Skip to content
Snippets Groups Projects
vector.jl 16.4 KiB
Newer Older
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020

struct Vector3
    x::Float64
    y::Float64
    z::Float64
    function Vector3()
        x=0.0
        y=0.0
        z=0.0
        new(x,y,z)
    end
    function Vector3(x,y,z)
       new(x,y,z)
    end
end

struct Quaternion
    x::Float64
    y::Float64
    z::Float64
    w::Float64
    function Quaternion()
        x=0.0
        y=0.0
        z=0.0
        w=1.0
        new(x,y,z,w)
    end
    function Quaternion(x,y,z,w)
        new(x,y,z,w)
    end
end

struct RotationMatrix
    te1::Float64
    te2::Float64
    te3::Float64
    te4::Float64
    te5::Float64
    te6::Float64
    te7::Float64
    te8::Float64
    te9::Float64
    te10::Float64
    te11::Float64
    te12::Float64
    te13::Float64
    te14::Float64
    te15::Float64
    te16::Float64
    function RotationMatrix()
        te1 =0.0
        te2 =0.0
        te3 =0.0
        te4 =0.0
        te5 =0.0
        te6 =0.0
        te7 =0.0
        te8 =0.0
        te9 =0.0
        te10=0.0
        te11=0.0
        te12=0.0
        te13=0.0
        te14=0.0
        te15=0.0
        te16=0.0
        new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)
    end
    function RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)
        new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)
    end
end

+(f::Vector3, g::Vector3)=Vector3(f.x+g.x , f.y+g.y,f.z+g.z )
-(f::Vector3, g::Vector3)=Vector3(f.x-g.x , f.y-g.y,f.z-g.z )
*(f::Vector3, g::Vector3)=Vector3(f.x*g.x , f.y*g.y,f.z*g.z )

+(f::Vector3, g::Number)=Vector3(f.x+g , f.y+g,f.z+g )
-(f::Vector3, g::Number)=Vector3(f.x-g , f.y-g,f.z-g )
*(f::Vector3, g::Number)=Vector3(f.x*g , f.y*g,f.z*g )

+(g::Vector3, f::Number)=Vector3(f.x+g , f.y+g,f.z+g )
-(g::Vector3, f::Number)=Vector3(g-f.x , g-f.y,g-f.z )
*(g::Vector3, f::Number)=Vector3(f.x*g , f.y*g,f.z*g )

addX(f::Vector3, g::Number)=Vector3(f.x+g , f.y,f.z)
addY(f::Vector3, g::Number)=Vector3(f.x , f.y+g,f.z )
addZ(f::Vector3, g::Number)=Vector3(f.x , f.y,f.z+g )

function normalizeVector3(f::Vector3)
    leng=lengthVector3(f)
    if(leng>0.0)
        return Vector3(f.x/leng,f.y/leng,f.z/leng)
    else
        return Vector3(0.0,0.0,0.0)
    end
    
end

function lengthVector3(f::Vector3)
    leng=sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z))
    return convert(Float64,leng)
    
end

function normalizeQuaternion(f::Quaternion)
    l = sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z)+ (f.w * f.w))
    if l === 0 
        qx = 0
        qy = 0
        qz = 0
        qw = 1
    else 
        l = 1 / l
        qx = f.x * l
        qy = f.y * l
        qz = f.z * l
        qw = f.w * l
    end
    return Quaternion(qx,qy,qz,qw)
end

function normalizeQuaternion1!(fx::Float64,fy::Float64,fz::Float64,fw::Float64)
    l = sqrt((fx * fx) + (fy * fy) + (fz * fz)+ (fw * fw))
    if l === 0 
        qx = 0.0
        qy = 0.0
        qz = 0.0
        qw = 1.0
    else 
        l = 1.0 / l
        qx = fx * l
        qy = fy * l
        qz = fz * l
        qw = fw * l
    end
    return qx,qy,qz,qw
end

function dotVector3(f::Vector3, g::Vector3)
    return (f.x * g.x) + (f.y * g.y) + (f.z * g.z)
end

function Base.show(io::IO, v::Vector3)
    print(io, "x:$(v.x), y:$(v.y), z:$(v.z)")
end

function Base.show(io::IO, v::Quaternion)
    print(io, "x:$(v.x), y:$(v.y), z:$(v.z), w:$(v.z)")
end

Base.Broadcast.broadcastable(q::Vector3) = Ref(q)


######################utils##################################
function toAxisXVector3(pV::Vector3,axis::Vector3) #TODO CHANGE

    xaxis=Vector3(1.0,0.0,0.0)
    vector=normalizeVector3(axis)
    q=setFromUnitVectors(vector,xaxis)
    
    v=applyQuaternion1( pV ,q )
    
    return Vector3(v.x,v.y,v.z)
end

function toAxisOriginalVector3(pV::Vector3,axis::Vector3)
    
    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)

    q=setFromUnitVectors(xaxis,vector)

    v=applyQuaternion1( pV ,q )
    
    return Vector3(v.x,v.y,v.z)
end

function  toAxisXQuat(pQ::Quaternion,axis::Vector3)
    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)

    q=setFromUnitVectors(vector,xaxis)
        
    pV=Vector3(pQ.x,pQ.y,pQ.z)
    
    v=applyQuaternion1( pV ,q )

    return Quaternion(v.x,v.y,v.z,pQ.w)
    
end

function toAxisOriginalQuat(pQ::Vector3,axis::Vector3)
    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)
    
    q=setFromUnitVectors(xaxis,vector)
    
    pV=Vector3(pQ.x,pQ.y,pQ.z)
    v=applyQuaternion1( pV ,q )
    
    return Quaternion(v.x,v.y,v.z,1.0)
    
end

function roundd(num,prec)
    num  =   convert(Float64,num*prec)
    num  =   floor(num+0.5)
    num  =   convert(Float64,num)
    num  =   num/prec
    return num
    
end
###########################################

function setFromUnitVectors(vFrom::Vector3, vTo::Vector3)
    # assumes direction vectors vFrom and vTo are normalized
    EPS = 0.000000001;
    r= dotVector3(vFrom,vTo)+1.0
    # r =  dot(vFrom,vTo)+1

    if r < EPS
        r = 0;
        if abs( vFrom.x ) > abs( vFrom.z ) 
            qx = - vFrom.y
            qy = vFrom.x
            qz = 0.0
            qw = r
        else 
            qx = 0.0
            qy = -(vFrom.z)
            qz = vFrom.y
            qw = r
        end
   else 
        # crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
        qx = vFrom.y * vTo.z - vFrom.z * vTo.y
        qy = vFrom.z * vTo.x - vFrom.x * vTo.z
        qz = vFrom.x * vTo.y - vFrom.y * vTo.x
        qw = r

    end
    # qx= (qx==-0.0) ? 0.0 : qx #just commented out 5 august 20202
    # qy= (qy==-0.0) ? 0.0 : qy #just commented out 5 august 20202
    # qz= (qz==-0.0) ? 0.0 : qz #just commented out 5 august 20202
    # qw= (qw==-0.0) ? 0.0 : qw #just commented out 5 august 20202
        
    
    mx=qx*qx
    my=qy*qy
    mz=qz*qz
    mw=qw*qw
    mm=mx+my
    mm=mm+mz
    mm=mm+mw
    mm=convert(Float64,mm)#??????????????????? todo check later
    
    l=CUDAnative.sqrt(mm)
    
    #l = sqrt((qx * qx) + (qy * qy) + (qz * qz)+ (qw * qw))
    if l === 0 
        qx = 0.0
        qy = 0.0
        qz = 0.0
        qw = 1.0
    else 
        l = 1.0 / l
        qx = qx * l
        qy = qy * l
        qz = qz * l
        qw = qw * l
    end
    
    return Quaternion(qx,qy,qz,qw)
    
end

function quatToMatrix( quaternion::Quaternion)

    #te = RotationMatrix()
    
    x = quaternion.x
    y = quaternion.y
    z = quaternion.z
    w = quaternion.w
    
    x2 = x + x
    y2 = y + y
    z2 = z + z
    xx = x * x2
    xy = x * y2
    xz = x * z2
    yy = y * y2
    yz = y * z2
    zz = z * z2
    wx = w * x2
    wy = w * y2
    wz = w * z2

    sx = 1.0
    sy = 1.0
    sz = 1.0

    te1 = ( 1.0 - ( yy + zz ) ) * sx
    te2 = ( xy + wz ) * sx
    te3 = ( xz - wy ) * sx
    te4 = 0.0

    te5 = ( xy - wz ) * sy
    te6 = ( 1.0 - ( xx + zz ) ) * sy
    te7 = ( yz + wx ) * sy
    te8 = 0.0

    te9 = ( xz + wy ) * sz
    te10 = ( yz - wx ) * sz
    te11 = ( 1.0 - ( xx + yy ) ) * sz
    te12 = 0.0

    te13 = 0.0 #position.x;
    te14 = 0.0 #position.y;
    te15 = 0.0 #position.z;
    te16 = 1.0
    
    te= RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)

    return te

end

function  setFromRotationMatrix(m::RotationMatrix)
    m11 = convert(Float64,m.te1 )
    m12 = convert(Float64,m.te5 )
    m13 = convert(Float64,m.te9 )
    m21 = convert(Float64,m.te2 )
    m22 = convert(Float64,m.te6 )
    m23 = convert(Float64,m.te10)
    m31 = convert(Float64,m.te3 )
    m32 = convert(Float64,m.te7 )
    m33 = convert(Float64,m.te11)
    

    y = CUDAnative.asin( clamp( m13, -1.0, 1.0 ) ) ##check if has to be changed to cuda

    if ( abs( m13 ) < 0.9999999999 ) 
        
        x = CUDAnative.atan2( - m23, m33 )
        z = CUDAnative.atan2( - m12, m11 )#-m12, m11
    else

        x = CUDAnative.atan2( m32, m22 )
        z = 0.0;

    end
    
    return Vector3(x,y,z)
    
end

function setQuaternionFromEuler(euler::Vector3)
    x=euler.x
    y=euler.y
    z=euler.z
    
    
    c1 = CUDAnative.cos( x / 2.0 )
    c2 = CUDAnative.cos( y / 2.0 )
    c3 = CUDAnative.cos( z / 2.0 )

    s1 = CUDAnative.sin( x / 2.0 )
    s2 = CUDAnative.sin( y / 2.0 )
    s3 = CUDAnative.sin( z / 2.0 )
    
   
    x = s1 * c2 * c3 + c1 * s2 * s3
    y = c1 * s2 * c3 - s1 * c2 * s3
    z = c1 * c2 * s3 + s1 * s2 * c3
    w = c1 * c2 * c3 - s1 * s2 * s3
        
    return Quaternion(x,y,z,w)
end

function applyQuaternion1(e::Vector3,q2::Quaternion)
    x = e.x
    y = e.y
    z = e.z

    qx = q2.x
    qy = q2.y
    qz = q2.z
    qw = q2.w

    # calculate quat * vector

    ix = qw * x + qy * z - qz * y
    iy = qw * y + qz * x - qx * z
    iz = qw * z + qx * y - qy * x
    iw = - qx * x - qy * y - qz * z

    # calculate result * inverse quat

    xx = ix * qw + iw * - qx + iy * - qz - iz * - qy
    yy = iy * qw + iw * - qy + iz * - qx - ix * - qz
    zz = iz * qw + iw * - qz + ix * - qy - iy * - qx
    
    d=15

    return Vector3(xx,yy,zz)
end
##########################################
function conjugate(q::Quaternion)
    x= (-q.x==-0) ? 0.0 : -q.x
    y= (-q.y==-0) ? 0.0 : -q.y
    z= (-q.z==-0) ? 0.0 : -q.z
    w=q.w
    x=-q.x
    y=-q.y
    z=-q.z
    x=convert(Float64,x)
    y=convert(Float64,y)
    z=convert(Float64,z)
    w=convert(Float64,w)
    return Quaternion(x,y,z,w)
end

function RotateVec3D(a::Quaternion, f::Vector3)   
    fx= (f.x==-0) ? 0 : f.x
    fy= (f.y==-0) ? 0 : f.y
    fz= (f.z==-0) ? 0 : f.z
    # fx= f.x
    # fy= f.y
    # fz= f.z
    tw = fx*a.x + fy*a.y + fz*a.z
    tx = fx*a.w - fy*a.z + fz*a.y
    ty = fx*a.z + fy*a.w - fz*a.x
    tz = -fx*a.y + fy*a.x + fz*a.w

    return Vector3((a.w*tx+a.x*tw+a.y*tz-a.z*ty),(a.w*ty-a.x*tz+a.y*tw+a.z*tx),(a.w*tz+a.x*ty-a.y*tx+a.z*tw))
end
#!< Returns a vector representing the specified vector "f" rotated by this quaternion. @param[in] f The vector to transform.

function RotateVec3DInv(a::Quaternion, f::Vector3)  
    fx=f.x
    fy=f.y
    fz=f.z
    tw = a.x*fx + a.y*fy + a.z*fz
    tx = a.w*fx - a.y*fz + a.z*fy
    ty = a.w*fy + a.x*fz - a.z*fx
    tz = a.w*fz - a.x*fy + a.y*fx
    return Vector3((tw*a.x + tx*a.w + ty*a.z - tz*a.y),(tw*a.y - tx*a.z + ty*a.w + tz*a.x),(tw*a.z + tx*a.y - ty*a.x + tz*a.w))
end
#!< Returns a vector representing the specified vector "f" rotated by the inverse of this quaternion. This is the opposite of RotateVec3D. @param[in] f The vector to transform.

function ToRotationVector(a::Quaternion) 
    x=convert(Float64,a.x)
    y=convert(Float64,a.y)
    z=convert(Float64,a.z)
    w=convert(Float64,a.w)
    if (w >= 1.0 || w <= -1.0) 
        return Vector3(0.0,0.0,0.0)
    end
    squareLength = 1.0-w*w; # because x*x + y*y + z*z + w*w = 1.0, but more susceptible to w noise (when 
    SLTHRESH_ACOS2SQRT= 2.4e-3; # SquareLength threshhold for when we can use square root optimization for acos. From SquareLength = 1-w*w. (calculate according to 1.0-W_THRESH_ACOS2SQRT*W_THRESH_ACOS2SQRT

    if (squareLength < SLTHRESH_ACOS2SQRT) # ???????
        # if (squareLength==0.0)
        #     w=1.0-1e-12
        #     squareLength = 1.0-w*w
        # end
        xx=x*(2.0*CUDAnative.sqrt((2.0-2.0*w)/squareLength))
        yy=y*(2.0*CUDAnative.sqrt((2.0-2.0*w)/squareLength))
        zz=z*(2.0*CUDAnative.sqrt((2.0-2.0*w)/squareLength))
        xx=convert(Float64,xx)
        yy=convert(Float64,yy)
        zz=convert(Float64,zz)
 
        return Vector3(xx,yy,zz) ; # acos(w) = sqrt(2*(1-x)) for w close to 1. for w=0.001, error is 1.317e-6
    else 
        xx=x*(2.0*CUDAnative.acos(w)/CUDAnative.sqrt(squareLength))
        yy=y*(2.0*CUDAnative.acos(w)/CUDAnative.sqrt(squareLength))
        zz=z*(2.0*CUDAnative.acos(w)/CUDAnative.sqrt(squareLength))
        xx=convert(Float64,xx)
        yy=convert(Float64,yy)
        zz=convert(Float64,zz)

        return Vector3(xx,yy,zz)
    end
    
    # if (a.w >= 1.0 || a.w <= -1.0) 
    #     return Vector3(0.0,0.0,0.0)
    # end
    # squareLength = 1.0-a.w*a.w; #because x*x + y*y + z*z + w*w = 1.0, but more susceptible to w noise (when 
    # if (squareLength < SLTHRESH_ACOS2SQRT) 
    #     return Vec3D<T>(x, y, z)*2.0*sqrt((2-2*a.w)/squareLength); #acos(w) = sqrt(2*(1-x)) for w close to 1. for w=0.001, error is 1.317e-6
    # else 
    #     return Vec3D<T>(x, y, z)*2.0*acos(a.w)/sqrt(squareLength);
    # end
            
end 
# !< Returns a rotation vector representing this quaternion rotation. Adapted from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/

function FromRotationVector(VecIn::Vector3)
    theta=VecIn*Vector3(0.5,0.5,0.5)
    ntheta=CUDAnative.sqrt((theta.x * theta.x) + (theta.y * theta.y) + (theta.z * theta.z))
    thetaMag2=ntheta*ntheta
    
    DBL_EPSILONx24 =5.328e-15
    if thetaMag2*thetaMag2 < DBL_EPSILONx24
        qw=1.0 - 0.5*thetaMag2
		s=1.0 - thetaMag2 / 6.0
    else
        thetaMag = CUDAnative.sqrt(thetaMag2)
		qw=CUDAnative.cos(thetaMag)
		s=CUDAnative.sin(thetaMag) / thetaMag
    end
    qx=theta.x*s
    qy=theta.y*s
    qz=theta.z*s
    
    qx=convert(Float64,qx)
    qy=convert(Float64,qy)
    qz=convert(Float64,qz)
    qw=convert(Float64,qw)
    
    return Quaternion(qx,qy,qz,qw)
end

function multiplyQuaternions(q::Quaternion,f::Quaternion)
    x=convert(Float64,q.x)
    y=convert(Float64,q.y)
    z=convert(Float64,q.z)
    w=convert(Float64,q.w)
    x1=convert(Float64,w*convert(Float64,f.x) + x*convert(Float64,f.w) + y*convert(Float64,f.z) - z*convert(Float64,f.y))
    y1=convert(Float64,w*convert(Float64,f.y) - x*convert(Float64,f.z) + y*convert(Float64,f.w) + z*convert(Float64,f.x))
    z1=convert(Float64,w*convert(Float64,f.z) + x*convert(Float64,f.y) - y*convert(Float64,f.x) + z*convert(Float64,f.w))
    w1=convert(Float64,w*convert(Float64,f.w) - x*convert(Float64,f.x) - y*convert(Float64,f.y) - z*convert(Float64,f.z))
    # w1=convert(Float64,1.0*convert(Float64,f.w) - 1.0*convert(Float64,f.x) + 1.0*convert(Float64,f.y) - 1.0*convert(Float64,f.z)) #todo wrong fix
	return Quaternion(x1,y1,z1,w1 ); #!< overload quaternion multiplication.
end
#####################################################
function FromAngleToPosX(angle::Quaternion,RotateFrom::Vector3) #highly optimized at the expense of readability
    if (RotateFrom.x==0.0 && RotateFrom.y==0.0 && RotateFrom.z==0.0) 
        return Quaternion(angle.x,angle.y,angle.z,angle.w ) #leave off if it slows down too much!!
    end

    #Catch and handle small angle:
    YoverX = RotateFrom.y/RotateFrom.x;
    ZoverX = RotateFrom.z/RotateFrom.x;
    SMALL_ANGLE_RAD= 1.732e-2 #/Angles less than this get small angle approximations. To get: Root solve atan(t)/t-1+MAX_ERROR_PERCENT. From: MAX_ERROR_PERCENT = (t-atan(t))/t 
    SMALL_ANGLE_W= 0.9999625 #//quaternion W value corresponding to a SMALL_ANGLE_RAD. To calculate, cos(SMALL_ANGLE_RAD*0.5).
    PI=3.14159265358979
    DISCARD_ANGLE_RAD=1e-7#define DISCARD_ANGLE_RAD 1e-7 //Anything less than this angle can be considered 0


    if (YoverX<SMALL_ANGLE_RAD && YoverX>-SMALL_ANGLE_RAD && ZoverX<SMALL_ANGLE_RAD && ZoverX>-SMALL_ANGLE_RAD)#Intercept small angle and zero angle
        x=0.0
        y=0.5*ZoverX
        z=-0.5*YoverX
        w = 1.0+0.5*(-y*y-z*z) #w=sqrt(1-x*x-y*y), small angle sqrt(1+x) ~= 1+x/2 at x near zero.
        return Quaternion(x,y,z,w )
    end

    #more accurate non-small angle:
    RotFromNorm = Vector3(RotateFrom.x,RotateFrom.y,RotateFrom.z);

    RotFromNorm=normalizeVector3(RotFromNorm); #Normalize the input...

    theta = CUDAnative.acos(RotFromNorm.x); #because RotFromNorm is normalized, 1,0,0 is normalized, and A.B = |A||B|cos(theta) = cos(theta)
    if (theta > PI-DISCARD_ANGLE_RAD) 
        w=0.0
        x=0.0
        y=1.0
        z=0.0;
        return Quaternion(x,y,z,w )
    end #180 degree rotation (about y axis, since the vector must be pointing in -x direction

    AxisMagInv = 1.0/CUDAnative.sqrt(RotFromNorm.z*RotFromNorm.z+RotFromNorm.y*RotFromNorm.y);
    #Here theta is the angle, axis is RotFromNorm.Cross(Vec3D(1,0,0)) = Vec3D(0, RotFromNorm.z/AxisMagInv, -RotFromNorm.y/AxisMagInv), which is still normalized. (super rolled together)
    a = 0.5*theta;
    s = CUDAnative.sin(a);
    w=CUDAnative.cos(a); 
    x=0; 
    y=RotFromNorm.z*AxisMagInv*s; 
    z = -RotFromNorm.y*AxisMagInv*s; #angle axis function, reduced
    return Quaternion(x,y,z,w )
end
#  //!< Overwrites this quaternion with the calculated rotation that would transform the specified RotateFrom vector to point in the positve X direction. Note: function changes this quaternion.  @param[in] RotateFrom An arbitrary direction vector. Does not need to be normalized.