Skip to content
Snippets Groups Projects
parallelFEAGPU.jl 39.6 KiB
Newer Older
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020

using LinearAlgebra
using Plots
import JSON
# using Quaternions
using StaticArrays, Rotations
using Distributed
using StaticArrays, BenchmarkTools
using Base.Threads
using CUDAnative
using CuArrays,CUDAdrv 
using Test
import Base: +, * , -, ^


########################################

struct Vector3
    x::Float64
    y::Float64
    z::Float64
    function Vector3()
        x=0.0
        y=0.0
        z=0.0
        new(x,y,z)
    end
    function Vector3(x,y,z)
       new(x,y,z)
    end
end
struct Quaternion
    x::Float64
    y::Float64
    z::Float64
    w::Float64
    function Quaternion()
        x=0.0
        y=0.0
        z=0.0
        w=1.0
        new(x,y,z,w)
    end
    function Quaternion(x,y,z,w)
        new(x,y,z,w)
    end
end
struct RotationMatrix
    te1::Float64
    te2::Float64
    te3::Float64
    te4::Float64
    te5::Float64
    te6::Float64
    te7::Float64
    te8::Float64
    te9::Float64
    te10::Float64
    te11::Float64
    te12::Float64
    te13::Float64
    te14::Float64
    te15::Float64
    te16::Float64
    function RotationMatrix()
        te1 =0.0
        te2 =0.0
        te3 =0.0
        te4 =0.0
        te5 =0.0
        te6 =0.0
        te7 =0.0
        te8 =0.0
        te9 =0.0
        te10=0.0
        te11=0.0
        te12=0.0
        te13=0.0
        te14=0.0
        te15=0.0
        te16=0.0
        new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)
    end
    function RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)
        new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)
    end
end

+(f::Vector3, g::Vector3)=Vector3(f.x+g.x , f.y+g.y,f.z+g.z )
-(f::Vector3, g::Vector3)=Vector3(f.x-g.x , f.y-g.y,f.z-g.z )
*(f::Vector3, g::Vector3)=Vector3(f.x*g.x , f.y*g.y,f.z*g.z )

+(f::Vector3, g::Number)=Vector3(f.x+g , f.y+g,f.z+g )
-(f::Vector3, g::Number)=Vector3(f.x-g , f.y-g,f.z-g )
*(f::Vector3, g::Number)=Vector3(f.x*g , f.y*g,f.z*g )

+(g::Vector3, f::Number)=Vector3(f.x+g , f.y+g,f.z+g )
-(g::Vector3, f::Number)=Vector3(g-f.x , g-f.y,g-f.z )
*(g::Vector3, f::Number)=Vector3(f.x*g , f.y*g,f.z*g )

addX(f::Vector3, g::Number)=Vector3(f.x+g , f.y,f.z)
addY(f::Vector3, g::Number)=Vector3(f.x , f.y+g,f.z )
addZ(f::Vector3, g::Number)=Vector3(f.x , f.y,f.z+g )

function normalizeVector3(f::Vector3)
    leng=sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z))
    return Vector3(f.x/leng,f.y/leng,f.z/leng)
    
end


function normalizeQuaternion(f::Quaternion)
    l = sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z)+ (f.w * f.w))
    if l === 0 
        qx = 0
        qy = 0
        qz = 0
        qw = 1
    else 
        l = 1 / l
        qx = f.x * l
        qy = f.y * l
        qz = f.z * l
        qw = f.w * l
    end
    return Quaternion(qx,qy,qz,qw)
end

function normalizeQuaternion1!(fx::Float64,fy::Float64,fz::Float64,fw::Float64)
    l = sqrt((fx * fx) + (fy * fy) + (fz * fz)+ (fw * fw))
    if l === 0 
        qx = 0.0
        qy = 0.0
        qz = 0.0
        qw = 1.0
    else 
        l = 1.0 / l
        qx = fx * l
        qy = fy * l
        qz = fz * l
        qw = fw * l
    end
    return qx,qy,qz,qw
end


function dotVector3(f::Vector3, g::Vector3)
    return (f.x * g.x) + (f.y * g.y) + (f.z * g.z)
end

function Base.show(io::IO, v::Vector3)
    print(io, "x:$(v.x), y:$(v.y), z:$(v.z)")
end

function Base.show(io::IO, v::Quaternion)
    print(io, "x:$(v.x), y:$(v.y), z:$(v.z), w:$(v.z)")
end

Base.Broadcast.broadcastable(q::Vector3) = Ref(q)

########################################
function simulateParallel(numTimeSteps,dt,static=true)
    # initialize(setup)
    
    for i in 1:numTimeSteps
        # println("Timestep:",i)
        doTimeStep(dt,static,i)
    end
end
########################################
function initialize(setup)
	nodes      = setup["nodes"]
    edges      = setup["edges"]
    
    i=1
	# pre-calculate current position
	for node in nodes
        # element=parse(Int,node["id"][2:end])
        N_position[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])
        N_restrained[i]=node["restrained_degrees_of_freedom"][1] ## todo later consider other degrees of freedom
        N_displacement[i]=Vector3(node["displacement"]["x"],node["displacement"]["y"],node["displacement"]["z"])
        N_angle[i]=Vector3(node["angle"]["x"],node["angle"]["y"],node["angle"]["z"])
        N_force[i]=Vector3(node["force"]["x"],node["force"]["y"],node["force"]["z"])
        N_currPosition[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])

        # for dynamic simulations
        # append!(N_posTimeSteps,[[]])
        # append!(N_angTimeSteps,[[]])
        
        i=i+1
	end 
    
    i=1
	# pre-calculate the axis
	for edge in edges
        # element=parse(Int,edge["id"][2:end])
        
        # find the nodes that the lements connects
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        fromNode = nodes[edge["source"]+1]
        toNode = nodes[edge["target"]+1]

        
        node1 = [fromNode["position"]["x"] fromNode["position"]["y"] fromNode["position"]["z"]]
        node2 = [toNode["position"]["x"] toNode["position"]["y"] toNode["position"]["z"]]
        
        length=norm(node2-node1)
        axis=normalize(collect(Iterators.flatten(node2-node1)))
        
        E_source[i]=edge["source"]+1
        E_target[i]=edge["target"]+1
        E_area[i]=edge["area"]
        E_density[i]=edge["density"]
        E_stiffness[i]=edge["stiffness"]
        E_axis[i]=Vector3(axis[1],axis[2],axis[3])
        E_currentRestLength[i]=length
        
        N_edgeID[E_source[i],N_currEdge[E_source[i]]]=i
        N_edgeFirst[E_source[i],N_currEdge[E_source[i]]]=true
        N_currEdge[E_source[i]]+=1
        
        N_edgeID[E_target[i],N_currEdge[E_target[i]]]=i
        N_edgeFirst[E_target[i],N_currEdge[E_target[i]]]=false
        N_currEdge[E_target[i]]+=1
       
        
        # for dynamic simulations
        # append!(E_stressTimeSteps,[[]])
        
        i=i+1
	end 
end
########################################
function doTimeStep(dt,static,currentTimeStep)
    # update forces: go through edges, get currentposition from nodes, calc pos2 and update stresses and interior forces of nodes
    run_updateEdges!(
        E_sourceGPU, 
        E_targetGPU,
        E_areaGPU,
        E_densityGPU,
        E_stiffnessGPU,
        E_stressGPU,
        E_axisGPU,
        E_currentRestLengthGPU,
        E_pos2GPU,
        E_angle1vGPU,
        E_angle2vGPU,
        E_angle1GPU,
        E_angle2GPU,
        E_intForce1GPU,
        E_intMoment1GPU,
        E_intForce2GPU,
        E_intMoment2GPU,
        N_currPositionGPU,
        N_orientGPU)
    
    # update forces: go through nodes and update interior force (according to int forces from edges), integrate and update currpos
    run_updateNodes!(dt,currentTimeStep,
        N_positionGPU, 
        N_restrainedGPU,
        N_displacementGPU,
        N_angleGPU,
        N_currPositionGPU,
        N_linMomGPU,
        N_angMomGPU,
        N_intForceGPU,
        N_intMomentGPU,
        N_forceGPU,
        N_momentGPU,
        N_orientGPU,
        N_edgeIDGPU, 
        N_edgeFirstGPU, 
        E_intForce1GPU,
        E_intMoment1GPU,
        E_intForce2GPU,
        E_intMoment2GPU)
    
end
########################################
function updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,E_angle2v,E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,N_currPosition,N_orient)

    index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
    stride = blockDim().x * gridDim().x
    ## @cuprintln("thread $index, block $stride")
    N=length(E_source)
    for i = index:stride:N
        
        @inbounds pVNeg=N_currPosition[E_source[i]]
        @inbounds pVPos=N_currPosition[E_target[i]]
        
        @inbounds oVNeg=N_orient[E_source[i]]
        @inbounds oVPos=N_orient[E_target[i]]
        
        @inbounds oldPos2=E_pos2[i] #?copy?
        @inbounds oldAngle1v = E_angle1v[i]
        @inbounds oldAngle2v =  E_angle2v[i]# remember the positions/angles from last timestep to calculate velocity
        
            # E_pos2[i],E_angle1v[i],E_angle2v[i],E_angle1[i],E_angle2[i],
        @inbounds E_pos2[i],E_angle1v[i],E_angle2v[i],E_angle1[i],E_angle2[i],totalRot= orientLink!(E_currentRestLength[i],pVNeg,pVPos,oVNeg,oVPos,E_axis[i])
        @inbounds m=(E_pos2[i].x/E_currentRestLength[i])
        @inbounds _stress=updateStrain(m,E_stiffness[i])
        @inbounds E_stress[i]=_stress
            # @cuprintln(_stress)
        
        @inbounds l   = E_currentRestLength[i]
        @inbounds E = E_stiffness[i]
        
        nu=0
        L = 5.0
        a1 = E*L # EA/L : Units of N/m
        a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m
        b1 = E*L # 12EI/L^3 : Units of N/m
        b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)
        b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m
        @inbounds currentTransverseArea=E_area[i]
        
        x=(_stress*currentTransverseArea)
        @inbounds y=(b1*E_pos2[i].y-b2*(E_angle1v[i].z + E_angle2v[i].z))
        @inbounds z=(b1*E_pos2[i].z + b2*(E_angle1v[i].y + E_angle2v[i].y))
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        
        # Use Curstress instead of -a1*Pos2.x to account for non-linear deformation 
        forceNeg = Vector3(x,y,z)
        # forceNeg = Vector3((_stress*currentTransverseArea),(b1*E_pos2[edge].y-b2*(E_angle1v[i].z + E_angle2v[i].z)),(b1*E_pos2[i].z + b2*(E_angle1v[i].y + E_angle2v[i].y))) # Use Curstress instead of -a1*Pos2.x to account for non-linear deformation 
        forcePos = Vector3(-x,-y,-z)
        
        @inbounds x= (a2*(E_angle2v[i].x-E_angle1v[i].x))
        @inbounds y= (-b2*E_pos2[i].z-b3*(2.0*E_angle1v[i].y+E_angle2v[i].y))
        @inbounds z=(b2*E_pos2[i].y - b3*(2.0*E_angle1v[i].z + E_angle2v[i].z))  
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        momentNeg = Vector3(x,y,z)
        # momentNeg = Vector3((a2*(E_angle2v[i].x-E_angle1v[i].x)) , (-b2*E_pos2[i].z-b3*(2.0*E_angle1v[i].y+E_angle2v[i].y)),(b2*E_pos2[i].y - b3*(2.0*E_angle1v[i].z + E_angle2v[i].z)))

        @inbounds x= (a2*(E_angle1v[i].x-E_angle2v[i].x))
        @inbounds y= (-b2*E_pos2[i].z- b3*(E_angle1v[i].y+2.0*E_angle2v[i].y))
        @inbounds z=(b2*E_pos2[i].y - b3*(E_angle1v[i].z + 2.0*E_angle2v[i].z))
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        momentPos = Vector3(x,y,z)
            # momentPos = Vector3((a2*(E_angle1v[i].x-E_angle2v[i].x)) , (-b2*E_pos2[i].z- b3*(E_angle1v[i].y+2.0*E_angle2v[i].y)),(b2*E_pos2[i].y - b3*(E_angle1v[i].z + 2.0*E_angle2v[i].z)))
        smallAngle=false
        if !smallAngle # ?? check
            @inbounds forceNeg = RotateVec3DInv(E_angle1[i],forceNeg)
            @inbounds momentNeg = RotateVec3DInv(E_angle1[i],momentNeg)
        end
        
        @inbounds forcePos = RotateVec3DInv(E_angle2[i],forcePos)
        @inbounds momentPos = RotateVec3DInv(E_angle2[i],momentPos)

        # println(momentPos)

        @inbounds forceNeg =toAxisOriginalVector3(forceNeg,E_axis[i])
        @inbounds forcePos =toAxisOriginalVector3(forcePos,E_axis[i])

        @inbounds momentNeg=toAxisOriginalQuat(momentNeg,E_axis[i])# TODOO CHECKKKKKK
        @inbounds momentPos=toAxisOriginalQuat(momentPos,E_axis[i])

        # println(momentPos[2]," ",momentPos[3]," ",momentPos[4]," ",momentPos[1]," ")

        @inbounds E_intForce1[i] =forceNeg
        @inbounds E_intForce2[i] =forcePos
        #@inbounds E_intForce1[i] =E_intForce1[i]+forceNeg
        #@inbounds E_intForce2[i] =E_intForce2[i]+forcePos
        
        
        #@inbounds x= E_intMoment1[i].x+momentNeg.x
        #@inbounds y= E_intMoment1[i].y+momentNeg.y
        #@inbounds z= E_intMoment1[i].z+momentNeg.z
        @inbounds x= momentNeg.x
        @inbounds y= momentNeg.y
        @inbounds z= momentNeg.z  
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        
        @inbounds E_intMoment1[i]=Vector3(x,y,z)
        
        #@inbounds x= E_intMoment2[i].x+momentNeg.x
        #@inbounds y= E_intMoment2[i].y+momentNeg.y
        #@inbounds z= E_intMoment2[i].z+momentNeg.z
        @inbounds x= momentNeg.x
        @inbounds y= momentNeg.y
        @inbounds z= momentNeg.z
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        
        @inbounds E_intMoment2[i]=Vector3(x,y,z)
        
        
    end
    return
end

function run_updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,E_angle2v,E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,N_currPosition,N_orient)
    N=length(E_source)
    numblocks = ceil(Int, N/256)
    CuArrays.@sync begin
        @cuda threads=256 blocks=numblocks updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,E_angle2v,E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,N_currPosition,N_orient)
    end
end
########################################

function updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement,N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)

    index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
    stride = blockDim().x * gridDim().x
    ## @cuprintln("thread $index, block $stride")
    N,M=size(N_edgeID)
    for i = index:stride:N
        @inbounds if N_restrained[i]
            return
        else
            for j in 1:M
                temp=N_edgeID[i,j]
                @inbounds if (N_edgeID[i,j]!=-1)
                    #@cuprintln("i $i, j $j, N_edgeID[i,j] $temp")
                    @inbounds N_intForce[i]=ifelse(N_edgeFirst[i,j], N_intForce[i]+E_intForce1[N_edgeID[i,j]], N_intForce[i]+E_intForce2[N_edgeID[i,j]] )
                    @inbounds N_intMoment[i]=ifelse(N_edgeFirst[i,j], N_intMoment[i]+E_intMoment1[N_edgeID[i,j]], N_intMoment[i]+E_intMoment2[N_edgeID[i,j]] )
                end
            end
            @inbounds curForce = force(N_intForce[i],N_orient[i],N_force[i],true,currentTimeStep)
            
            @inbounds N_force[i]=Vector3(0,0,0) ##????
            
            @inbounds N_intForce[i]=Vector3(0,0,0)
            
            @inbounds N_linMom[i]=N_linMom[i]+curForce*Vector3(dt,dt,dt) #todo make sure right
            massInverse=8e-6 # todo ?? later change
            @inbounds translate=N_linMom[i]*Vector3((dt*massInverse),(dt*massInverse),(dt*massInverse)) # ??massInverse
            
            @inbounds N_currPosition[i]=N_currPosition[i]+translate
            @inbounds N_displacement[i]=N_displacement[i]+translate
            
            # Rotation
            @inbounds curMoment = moment(N_intMoment[i],N_orient[i],N_moment[i]) 

            @inbounds N_intMoment[i]=Vector3(0,0,0) # do i really need it?
            
            @inbounds N_angMom[i]=N_angMom[i]+curMoment*Vector3(dt,dt,dt)
            momentInertiaInverse=1.0 # todo ?? later change
            @inbounds temp=FromRotationVector(N_angMom[i]*Vector3((dt*momentInertiaInverse),(dt*momentInertiaInverse),(dt*momentInertiaInverse)))
            
            @inbounds x= N_orient[i].x*temp.x
            @inbounds y= N_orient[i].y*temp.y
            @inbounds z= N_orient[i].z*temp.z
            @inbounds w= N_orient[i].w*temp.w
            x=convert(Float64,x)
            y=convert(Float64,y)
            z=convert(Float64,z)
            w=convert(Float64,w)
            
            @inbounds N_orient[i]=Quaternion(x,y,z,w)
        end
    end
    return
end


function run_updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement, N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)
    N=length(N_intForce)
    numblocks = ceil(Int, N/256)
    CuArrays.@sync begin
        @cuda threads=256 blocks=numblocks updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement, N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)
    end
end

########################################
function orientLink!(currentRestLength,pVNeg,pVPos,oVNeg,oVPos,axis)  # updates pos2, angle1, angle2, and smallAngle //Quat3D<double> /*double restLength*/
        
    pos2 = toAxisXVector3(pVPos-pVNeg,axis) # digit truncation happens here...
    angle1 = toAxisXQuat(oVNeg,axis)
    angle2 = toAxisXQuat(oVPos,axis)
    
    
    # println(angle1[2]," ",angle1[3]," ",angle1[4]," ",angle1[1])
    
    totalRot = conjugate(angle1) #keep track of the total rotation of this bond (after toAxisX()) # Quat3D<double>
    pos2 = RotateVec3D(totalRot,pos2)
    
    
    angle2 = Quaternion(angle2.x*totalRot.x,angle2.y*totalRot.y,angle2.z*totalRot.z,angle2.w*totalRot.w)
    angle1 = Quaternion(0.0,0.0,0.0,1.0)#new THREE.Quaternion() #zero for now...

    smallAngle=true #todo later remove
    
    
    if (smallAngle)	 #Align so Angle1 is all zeros
        #pos2[1] =pos2[1]- currentRestLength #only valid for small angles
        pos2=Vector3(pos2.x-currentRestLength,pos2.y,pos2.z)
    else  #Large angle. Align so that Pos2.y, Pos2.z are zero.
        # FromAngleToPosX(angle1,pos2) #get the angle to align Pos2 with the X axis
        # totalRot = angle1.clone().multiply(totalRot)  #update our total rotation to reflect this
        # angle2 = angle1.clone().multiply(  angle2) #rotate angle2
        # pos2 = new THREE.Vector3(pos2.length() - currentRestLength, 0, 0);
    end
    
    angle1v = ToRotationVector(angle1)
    angle2v = ToRotationVector(angle2)
#     pos2,angle1v,angle2v,angle1,angle2,
    return pos2,angle1v,angle2v,angle1,angle2,totalRot
end
########################################
function toAxisXVector3(pV::Vector3,axis::Vector3) #TODO CHANGE

    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)
    q=setFromUnitVectors(vector,xaxis)
    
    # d=17
    # qw=round(q[1], digits=d)
    # qx=round(q[2], digits=d)
    # qy=round(q[3], digits=d)
    # qz=round(q[4], digits=d)
    
 
    rot=setFromRotationMatrix(quatToMatrix( q  ))
    
    return applyQuaternion1( pV ,setQuaternionFromEuler(rot) )
end

function toAxisOriginalVector3(pV::Vector3,axis::Vector3)
    
    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)

    q=setFromUnitVectors(xaxis,vector)
    

    rot=setFromRotationMatrix(quatToMatrix( q  ))

    return applyQuaternion1( pV ,setQuaternionFromEuler(rot) )
end

function  toAxisXQuat(pQ::Quaternion,axis::Vector3)
    
    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)


    q=setFromUnitVectors(vector,xaxis)
        
    #d=17
    #qw=round(q[1], digits=d)
    #qx=round(q[2], digits=d)
    #qy=round(q[3], digits=d)
    #qz=round(q[4], digits=d)
    #

    rot=setFromRotationMatrix(quatToMatrix( q  ))
    
    pV=Vector3(pQ.x,pQ.y,pQ.z)
    v=applyQuaternion1( pV ,setQuaternionFromEuler(rot) )
    
    return Quaternion(v.x,v.y,v.z,1.0)
    
    # return [1.0 v[1] v[2] v[3]]
end

function toAxisOriginalQuat(pQ::Vector3,axis::Vector3)
    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)
    
    q=setFromUnitVectors(xaxis,vector)
    

    rot=setFromRotationMatrix(quatToMatrix( q  ))
    
    pV=Vector3(pQ.x,pQ.y,pQ.z)
    v=applyQuaternion1( pV ,setQuaternionFromEuler(rot) )
    
    return Quaternion(v.x,v.y,v.z,1.0)
    
end

########################################
function setFromUnitVectors(vFrom::Vector3, vTo::Vector3)
    # assumes direction vectors vFrom and vTo are normalized
    EPS = 0.000001;
    r= dotVector3(vFrom,vTo)+1.0
    # r =  dot(vFrom,vTo)+1

    if r < EPS
        r = 0;
        if abs( vFrom.x ) > abs( vFrom.z ) 
            qx = - vFrom.y
            qy = vFrom.x
            qz = 0
            qw = r
        else 
            qx = 0
            qy = - vFrom.z
            qz = vFrom.y
            qw = r
        end
   else 
        # crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
        qx = vFrom.y * vTo.z - vFrom.z * vTo.y
        qy = vFrom.z * vTo.x - vFrom.x * vTo.z
        qz = vFrom.x * vTo.y - vFrom.y * vTo.x
        qw = r

    end
    qx= (qx==-0) ? 0 : qx
    qy= (qy==-0) ? 0 : qy
    qz= (qz==-0) ? 0 : qz
    qw= (qw==-0) ? 0 : qw
        
    
    mx=qx*qx
    my=qy*qy
    mz=qz*qz
    mw=qw*qw
    mm=mx+my
    mm=mm+mz
    mm=mm+mw
    mm=convert(Float64,mm)#??????????????????? todo check later
    
    l=CUDAnative.sqrt(mm)
    #@cuprintln(CUDAnative.sqrt(4.0))
    
    #l = sqrt((qx * qx) + (qy * qy) + (qz * qz)+ (qw * qw))
    if l === 0 
        qx = 0.0
        qy = 0.0
        qz = 0.0
        qw = 1.0
    else 
        l = 1.0 / l
        qx = qx * l
        qy = qy * l
        qz = qz * l
        qw = qw * l
    end

    # return qx,qy,qz,qw
    return Quaternion(qx,qy,qz,qw)
    
    # return normalizeQ(Quat(qw,qx,qy,qz))
    # return Quat(nn[1], nn[2], nn[3], nn[4])

end

function quatToMatrix( quaternion::Quaternion)

    #te = RotationMatrix()
    
    x = quaternion.x
    y = quaternion.y
    z = quaternion.z
    w = quaternion.w
    
    x2 = x + x
    y2 = y + y
    z2 = z + z
    xx = x * x2
    xy = x * y2
    xz = x * z2
    yy = y * y2
    yz = y * z2
    zz = z * z2
    wx = w * x2
    wy = w * y2
    wz = w * z2

    sx = 1.0
    sy = 1.0
    sz = 1.0

    te1 = ( 1 - ( yy + zz ) ) * sx
    te2 = ( xy + wz ) * sx
    te3 = ( xz - wy ) * sx
    te4 = 0;

    te5 = ( xy - wz ) * sy
    te6 = ( 1 - ( xx + zz ) ) * sy
    te7 = ( yz + wx ) * sy
    te8 = 0;

    te9 = ( xz + wy ) * sz
    te10 = ( yz - wx ) * sz
    te11 = ( 1 - ( xx + yy ) ) * sz
    te12 = 0

    te13 = 0 #position.x;
    te14 = 0 #position.y;
    te15 = 0 #position.z;
    te16 = 1
    
    te= RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)

    return te

end

function  setFromRotationMatrix(m::RotationMatrix)
    #te = m
    #m11 = (te[ 1 ]== -0.0) ? 0.0 : te[ 1 ]
    #m12 = (te[ 5 ]== -0.0) ? 0.0 : te[ 5 ]
    #m13 = (te[ 9 ]== -0.0) ? 0.0 : te[ 9 ]
    #m21 = (te[ 2 ]== -0.0) ? 0.0 : te[ 2 ]
    #m22 = (te[ 6 ]== -0.0) ? 0.0 : te[ 6 ]
    #m23 = (te[ 10]== -0.0) ? 0.0 : te[ 10]
    #m31 = (te[ 3 ]== -0.0) ? 0.0 : te[ 3 ]
    #m32 = (te[ 7 ]== -0.0) ? 0.0 : te[ 7 ]
    #m33 = (te[ 11]== -0.0) ? 0.0 : te[ 11]

    m11 = convert(Float64,m.te1 )
    m12 = convert(Float64,m.te5 )
    m13 = convert(Float64,m.te9 )
    m21 = convert(Float64,m.te2 )
    m22 = convert(Float64,m.te6 )
    m23 = convert(Float64,m.te10)
    m31 = convert(Float64,m.te3 )
    m32 = convert(Float64,m.te7 )
    m33 = convert(Float64,m.te11)



    y = CUDAnative.asin( clamp( m13, - 1, 1 ) ) ##check if has to be changed to cuda

    if ( abs( m13 ) < 0.9999999 ) 
        
        x = atan( - m23, m33 )
        z = atan( - m12, m11 )#-m12, m11
        # if(m23==0.0)
        #     x = atan( m23, m33 )
        # end
        # if(m12==0.0)
        #     z = atan( m12, m11 )
        # end

    else

        x = atan( m32, m22 )
        z = 0;

    end
    
    return Vector3(x,y,z)
    
end

function setQuaternionFromEuler(euler::Vector3)
    x=euler.x
    y=euler.y
    z=euler.z
    
    
    c1 = CUDAnative.cos( x / 2.0 )
    c2 = CUDAnative.cos( y / 2.0 )
    c3 = CUDAnative.cos( z / 2.0 )

    s1 = CUDAnative.sin( x / 2.0 )
    s2 = CUDAnative.sin( y / 2.0 )
    s3 = CUDAnative.sin( z / 2.0 )
    
   
    x = s1 * c2 * c3 + c1 * s2 * s3
    y = c1 * s2 * c3 - s1 * c2 * s3
    z = c1 * c2 * s3 + s1 * s2 * c3
    w = c1 * c2 * c3 - s1 * s2 * s3
        
    return Quaternion(x,y,z,w)
end

function applyQuaternion1(e::Vector3,q2::Quaternion)
    x = e.x
    y = e.y
    z = e.z

    qx = q2.x
    qy = q2.y
    qz = q2.z
    qw = q2.w

    # calculate quat * vector

    ix = qw * x + qy * z - qz * y
    iy = qw * y + qz * x - qx * z
    iz = qw * z + qx * y - qy * x
    iw = - qx * x - qy * y - qz * z

    # calculate result * inverse quat

    xx = ix * qw + iw * - qx + iy * - qz - iz * - qy
    yy = iy * qw + iw * - qy + iz * - qx - ix * - qz
    zz = iz * qw + iw * - qz + ix * - qy - iy * - qx

    return Vector3(xx,yy,zz)
end

########################################

function conjugate(q::Quaternion)
    x= (-q.x==-0) ? 0.0 : -q.x
    y= (-q.y==-0) ? 0.0 : -q.y
    z= (-q.z==-0) ? 0.0 : -q.z
    w=q.w
    x=convert(Float64,x)
    y=convert(Float64,y)
    z=convert(Float64,z)
    w=convert(Float64,w)
    return Quaternion(x,y,z,w)
end

function RotateVec3D(a::Quaternion, f::Vector3)   
    fx= (f.x==-0) ? 0 : f.x
    fy= (f.y==-0) ? 0 : f.y
    fz= (f.z==-0) ? 0 : f.z
    # fx= f.x
    # fy= f.y
    # fz= f.z
    tw = fx*a.x + fy*a.y + fz*a.z
    tx = fx*a.w - fy*a.z + fz*a.y
    ty = fx*a.z + fy*a.w - fz*a.x
    tz = -fx*a.y + fy*a.x + fz*a.w

    return Vector3((a.w*tx+a.x*tw+a.y*tz-a.z*ty),(a.w*ty-a.x*tz+a.y*tw+a.z*tx),(a.w*tz+a.x*ty-a.y*tx+a.z*tw))
end
#!< Returns a vector representing the specified vector "f" rotated by this quaternion. @param[in] f The vector to transform.

function RotateVec3DInv(a::Quaternion, f::Vector3)  
    fx=f.x
    fy=f.y
    fz=f.z
    tw = a.x*fx + a.y*fy + a.z*fz
    tx = a.w*fx - a.y*fz + a.z*fy
    ty = a.w*fy + a.x*fz - a.z*fx
    tz = a.w*fz - a.x*fy + a.y*fx
    return Vector3((tw*a.x + tx*a.w + ty*a.z - tz*a.y),(tw*a.y - tx*a.z + ty*a.w + tz*a.x),(tw*a.z + tx*a.y - ty*a.x + tz*a.w))
end
#!< Returns a vector representing the specified vector "f" rotated by the inverse of this quaternion. This is the opposite of RotateVec3D. @param[in] f The vector to transform.

function ToRotationVector(a::Quaternion)  
    if (a.w >= 1.0 || a.w <= -1.0) 
        return Vector3(0.0,0.0,0.0)
    end
    squareLength = 1.0-a.w*a.w; # because x*x + y*y + z*z + w*w = 1.0, but more susceptible to w noise (when 
    SLTHRESH_ACOS2SQRT= 2.4e-3; # SquareLength threshhold for when we can use square root optimization for acos. From SquareLength = 1-w*w. (calculate according to 1.0-W_THRESH_ACOS2SQRT*W_THRESH_ACOS2SQRT

    if (squareLength < SLTHRESH_ACOS2SQRT) # ???????
        x=a.x*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))
        y=a.y*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))
        z=a.z*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
 
        return Vector3(x,y,z) ; # acos(w) = sqrt(2*(1-x)) for w close to 1. for w=0.001, error is 1.317e-6
    else 
        x=a.x*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))
        y=a.y*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))
        z=a.z*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)

        return Vector3(x,y,z)
    end                                    
end 
# !< Returns a rotation vector representing this quaternion rotation. Adapted from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/

function FromRotationVector(VecIn::Vector3)
    theta=VecIn*Vector3(0.5,0.5,0.5)
    ntheta=CUDAnative.sqrt((theta.x * theta.x) + (theta.y * theta.y) + (theta.z * theta.z))
    thetaMag2=ntheta*ntheta
    
    DBL_EPSILONx24 =5.328e-15
    if thetaMag2*thetaMag2 < DBL_EPSILONx24
        qw=1.0 - 0.5*thetaMag2
		s=1.0 - thetaMag2 / 6.0
    else
        thetaMag = CUDAnative.sqrt(thetaMag2)
		qw=CUDAnative.cos(thetaMag)
		s=CUDAnative.sin(thetaMag) / thetaMag
    end
    qx=theta.x*s
    qy=theta.y*s
    qz=theta.z*s
    
    qx=convert(Float64,qx)
    qy=convert(Float64,qy)
    qz=convert(Float64,qz)
    qw=convert(Float64,qw)
    
    return Quaternion(qx,qy,qz,qw)
end
########################################

function updateStrain( axialStrain,E) # ?from where strain
    strain = axialStrain # redundant?
    currentTransverseStrainSum=0.0 # ??? todo
    linear=true
    maxStrain=1000000000000000;# ?? todo later change
    if linear
        if axialStrain > maxStrain
            maxStrain = axialStrain # remember this maximum for easy reference
        end
        return stress(axialStrain,E)
    else 
        if (axialStrain > maxStrain) # if new territory on the stress/strain curve
            maxStrain = axialStrain # remember this maximum for easy reference
            returnStress = stress(axialStrain,E) # ??currentTransverseStrainSum
            if (nu != 0.0) 
                strainOffset = maxStrain-stress(axialStrain,E)/(_eHat*(1.0-nu)) # precalculate strain offset for when we back off
            else 
                strainOffset = maxStrain-returnStress/E # precalculate strain offset for when we back off
            end
        else  # backed off a non-linear material, therefore in linear region.
            relativeStrain = axialStrain-strainOffset #  treat the material as linear with a strain offset according to the maximum plastic deformation
            if (nu != 0.0) 
                returnStress = stress(relativeStrain,E)
            else 
                returnStress = E*relativeStrain
            end
        end
        return returnStress
    end
end

function stress( strain , E ) #end,transverseStrainSum, forceLinear){
    #  reference: http://www.colorado.edu/engineering/CAS/courses.d/Structures.d/IAST.Lect05.d/IAST.Lect05.pdf page 10
    #  if (isFailed(strain)) return 0.0f; //if a failure point is set and exceeded, we've broken!
    #   var E =setup.edges[0].stiffness; //todo change later to material ??
    #   var E=1000000;//todo change later to material ??
    #   var scaleFactor=1;
    #     @cuprintln(E*strain)
    return E*strain;

    #  #   if (strain <= strainData[1] || linear || forceLinear){ //for compression/first segment and linear materials (forced or otherwise), simple calculation

        #   if (nu==0.0) return E*strain;
        #   else return _eHat*((1-nu)*strain + nu*transverseStrainSum); 
        #  else return eHat()*((1-nu)*strain + nu*transverseStrainSum); 
    #  #  }

      #//the non-linear feature with non-zero poissons ratio is currently experimental
      #int DataCount = modelDataPoints();
      #for (int i=2; i<DataCount; i++){ //go through each segment in the material model (skipping the first segment because it has already been handled.
      #  if (strain <= strainData[i] || i==DataCount-1){ //if in the segment ending with this point (or if this is the last point extrapolate out) 
      #      float Perc = (strain-strainData[i-1])/(strainData[i]-strainData[i-1]);
      #      float basicStress = stressData[i-1] + Perc*(stressData[i]-stressData[i-1]);
      #      if (nu==0.0f) return basicStress;
      #      else { //accounting for volumetric effects
      #          float modulus = (stressData[i]-stressData[i-1])/(strainData[i]-strainData[i-1]);
      #          float modulusHat = modulus/((1-2*nu)*(1+nu));
      #          float effectiveStrain = basicStress/modulus; //this is the strain at which a simple linear stress strain line would hit this point at the definied modulus
      #          float effectiveTransverseStrainSum = transverseStrainSum*(effectiveStrain/strain);
      #          return modulusHat*((1-nu)*effectiveStrain + nu*effectiveTransverseStrainSum);
      #      }
      #  }
      #}

    #  assert(false); //should never reach this point
    #  return 0.0f;
end 

function force(N_intForce,N_orient,N_force,static,currentTimeStep) 
    # forces from internal bonds
    totalForce=Vector3(0,0,0)
    # new THREE.Vector3(node.force.x,node.force.y,node.force.z);
    #  todo 


    totalForce=totalForce+N_intForce

    #  for (int i=0; i<6; i++){ 
    #  	if (links[i]) totalForce += links[i]->force(isNegative((linkDirection)i)); # total force in LCS
    #  }
    totalForce = RotateVec3D(N_orient,totalForce); # from local to global coordinates


    # assert(!(totalForce.x != totalForce.x) || !(totalForce.y != totalForce.y) || !(totalForce.z != totalForce.z)); //assert non QNAN

    # other forces
    if(static)
        totalForce=totalForce+N_force
    #  }else if(currentTimeStep<50){
    #  	totalForce.add(new THREE.Vector3(node.force.x,node.force.y,node.force.z));
    else
        #  var ex=0.1;
        #  if(node.force.y!=0){
        #  	var f=400*Math.sin(currentTimeStep*ex);
        #  	totalForce.add(new THREE.Vector3(0,f,0));

        #  }
        #x=N_position[node][3]
        #t=currentTimeStep
        #wave=getForce(x,t)
        #totalForce=totalForce+[0 wave 0]
    end


    #  if (externalExists()) totalForce += external()->force(); //external forces
    #  totalForce -= velocity()*mat->globalDampingTranslateC(); //global damping f-cv
    #  totalForce.z += mat->gravityForce(); //gravity, according to f=mg

    #  if (isCollisionsEnabled()){
    #  	for (std::vector<CVX_Collision*>::iterator it=colWatch->begin(); it!=colWatch->end(); it++){
    #  		totalForce -= (*it)->contactForce(this);
    #  	}
    #  }
    # todo make internal forces 0 again
    # N_intForce[node]=[0 0 0] # do i really need it?

    #  node.force.x=0;
    #  node.force.y=0;
    #  node.force.z=0;


    return totalForce
end


function moment(N_intMoment::Vector3,N_orient::Quaternion,N_moment::Vector3) 
    #moments from internal bonds
    totalMoment=Vector3(0,0,0)
    # for (int i=0; i<6; i++){ 
    # 	if (links[i]) totalMoment += links[i]->moment(isNegative((linkDirection)i)); //total force in LCS
    # }

    totalMoment=totalMoment+N_intMoment

    totalMoment = RotateVec3D(N_orient,totalMoment);

    totalMoment=totalMoment+N_moment

    #other moments
    # if (externalExists()) totalMoment += external()->moment(); //external moments
    # totalMoment -= angularVelocity()*mat->globalDampingRotateC(); //global damping

    return totalMoment
end

########################################

function updateDataAndSave(setup,fileName)
    nodes      = setup["nodes"]
    edges      = setup["edges"]
    
    setup["animation"]["showDisplacement"]=false
    voxCount=size(nodes)[1]
    linkCount=size(edges)[1]
    
    N_displacement=Array(N_displacementGPU)
    N_angle=Array(N_angleGPU)
    E_stress=Array(E_stressGPU)
    
    setup["viz"]["maxStress"]=maximum(E_stress)
    setup["viz"]["minStress"]=minimum(E_stress)  

    i=1
	for edge in edges
        edge["stress"]=E_stress[i]
        i=i+1

    end
    
 
    i=1          
	for node in nodes
        node["displacement"]["x"]=N_displacement[i].x
        node["displacement"]["y"]=N_displacement[i].y
        node["displacement"]["z"]=N_displacement[i].z
        
        node["angle"]["x"]=N_angle[i].x
        node["angle"]["y"]=N_angle[i].y
        node["angle"]["z"]=N_angle[i].z
        i=i+1

    end
    
    # pass data as a json string (how it shall be displayed in a file)
    stringdata = JSON.json(setup)

    # write the file with the stringdata variable information
    open(fileName, "w") do f
            write(f, stringdata)
         end
    
end

########################################
###############################################################################################
# times=[]
# nNodes=[]
# nEdges=[]
# latticeSizes=[]
# numTimeStepss=[]


setup = Dict()

latticeSize=4
numTimeSteps=200
save=false

open("../json/setupTestUni4.json", "r") do f
    global setup
    dicttxt = String(read(f))  # file information to string
    setup=JSON.parse(dicttxt)  # parse and transform data
end

setup=setup["setup"]

########
voxCount=0
linkCount=0
nodes      = setup["nodes"]
edges      = setup["edges"]
voxCount=size(nodes)[1]
linkCount=size(edges)[1]
strain =0 #todooo moveeee
maxNumEdges=10




########
voxCount=0
linkCount=0
nodes      = setup["nodes"]
edges      = setup["edges"]
voxCount=size(nodes)[1]
linkCount=size(edges)[1]
strain =0 #todooo moveeee

############# nodes
N_position=fill(Vector3(),voxCount)
N_restrained=zeros(Bool, voxCount)
N_displacement=fill(Vector3(),voxCount)
N_angle=fill(Vector3(),voxCount)
N_currPosition=fill(Vector3(),voxCount)
N_linMom=fill(Vector3(),voxCount)
N_angMom=fill(Vector3(),voxCount)
N_intForce=fill(Vector3(),voxCount)
N_intMoment=fill(Vector3(),voxCount)
N_moment=fill(Vector3(),voxCount)
# N_posTimeSteps=[]
# N_angTimeSteps=[]
N_force=fill(Vector3(),voxCount)
N_orient=fill(Quaternion(),voxCount)
N_edgeID=fill(-1,(voxCount,maxNumEdges))
N_edgeFirst=fill(true,(voxCount,maxNumEdges))
N_currEdge=fill(1,voxCount)

############# edges
E_source=fill(0,linkCount)
E_target=fill(0,linkCount)
E_area=fill(0.0f0,linkCount)
E_density=fill(0.0f0,linkCount)
E_stiffness=fill(0.0f0,linkCount)
E_stress=fill(0.0f0,linkCount)
E_axis=fill(Vector3(1.0,0.0,0.0),linkCount)
E_currentRestLength=fill(0.0f0,linkCount)
E_pos2=fill(Vector3(),linkCount)
E_angle1v=fill(Vector3(),linkCount)
E_angle2v=fill(Vector3(),linkCount)
E_angle1=fill(Quaternion(),linkCount)
E_angle2=fill(Quaternion(),linkCount)

E_intForce1=fill(Vector3(),linkCount)
E_intMoment1=fill(Vector3(),linkCount) 

E_intForce2=fill(Vector3(),linkCount)
E_intMoment2=fill(Vector3(),linkCount) 

E_currentTransverseStrainSum=fill(0.0f0,linkCount)# TODO remove ot incorporate
# E_stressTimeSteps=[]


#################################################################
initialize(setup)
#################################################################

########################## turn to cuda arrays
############# nodes
N_positionGPU=    CuArray(N_position)  
N_restrainedGPU=  CuArray(N_restrained)  
N_displacementGPU=CuArray(N_displacement)   
N_angleGPU=       CuArray(N_angle)  
N_currPositionGPU=CuArray(N_currPosition)    
N_linMomGPU=      CuArray(N_linMom)    
N_angMomGPU=      CuArray(N_angMom)  
N_intForceGPU=    CuArray(N_intForce) 
N_intMomentGPU=   CuArray(N_intMoment)   
N_momentGPU=      CuArray(N_moment)
N_forceGPU=       CuArray(N_force)  
N_orientGPU=      CuArray(N_orient)
N_edgeIDGPU=      CuArray(N_edgeID)
N_edgeFirstGPU=   CuArray(N_edgeFirst)


############# edges
E_sourceGPU=                    CuArray(E_source)   
E_targetGPU=                    CuArray(E_target)
E_areaGPU=                      CuArray(E_area)                             
E_densityGPU=                   CuArray(E_density)
E_stiffnessGPU=                 CuArray(E_stiffness)
E_stressGPU=                    CuArray(E_stress)
E_axisGPU=                      CuArray(E_axis)          
E_currentRestLengthGPU=         CuArray(E_currentRestLength)
E_pos2GPU=                      CuArray(E_pos2)
E_angle1vGPU=                   CuArray(E_angle1v)
E_angle2vGPU=                   CuArray(E_angle2v)
E_angle1GPU=                    CuArray(E_angle1)
E_angle2GPU=                    CuArray(E_angle2)
E_currentTransverseStrainSumGPU=CuArray(E_currentTransverseStrainSum)
E_intForce1GPU=      CuArray(E_intForce1) 
E_intMoment1GPU=     CuArray(E_intMoment1)  
E_intForce2GPU=      CuArray(E_intForce2) 
E_intMoment2GPU=     CuArray(E_intMoment2) 
# E_stressTimeSteps=[]


dt=0.0251646

t=@timed doTimeStep(dt,true,0)
time=t[2]
println("first timestep took $time seconds")
t=@timed simulateParallel(numTimeSteps,dt)
time=t[2]
println("ran latticeSize $latticeSize with $voxCount voxels and $linkCount edges for $numTimeSteps time steps took $time seconds")
# append!(times, time)

if save
    updateDataAndSave(setup,"../json/trialJuliaParallelGPU.json")
end



# plot(numTimeStepss,times)
###############################################################################################
# plot1 4*4*4 voxels, 300 nodes 960 edges
# numStep=[10,100,200,400,1000]
# firstStepAvg=13.1276
# performanceGPU=[0.012447,0.05713079,0.102851299,0.1864829,0.4725757]
# performanceCPU=[3.014437901,7.700779099,12.9343908,23.8421247,56.1430382]
# plot(numStep,[firstStepAvg.+performanceGPU,performanceCPU],label=["GPU" "CPU"],title="timeSteps")
# # plot2 200 timesteps
# latticeSizes=[4,5,6,7,8,9,10]
# performanceGPU=[0.102851299,0.1021396,0.1044742,0.1043413,0.1611617,0.1674361,0.2076308]
# performanceCPU=[12.934390801,22.9971574,38.838537,60.9359617,87.5866625,128.7116549,173.5449189]
# plot(latticeSizes,[firstStepAvg.+performanceGPU,performanceCPU],label=["GPU" "CPU"],title="latticeSize")