
        # xaxis=[1 0 0]
        # vector=copy(axis)
        # vector=normalize(collect(Iterators.flatten(vector)))
        # p = SVector(pV[1],pV[2], pV[3])
        # q=setFromUnitVectors(vector,xaxis)
        
        # v= q * p
        # return [v[1] v[2] v[3]]
    
        xaxis=[1 0 0]
    
        vector=copy(axis)
        vector=normalize(collect(Iterators.flatten(vector)))
    
        p = SVector(pV[1],pV[2], pV[3])    
    
        q=setFromUnitVectors(vector,xaxis)
        
        qq=Quat(q[1],q[2],q[3],q[4])
        d=17
        qw=round(q[1], digits=d)
        qx=round(q[2], digits=d)
        qy=round(q[3], digits=d)
        qz=round(q[4], digits=d)
        
    
        rot=setFromRotationMatrix(copy(quatToMatrix( copy([qw qx qy qz])  )))
    
        
        return applyQuaternion1( copy(pV) ,setQuaternionFromEuler(copy(rot)) )
    end
    #transforms a vec3D in the original orientation of the bond to that as if the bond was in +X direction
    
    function toAxisOriginalQuat(pQ,axis)
        # xaxis=[1 0 0]  
        # vector=copy(axis)
        # vector=normalize(collect(Iterators.flatten(vector)))
    
        # p = SVector(pQ[1],pQ[2], pQ[3])
        # q=setFromUnitVectors(xaxis, vector)
        
        # v=q * p
        # return Quat(1.0,v[1],v[2],v[3])
    
        xaxis=[1 0 0]
    
        vector=copy(axis)
        vector=normalize(collect(Iterators.flatten(vector)))
    
        
        p = SVector(pQ[1],pQ[2], pQ[3])     
    
        q=setFromUnitVectors(xaxis,vector)
        
        qq=Quat(q[1],q[2],q[3],q[4])
        d=17
        qw=round(q[1], digits=d)
        qx=round(q[2], digits=d)
        qy=round(q[3], digits=d)
        qz=round(q[4], digits=d)
    
        rot=setFromRotationMatrix(copy(quatToMatrix( copy([qw qx qy qz])  )))
        v=applyQuaternion1( copy([pQ[1] pQ[2] pQ[3]]) ,setQuaternionFromEuler(copy(rot)) )
    
        return [1.0 v[1] v[2] v[3]]
        
    end
    
    function  toAxisXQuat(pQ,axis)
        # xaxis=[1 0 0]  
        # vector=copy(axis)
        # vector=normalize(collect(Iterators.flatten(vector)))
    
        # p = SVector(q.x,q.y, q.z)
        # q=setFromUnitVectors(vector,xaxis)
        
        # v=q * p
        # return Quat(q.w,v[1],v[2],v[3])
    
        xaxis=[1 0 0]
    
        vector=copy(axis)
        vector=normalize(collect(Iterators.flatten(vector)))
    
        p = SVector(pQ.x,pQ.y, pQ.z)   
    
        q=setFromUnitVectors(vector,xaxis)
        
        qq=Quat(q[1],q[2],q[3],q[4])
        d=17
        qw=round(q[1], digits=d)
        qx=round(q[2], digits=d)
        qy=round(q[3], digits=d)
        qz=round(q[4], digits=d)
    
        rot=setFromRotationMatrix(copy(quatToMatrix( copy([qw qx qy qz])  )))
        v=applyQuaternion1( copy([pQ.x pQ.y pQ.z ]) ,setQuaternionFromEuler(copy(rot)) )
        return Quat(1.0,v[1],v[2],v[3])
        # return [1.0 v[1] v[2] v[3]]
    end
    #transforms a vec3D in the original orientation of the bond to that as if the bond was in +X direction
    
    
    function ToRotationVector(a)  
    	if (a.w >= 1.0 || a.w <= -1.0) 
    		return [0 0 0]
        end
    	squareLength = 1.0-a.w*a.w; # because x*x + y*y + z*z + w*w = 1.0, but more susceptible to w noise (when 
    	SLTHRESH_ACOS2SQRT= 2.4e-3; # SquareLength threshhold for when we can use square root optimization for acos. From SquareLength = 1-w*w. (calculate according to 1.0-W_THRESH_ACOS2SQRT*W_THRESH_ACOS2SQRT
        
    	if (squareLength < SLTHRESH_ACOS2SQRT) # ???????
    		return [a.x  a.y  a.z] *(2.0*sqrt((2-2*a.w)/squareLength)); # acos(w) = sqrt(2*(1-x)) for w close to 1. for w=0.001, error is 1.317e-6
    	else 
    		return [a.x a.y a.z] * (2.0*acos(a.w)/sqrt(squareLength));
        end                                    
    end 
    # !< Returns a rotation vector representing this quaternion rotation. Adapted from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/
    
    
    function FromRotationVector(VecIn)
        theta=VecIn/2.0
        thetaMag2=norm(theta)*norm(theta)
        DBL_EPSILONx24 =5.328e-15
        if thetaMag2*thetaMag2 < DBL_EPSILONx24
            qw=1.0 - 0.5*thetaMag2
    		s=1.0 - thetaMag2 / 6.0
        else
            thetaMag = sqrt(thetaMag2)
    		qw=cos(thetaMag)
    		s=sin(thetaMag) / thetaMag
        end
        qx=theta[1]*s
        qy=theta[2]*s
        qz=theta[3]*s;
        
        return Quat(qw,qx,qy,qz)
    end
    
    
    function FromAngleToPosX(a, RotateFrom) #highly optimized at the expense of readability
        
        SMALL_ANGLE_RAD= 1.732e-2 # Angles less than this get small angle approximations. To get: Root solve atan(t)/t-1+MAX_ERROR_PERCENT. From: MAX_ERROR_PERCENT = (t-atan(t))/t 
        SMALL_ANGLE_W =0.9999625 # quaternion W value corresponding to a SMALL_ANGLE_RAD. To calculate, cos(SMALL_ANGLE_RAD*0.5).
        W_THRESH_ACOS2SQRT= 0.9988 # Threshhold of w above which we can approximate acos(w) with sqrt(2-2w). To get: Root solve 1-sqrt(2-2wt)/acos(wt) - MAX_ERROR_PERCENT. From MAX_ERROR_PERCENT = (acos(wt)-sqrt(2-2wt))/acos(wt)
    
        
    	if (RotateFrom[1]==0 && RotateFrom[2]==0 && RotateFrom[3]==0) 
    		return 0 #leave off if it slows down too much!!
        end
    
        # Catch and handle small angle:
        YoverX = RotateFrom[2]/RotateFrom[1]
        ZoverX = RotateFrom[3]/RotateFrom[1]
        if (YoverX<SMALL_ANGLE_RAD && YoverX>-SMALL_ANGLE_RAD && ZoverX<SMALL_ANGLE_RAD && ZoverX>-SMALL_ANGLE_RAD) # ??? //Intercept small angle and zero angle
    		ax=0
    		ay=0.5*ZoverX
    		az=-0.5*YoverX
            aw = 1+0.5*(-a.y*a.y-a.z*a.z) # w=sqrt(1-x*x-y*y), small angle sqrt(1+x) ~= 1+x/2 at x near zero.
            return Quat(aw,ax,ay,az)
        end
    
        #  more accurate non-small angle:
        RotFromNorm = copy(RotateFrom)
        RotFromNorm=normalize(collect(Iterators.flatten(RotFromNorm))) #  Normalize the input...
    
        theta = acos(RotFromNorm[1])  # because RotFromNorm is normalized, 1,0,0 is normalized, and A.B = |A||B|cos(theta) = cos(theta)
        if(theta >(π-DISCARD_ANGLE_RAD)) # ??????
            aw=0
    		ax=0
    		ay=1
    		az=0
            return Quat(aw,ax,ay,az)
        end  # 180 degree rotation (about y axis, since the vector must be pointing in -x direction
    
        AxisMagInv = 1.0/sqrt(RotFromNorm[3]*RotFromNorm[3]+RotFromNorm[2]*RotFromNorm[2])
         # Here theta is the angle, axis is RotFromNorm.Cross(Vec3D(1,0,0)) = Vec3D(0, RotFromNorm.z/AxisMagInv, -RotFromNorm.y/AxisMagInv), which is still normalized. (super rolled together)
        aa = 0.5*theta
        s = sin(a)
    	aw= cos(aa)
    	ax= 0
    	ay= RotFromNorm[3]*AxisMagInv*s
    	az = -RotFromNorm[2]*AxisMagInv*s  # angle axis function, reduced
    	return Quat(aw,ax,ay,az)
    
    end
     # !< Overwrites this quaternion with the calculated rotation that would transform the specified RotateFrom vector to point in the positve X direction. Note: function changes this quaternion.  @param[in] RotateFrom An arbitrary direction vector. Does not need to be normalized.
    
    
    function axialStrain(positiveEnd)
    	# strainRatio = pVPos->material()->E/pVNeg->material()->E;
    	strainRatio=1.0
    	return positiveEnd ? (2.0 *strain*strainRatio/(1.0+strainRatio)) : (2.0*strain/(1.0+strainRatio))
    end
    
    function updateStrain( axialStrain,E) # ?from where strain
    	strain = axialStrain # redundant?
    	currentTransverseStrainSum=0.0 # ??? todo
        linear=true
        maxStrain=100000000000000000000;# ?? todo later change
    	if linear
    		if axialStrain > maxStrain
    			maxStrain = axialStrain # remember this maximum for easy reference
            end
    		return stress(axialStrain,E)
    	else 
    		if (axialStrain > maxStrain) # if new territory on the stress/strain curve
    			maxStrain = axialStrain # remember this maximum for easy reference
    			returnStress = stress(axialStrain,E) # ??currentTransverseStrainSum
    			if (nu != 0.0) 
    				strainOffset = maxStrain-stress(axialStrain,E)/(_eHat*(1-nu)) # precalculate strain offset for when we back off
    			else 
                    strainOffset = maxStrain-returnStress/E # precalculate strain offset for when we back off
                end
    		else  # backed off a non-linear material, therefore in linear region.
    			relativeStrain = axialStrain-strainOffset #  treat the material as linear with a strain offset according to the maximum plastic deformation
                if (nu != 0.0) 
    				returnStress = stress(relativeStrain,E)
    			else 
    				returnStress = E*relativeStrain
                end
            end
    		return returnStress
        end
    end
    
    function stress( strain , E ) #end,transverseStrainSum, forceLinear){
    	#  reference: http://www.colorado.edu/engineering/CAS/courses.d/Structures.d/IAST.Lect05.d/IAST.Lect05.pdf page 10
    	#  if (isFailed(strain)) return 0.0f; //if a failure point is set and exceeded, we've broken!
    	#   var E =setup.edges[0].stiffness; //todo change later to material ??
    	#   var E=1000000;//todo change later to material ??
    	#   var scaleFactor=1;
        return E*strain;
    
    	#  #   if (strain <= strainData[1] || linear || forceLinear){ //for compression/first segment and linear materials (forced or otherwise), simple calculation
            
            #   if (nu==0.0) return E*strain;
    		#   else return _eHat*((1-nu)*strain + nu*transverseStrainSum); 
    		#  else return eHat()*((1-nu)*strain + nu*transverseStrainSum); 
    	#  #  }
    
    	#  //the non-linear feature with non-zero poissons ratio is currently experimental
    	#  int DataCount = modelDataPoints();
    	#  for (int i=2; i<DataCount; i++){ //go through each segment in the material model (skipping the first segment because it has already been handled.
    	#  	if (strain <= strainData[i] || i==DataCount-1){ //if in the segment ending with this point (or if this is the last point extrapolate out) 
    	#  		float Perc = (strain-strainData[i-1])/(strainData[i]-strainData[i-1]);
    	#  		float basicStress = stressData[i-1] + Perc*(stressData[i]-stressData[i-1]);
    	#  		if (nu==0.0f) return basicStress;
    	#  		else { //accounting for volumetric effects
    	#  			float modulus = (stressData[i]-stressData[i-1])/(strainData[i]-strainData[i-1]);
    	#  			float modulusHat = modulus/((1-2*nu)*(1+nu));
    	#  			float effectiveStrain = basicStress/modulus; //this is the strain at which a simple linear stress strain line would hit this point at the definied modulus
    	#  			float effectiveTransverseStrainSum = transverseStrainSum*(effectiveStrain/strain);
    	#  			return modulusHat*((1-nu)*effectiveStrain + nu*effectiveTransverseStrainSum);
    	#  		}
    	#  	}
    	#  }
    
    	#  assert(false); //should never reach this point
    	#  return 0.0f;
    end 
    
    function ToEulerAngles(q) # TODO I THINK WRONG
        # roll (x-axis rotation)
        sinr_cosp = (2 * (q.w * q.x + q.y * q.z)    )== -0.0 ? 0.0 : (2 * (q.w * q.x + q.y * q.z)    )
        cosr_cosp = (1 - 2 * (q.x * q.x + q.y * q.y))== -0.0 ? 0.0 : (1 - 2 * (q.x * q.x + q.y * q.y))
        
        roll = atan(sinr_cosp, cosr_cosp)
       
    
        # pitch (y-axis rotation)
        sinp = 2 * (q.w * q.y - q.z * q.x)
        if (abs(sinp) >= 1)
            pitch = copysign(π / 2, sinp) #  use 90 degrees if out of range
        else
            pitch = asin(sinp)
        end
    
        # yaw (z-axis rotation)
        siny_cosp = 2 * (q.w * q.z + q.x * q.y)
        cosy_cosp = 1 - 2 * (q.y * q.y + q.z * q.z)
        yaw = atan(siny_cosp, cosy_cosp)
        
    
        return [roll pitch yaw]
    end
    # ToEulerAngles(Quat(1.0,1.0,1.0,1.0))
    
    
    # http://klas-physics.googlecode.com/svn/trunk/src/general/Integrator.cpp (reference)
    function timeStep(dt,node,static,currentTimeStep)
    	previousDt = dt
    	linMom=copy(N_linMom[node])
        angMom=copy(N_angMom[node])
        orient=copy(N_orient[node])
    	pos=copy(N_currPosition[node])
        
        
    	if (dt == 0.0) 
    		return 0
        end
    
    	if(all(N_restrained_degrees_of_freedom[node] .>=1))
    		#  pos = originalPosition() + ext->translation();
    		#  orient = ext->rotationQuat();
    		#  haltMotion();
    		#  #  pos=copy(N_position[node])
    		#  #  node.currPosition=pos.clone();
    		#  #  linMom = new THREE.Vector3(0,0,0);
    		#  #  angMom = new THREE.Vector3(0,0,0);
    		#  #  node.displacement={x:0,y:0,z:0};
    
    		#  node.orient=orient.clone();
    		#  node.linMom=linMom.clone();
    		#  node.angMom=angMom.clone();
    		return 0
        end
        
    
    	# Translation
    	curForce = force(node,static,currentTimeStep)
    
    	# var fricForce = curForce.clone();
    
    	# if (isFloorEnabled()) floorForce(dt, &curForce); //floor force needs dt to calculate threshold to "stop" a slow voxel into static friction.
    
    	# fricForce = curForce - fricForce;