Skip to content
Snippets Groups Projects
parallelFEA.jl 39.5 KiB
Newer Older
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020

using LinearAlgebra
using Plots
import JSON
using StaticArrays, Rotations
# BASED ON https://github.com/jonhiller/Voxelyze


function simulateParallel(setup,numTimeSteps,dt,static=true,saveInterval=10)
	initialize(setup)
    for i in 1:numTimeSteps
        # println("Timestep:",i)
        doTimeStep(setup,dt,static,i,saveInterval);
    end
end

function initialize(setup)
	nodes      = setup["nodes"]
    edges      = setup["edges"]
	# pre-calculate current position
	for node in nodes
        # element=parse(Int,node["id"][2:end])

        append!(N_position,[[node["position"]["x"] node["position"]["y"] node["position"]["z"]]])
        append!(N_degrees_of_freedom,[node["degrees_of_freedom"]])
        append!(N_restrained_degrees_of_freedom, [node["restrained_degrees_of_freedom"]])
        append!(N_displacement,[[node["displacement"]["x"] node["displacement"]["y"] node["displacement"]["z"]]])
        append!(N_angle,[[node["angle"]["x"] node["angle"]["y"] node["angle"]["z"]]])
        append!(N_force,[[node["force"]["x"] node["force"]["y"] node["force"]["z"]]])
        append!(N_currPosition,[[node["position"]["x"] node["position"]["y"] node["position"]["z"]]])
        append!(N_orient,[Quat(1.0,0.0,0.0,0.0)])#quat
        append!(N_linMom,[[0 0 0]])
        append!(N_angMom,[[0 0 0]])
        append!(N_intForce,[[0 0 0]])
        append!(N_intMoment,[[0 0 0]])
        append!(N_moment,[[0 0 0]])
        
        # for dynamic simulations
        append!(N_posTimeSteps,[[]])
        append!(N_angTimeSteps,[[]])
        
	end 
	# pre-calculate the axis
	for edge in edges
        # element=parse(Int,edge["id"][2:end])
        
        # find the nodes that the lements connects
        fromNode = nodes[edge["source"]+1]
        toNode = nodes[edge["target"]+1]

        
        node1 = [fromNode["position"]["x"] fromNode["position"]["y"] fromNode["position"]["z"]]
        node2 = [toNode["position"]["x"] toNode["position"]["y"] toNode["position"]["z"]]
        
        length=norm(node2-node1)
        axis=normalize(collect(Iterators.flatten(node2-node1)))
        
        append!(E_source,[edge["source"]+1])
        append!(E_target,[edge["target"]+1])
        append!(E_area,[edge["area"]])
        append!(E_density,[edge["density"]])
        append!(E_stiffness,[edge["stiffness"]])
        append!(E_stress,[0])
        append!(E_axis,[axis])
        append!(E_currentRestLength,[length])
        append!(E_pos2,[[0 0 0]])
        append!(E_angle1v,[[0 0 0]])
        append!(E_angle2v,[[0 0 0]])
        append!(E_angle1,[Quat(1.0,0,0,0)]) #quat
        append!(E_angle2,[Quat(1.0,0,0,0)]) #quat
        append!(E_currentTransverseStrainSum,[0])
        
        # for dynamic simulations
        append!(E_stressTimeSteps,[[]])
        
	end 
	
end

function doTimeStep(setup,dt,static,currentTimeStep,saveInterval)
    
    nodes      = setup["nodes"]
    edges      = setup["edges"]
    voxCount=size(nodes)[1]
    linkCount=size(edges)[1]

	if dt==0 
		return true
	elseif (dt<0) 
		dt = recommendedTimeStep()
    end

	# if (collisions) updateCollisions();
	collisions=false

	# Euler integration:
	Diverged = false
    #  for edge in edges
    
	for i in 1:linkCount
        # fromNode = nodes[edge["source"]+1]
        # toNode = nodes[edge["target"]+1]
        # node1 = [fromNode["position"]["x"] fromNode["position"]["y"] fromNode["position"]["z"]]
        # node2 = [toNode["position"]["x"] toNode["position"]["y"] toNode["position"]["z"]]
        # updateForces(setup,edge,node1,node2,static)# element numbers??
        updateForces(setup,i,static)# element numbers??
        #  todo: update forces and whatever
		if axialStrain(true) > 100
			Diverged = true; # catch divergent condition! (if any thread sets true we will fail, so don't need mutex...
        end
    end
    
    if Diverged
		println("Divergedd!!!!!")
		return false
    end
                
	for i in 1:voxCount
		timeStep(dt,i,static,currentTimeStep)
        # timeStep(dt,node,static,currentTimeStep)
		if(!static&& currentTimeStep%saveInterval==0)
            append!(N_posTimeSteps[i],[N_displacement[i]])
            append!(N_angTimeSteps[i],[N_angle[i]])

        end
		#  todo: update linMom,angMom, orient and whatever
    end

	
	currentTimeStep = currentTimeStep+dt
	return true
end

function updateForces(setup,edge,static=true)
    
	# pVNeg=new THREE.Vector3(node1.position.x,node1.position.y,node1.position.z);
	# pVPos=new THREE.Vector3(node2.position.x,node2.position.y,node2.position.z);
    # currentRestLength=pVPos.clone().sub(pVNeg).length();
	# edge.currentRestLength=currentRestLength; # todo make sure updated
    
    
	node1=E_source[edge]
    node2=E_target[edge]
    
    currentRestLength=E_currentRestLength[edge]
    
    
	pVNeg=copy(N_currPosition[node1])# todo change to be linked to edge not node 
	pVPos=copy(N_currPosition[node2])# todo change to be linked to edge not node
    
    
    
	#  Vec3D<double> three
	oldPos2 = copy(E_pos2[edge])
    
	oldAngle1v = copy(E_angle1v[edge])
	oldAngle2v =  copy(E_angle2v[edge])# remember the positions/angles from last timestep to calculate velocity
	#  var oldAngle1v=new THREE.Vector3(node1.angle.x,node1.angle.y,node1.angle.z);//?
	#  var oldAngle2v=new THREE.Vector3(node2.angle.x,node2.angle.y,node2.angle.z); //??
    
    
	totalRot= orientLink(edge) # sets pos2, angle1, angle2 /*restLength*/
    
    

	dPos2=0.5*(copy(E_pos2[edge])-oldPos2)
	dAngle1=0.5*(copy(E_angle1v[edge])-oldAngle1v)
	dAngle2=0.5*(copy(E_angle2v[edge])-oldAngle2v)
    
    

	# if volume effects...
    # if (!mat->isXyzIndependent() || currentTransverseStrainSum != 0) 
    # updateTransverseInfo(); //currentTransverseStrainSum != 0 catches when we disable poissons mid-simulation

	
    _stress=updateStrain((E_pos2[edge][1]/E_currentRestLength[edge]),E_stiffness[edge])
    #  var _stress=updateStrain(1.0);
    

	E_stress[edge] = _stress
	if !static
        append!(E_stressTimeSteps[edge],[_stress])
    end
    
    ######### check this
	if setup["viz"]["minStress"]>_stress
		setup["viz"]["minStress"]=_stress
	elseif setup["viz"]["maxStress"]<_stress
		setup["viz"]["maxStress"]=_stress
    end
    

	#  if (isFailed()){forceNeg = forcePos = momentNeg = momentPos = Vec3D<double>(0,0,0); return;}

	#  var b1=mat->_b1, b2=mat->_b2, b3=mat->_b3, a2=mat->_a2; //local copies //todo get from where i had
	
	l   = currentRestLength # ??
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	rho = E_density[edge] 
	A = E_area[edge] 
	E = E_stiffness[edge] #  youngs modulus
	G=1.0 # todo shear_modulus
	ixx = 1.0 # todo section ixx
	I=1.0
	iyy = 1.0  # todo section.iyy//
	#  var l0=length.dataSync();
	J=1.0;# todo check
	#  var l02 = l0 * l0;
	#  var l03 = l0 * l0 * l0;
	b1= 12*E*I/(l*l*l)
	b2= 6*E*I/(l*l)
	b3= 2*E*I/(l)
	a1= E*A/l
	a2= G*J/l
	nu=0

	b1= 5e6
	b2= 1.25e7
	b3= 2.08333e+07
	a1= E*A/l
	a2= 1.04167e+07

	L = 5;
	a1 = E*L # EA/L : Units of N/m
	a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m
	b1 = E*L # 12EI/L^3 : Units of N/m
	b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)
	b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m
	# console.log("currentRestLength:"+currentRestLength);
	# console.log("b1:"+b1/10e6);
	# console.log("b2:"+b2/10e7);
	# console.log("b3:"+b3/10e7);
	# console.log("a2:"+a2/10e7);
	# var b1= 5e6;
	# var b2= 1.25e7;
	# var b3= 2.08333e+07;
	# var a1= E*A/l;
	# var a2= 1.04167e+07;

	currentTransverseArea=25.0 #  todo ?? later change
	currentTransverseArea=A

	# Beam equations. All relevant terms are here, even though some are zero for small angle and others are zero for large angle (profiled as negligible performance penalty)
    forceNeg = [(_stress*currentTransverseArea) (b1*E_pos2[edge][2]-b2*(E_angle1v[edge][3] + E_angle2v[edge][3])) (b1*E_pos2[edge][3] + b2*(E_angle1v[edge][2] + E_angle2v[edge][2]))] # Use Curstress instead of -a1*Pos2.x to account for non-linear deformation 
	forcePos = -forceNeg;

	momentNeg = [(a2*(E_angle2v[edge][1]-E_angle1v[edge][1])) (-b2*E_pos2[edge][3]-b3*(2*E_angle1v[edge][2]+E_angle2v[edge][2]))   (b2*E_pos2[edge][2] - b3*(2*E_angle1v[edge][3] + E_angle2v[edge][3]))]
	momentPos = [(a2*(E_angle1v[edge][1]-E_angle2v[edge][1])) (-b2*E_pos2[edge][3]- b3*(E_angle1v[edge][2]+2*E_angle2v[edge][2]))  (b2*E_pos2[edge][2] - b3*(E_angle1v[edge][3] + 2*E_angle2v[edge][3]))]
	
								
	# //local damping:
	# if (isLocalVelocityValid()){ //if we don't have the basis for a good damping calculation, don't do any damping.
	# 	float sqA1=mat->_sqA1, sqA2xIp=mat->_sqA2xIp,sqB1=mat->_sqB1, sqB2xFMp=mat->_sqB2xFMp, sqB3xIp=mat->_sqB3xIp;
	# 	Vec3D<double> posCalc(	sqA1*dPos2.x,
	# 							sqB1*dPos2.y - sqB2xFMp*(dAngle1.z+dAngle2.z),
	# 							sqB1*dPos2.z + sqB2xFMp*(dAngle1.y+dAngle2.y));

	# 	forceNeg += pVNeg->dampingMultiplier()*posCalc;
	# 	forcePos -= pVPos->dampingMultiplier()*posCalc;

	# 	momentNeg -= 0.5*pVNeg->dampingMultiplier()*Vec3D<>(	-sqA2xIp*(dAngle2.x - dAngle1.x),
	# 															sqB2xFMp*dPos2.z + sqB3xIp*(2*dAngle1.y + dAngle2.y),
	# 															-sqB2xFMp*dPos2.y + sqB3xIp*(2*dAngle1.z + dAngle2.z));
	# 	momentPos -= 0.5*pVPos->dampingMultiplier()*Vec3D<>(	sqA2xIp*(dAngle2.x - dAngle1.x),
	# 															sqB2xFMp*dPos2.z + sqB3xIp*(dAngle1.y + 2*dAngle2.y),
	# 															-sqB2xFMp*dPos2.y + sqB3xIp*(dAngle1.z + 2*dAngle2.z));

	# }
	# else setBoolState(LOCAL_VELOCITY_VALID, true); //we're good for next go-around unless something changes

    #	transform forces and moments to local voxel coordinates
	smallAngle=false # ?? todo check
    

	if !smallAngle # ?? chech
		forceNeg = RotateVec3DInv(E_angle1[edge],forceNeg)
		momentNeg = RotateVec3DInv(E_angle1[edge],momentNeg)
    end
    

    


	forcePos = RotateVec3DInv(E_angle2[edge],forcePos);
	momentPos = RotateVec3DInv(E_angle2[edge],momentPos);

    # println(momentPos)

	forceNeg =toAxisOriginalVector3(forceNeg,E_axis[edge]);
	forcePos =toAxisOriginalVector3(forcePos,E_axis[edge]);
    
	momentNeg=toAxisOriginalQuat(momentNeg,E_axis[edge]);# TODOO CHECKKKKKK
	momentPos=toAxisOriginalQuat(momentPos,E_axis[edge]);
    
    # println(momentPos[2]," ",momentPos[3]," ",momentPos[4]," ",momentPos[1]," ")

	N_intForce[node1] =N_intForce[node1] +(forceNeg) ;
	N_intForce[node2] =N_intForce[node2] +(forcePos) ;
    # println(N_intMoment[node2])
	N_intMoment[node1]=[(N_intMoment[node1][1]+momentNeg[2]) (N_intMoment[node1][2]+momentNeg[3]) (N_intMoment[node2][3]+momentPos[4])];
	N_intMoment[node2]=[(N_intMoment[node2][1]+momentPos[2]) (N_intMoment[node2][2]+momentPos[3]) (N_intMoment[node2][3]+momentPos[4])];
    # println(N_intMoment[node2])
	# assert(!(forceNeg.x != forceNeg.x) || !(forceNeg.y != forceNeg.y) || !(forceNeg.z != forceNeg.z)); //assert non QNAN
	#  assert(!(forcePos.x != forcePos.x) || !(forcePos.y != forcePos.y) || !(forcePos.z != forcePos.z)); //assert non QNAN


end

function orientLink( edge)  # updates pos2, angle1, angle2, and smallAngle //Quat3D<double> /*double restLength*/
    node1=E_source[edge]
    node2=E_target[edge]
    
    currentRestLength=E_currentRestLength[edge]
	pVNeg=copy(N_currPosition[node1])# todo change to be linked to edge not node 
	pVPos=copy(N_currPosition[node2])# todo change to be linked to edge not node
    
	pos2 = toAxisXVector3(pVPos-pVNeg,E_axis[edge]) # digit truncation happens here...
	#  pos2.x = Math.round(pos2.x * 1e4) / 1e4; 
	angle1 = toAxisXQuat(N_orient[node1],E_axis[edge])
	angle2 = toAxisXQuat(N_orient[node2],E_axis[edge])
    # println(angle1[2]," ",angle1[3]," ",angle1[4]," ",angle1[1])

	totalRot = conjugate(angle1) #keep track of the total rotation of this bond (after toAxisX()) # Quat3D<double>
    # println(totalRot.x," ",totalRot.y," ",totalRot.z," ",totalRot.w)
    pos2 = RotateVec3D(totalRot,pos2)
    
    

	# angle2 = copy(totalRot) .* angle2 # todo .*
    angle2=Quat(angle2.w*totalRot.w,angle2.x*totalRot.x,angle2.y*totalRot.y,angle2.z*totalRot.z)
	angle1 = Quat(1.0,0.0,0.0,0.0)#new THREE.Quaternion() #zero for now...
    

	# small angle approximation?
	#  var SmallTurn =  ((Math.abs(pos2.z)+Math.abs(pos2.y))/pos2.x);
	#  var ExtendPerc = (Math.abs(1-pos2.x/currentRestLength));
	#  if (!smallAngle /*&& angle2.IsSmallAngle()*/ && SmallTurn < SA_BOND_BEND_RAD && ExtendPerc < SA_BOND_EXT_PERC){
	#  	smallAngle = true;
	#  	setBoolState(LOCAL_VELOCITY_VALID, false);
	#  }
	#  else if (smallAngle && (/*!angle2.IsSmallishAngle() || */SmallTurn > HYSTERESIS_FACTOR*SA_BOND_BEND_RAD || ExtendPerc > HYSTERESIS_FACTOR*SA_BOND_EXT_PERC)){
	#  	smallAngle = false;
	#  	setBoolState(LOCAL_VELOCITY_VALID, false);
    #  }
    
    smallAngle=true #todo later remove

	if (smallAngle)	 #Align so Angle1 is all zeros
		pos2[1] =pos2[1]- currentRestLength #only valid for small angles
    else  #Large angle. Align so that Pos2.y, Pos2.z are zero.
		# FromAngleToPosX(angle1,pos2) #get the angle to align Pos2 with the X axis
		# totalRot = angle1.clone().multiply(totalRot)  #update our total rotation to reflect this
		# angle2 = angle1.clone().multiply(  angle2) #rotate angle2
		# pos2 = new THREE.Vector3(pos2.length() - currentRestLength, 0, 0);
    end
    
    

	angle1v = ToRotationVector(angle1)
	angle2v = ToRotationVector(angle2)

	#  assert(!(angle1v.x != angle1v.x) || !(angle1v.y != angle1v.y) || !(angle1v.z != angle1v.z)); # assert non QNAN
	#  assert(!(angle2v.x != angle2v.x) || !(angle2v.y != angle2v.y) || !(angle2v.z != angle2v.z)); # assert non QNAN
    
    E_pos2[edge]=copy(pos2)
    E_angle1v[edge]=copy(angle1v)
    E_angle2v[edge]=copy(angle2v)
    E_angle1[edge]=copy(angle1)
    E_angle2[edge]=copy(angle2)
    
    

	return totalRot
end

function RotateVec3D(a, f)   
	fx= (f[1]==-0) ? 0 : f[1]
    fy= (f[2]==-0) ? 0 : f[2]
    fz= (f[3]==-0) ? 0 : f[3]
    # fx= f[1]
    # fy= f[2]
    # fz= f[3]
	tw = fx*a.x + fy*a.y + fz*a.z
	tx = fx*a.w - fy*a.z + fz*a.y
	ty = fx*a.z + fy*a.w - fz*a.x
	tz = -fx*a.y + fy*a.x + fz*a.w

	return [(a.w*tx+a.x*tw+a.y*tz-a.z*ty) (a.w*ty-a.x*tz+a.y*tw+a.z*tx) (a.w*tz+a.x*ty-a.y*tx + a.z*tw)]
end
#!< Returns a vector representing the specified vector "f" rotated by this quaternion. @param[in] f The vector to transform.
function RotateVec3DInv(a, f)  
    fx=f[1]
    fy=f[2]
    fz=f[3]
    tw = a.x*fx + a.y*fy + a.z*fz
    tx = a.w*fx - a.y*fz + a.z*fy
    ty = a.w*fy + a.x*fz - a.z*fx
    tz = a.w*fz - a.x*fy + a.y*fx
    return [(tw*a.x + tx*a.w + ty*a.z - tz*a.y) (tw*a.y - tx*a.z + ty*a.w + tz*a.x) (tw*a.z + tx*a.y - ty*a.x + tz*a.w)]	
end
#!< Returns a vector representing the specified vector "f" rotated by the inverse of this quaternion. This is the opposite of RotateVec3D. @param[in] f The vector to transform.


function setFromUnitVectors(vFrom, vTo )
    # assumes direction vectors vFrom and vTo are normalized
    EPS = 0.000001;
    r =  dot(vFrom,vTo)+1

    if r < EPS
        r = 0;
        if abs( vFrom.x ) > abs( vFrom.z ) 
            qx = - vFrom[2]
            qy = vFrom[1]
            qz = 0
            qw = r
        else 
            qx = 0
            qy = - vFrom[3]
            qz = vFrom[2]
            qw = r
        end
   else 
        # crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
        qx = vFrom[2] * vTo[3] - vFrom[3] * vTo[2]
        qy = vFrom[3] * vTo[1] - vFrom[1] * vTo[3]
        qz = vFrom[1] * vTo[2] - vFrom[2] * vTo[1]
        qw = r

    end
    qx= (qx==-0) ? 0 : qx
    qy= (qy==-0) ? 0 : qy
    qz= (qz==-0) ? 0 : qz
    qw= (qw==-0) ? 0 : qw
    nn=normalize(collect(Iterators.flatten([qw,qx,qy,qz])))
    return [nn[1] nn[2] nn[3] nn[4]]
    # return normalizeQ(Quat(qw,qx,qy,qz))
    # return Quat(nn[1], nn[2], nn[3], nn[4])

end

function normalizeQ(q) 
    l = norm(q)
    if l === 0 
        qx = 0
        qy = 0
        qz = 0
        qw = 1
    else 
        l = 1 / l
        qx = q.x * l
        qy = q.y * l
        qz = q.z * l
        qw = q.w * l
    end
    return Quat(qw,qx,qy,qz)
end

function conjugate(q)
    x= (-q.x==-0) ? 0 : -q.x
    y= (-q.y==-0) ? 0 : -q.y
    z= (-q.z==-0) ? 0 : -q.z

    return Quat(q.w, x, y, z)
end
#Returns a quaternion that is the conjugate of this quaternion. This quaternion is not modified.

function applyQuaternion(q1,q2)
    x = q1[2]
    y = q1[3]
    z = q1[4]
    w = q1[1]
    qx = q2[2]
    qy = q2[3]
    qz = q2[4]
    qw = q2[1]

    # calculate quat * vector

    ix = qw * x + qy * z - qz * y
    iy = qw * y + qz * x - qx * z
    iz = qw * z + qx * y - qy * x
    iw = - qx * x - qy * y - qz * z

    # calculate result * inverse quat

    xx = ix * qw + iw * - qx + iy * - qz - iz * - qy
    yy = iy * qw + iw * - qy + iz * - qx - ix * - qz
    zz = iz * qw + iw * - qz + ix * - qy - iy * - qx

    mm=normalize(collect(Iterators.flatten([xx yy zz])))
    return [mm[1] mm[2] mm[3]]
end

function applyQuaternion1(e,q2)
    x = e[1]
    y = e[2]
    z = e[3]

    qx = q2[2]
    qy = q2[3]
    qz = q2[4]
    qw = q2[1]

    # calculate quat * vector

    ix = qw * x + qy * z - qz * y
    iy = qw * y + qz * x - qx * z
    iz = qw * z + qx * y - qy * x
    iw = - qx * x - qy * y - qz * z

    # calculate result * inverse quat

    xx = ix * qw + iw * - qx + iy * - qz - iz * - qy
    yy = iy * qw + iw * - qy + iz * - qx - ix * - qz
    zz = iz * qw + iw * - qz + ix * - qy - iy * - qx

    return [xx yy zz]
end

function setQuaternionFromEuler(euler)
    x=euler[1]
    y=euler[2]
    z=euler[3]
    
    c1 = cos( x / 2 )
    c2 = cos( y / 2 )
    c3 = cos( z / 2 )

    s1 = sin( x / 2 )
    s2 = sin( y / 2 )
    s3 = sin( z / 2 )
   
    x = s1 * c2 * c3 + c1 * s2 * s3
    y = c1 * s2 * c3 - s1 * c2 * s3
    z = c1 * c2 * s3 + s1 * s2 * c3
    w = c1 * c2 * c3 - s1 * s2 * s3
    
    return [w  x  y  z]
end

function quatToMatrix( quaternion )

    te = zeros(16)

    x = quaternion[2]
    y = quaternion[3]
    z = quaternion[4]
    w = quaternion[1]
    
    x2 = x + x
    y2 = y + y
    z2 = z + z
    xx = x * x2
    xy = x * y2
    xz = x * z2
    yy = y * y2
    yz = y * z2
    zz = z * z2
    wx = w * x2
    wy = w * y2
    wz = w * z2

    sx = 1
    sy = 1
    sz = 1

    te[ 1 ] = ( 1 - ( yy + zz ) ) * sx
    te[ 2 ] = ( xy + wz ) * sx
    te[ 3 ] = ( xz - wy ) * sx
    te[ 4 ] = 0;

    te[ 5 ] = ( xy - wz ) * sy
    te[ 6 ] = ( 1 - ( xx + zz ) ) * sy
    te[ 7 ] = ( yz + wx ) * sy
    te[ 8 ] = 0;

    te[ 9 ] = ( xz + wy ) * sz
    te[ 10 ] = ( yz - wx ) * sz
    te[ 11 ] = ( 1 - ( xx + yy ) ) * sz
    te[ 12 ] = 0

    te[ 13 ] = 0 #position.x;
    te[ 14 ] = 0 #position.y;
    te[ 15 ] = 0 #position.z;
    te[ 16 ] = 1

    return te

end

function  setFromRotationMatrix(m)
    te = m
    m11 = (te[ 1 ]== -0.0) ? 0.0 : te[ 1 ]
    m12 = (te[ 5 ]== -0.0) ? 0.0 : te[ 5 ]
    m13 = (te[ 9 ]== -0.0) ? 0.0 : te[ 9 ]
    m21 = (te[ 2 ]== -0.0) ? 0.0 : te[ 2 ]
    m22 = (te[ 6 ]== -0.0) ? 0.0 : te[ 6 ]
    m23 = (te[ 10]== -0.0) ? 0.0 : te[ 10]
    m31 = (te[ 3 ]== -0.0) ? 0.0 : te[ 3 ]
    m32 = (te[ 7 ]== -0.0) ? 0.0 : te[ 7 ]
    m33 = (te[ 11]== -0.0) ? 0.0 : te[ 11]

    m11 = te[ 1 ]
    m12 = te[ 5 ]
    m13 = te[ 9 ]
    m21 = te[ 2 ]
    m22 = te[ 6 ]
    m23 = te[ 10]
    m31 = te[ 3 ]
    m32 = te[ 7 ]
    m33 = te[ 11]



    y = asin( clamp( m13, - 1, 1 ) )

    if ( abs( m13 ) < 0.9999999 ) 
        
        x = atan( - m23, m33 )
        z = atan( - m12, m11 )#-m12, m11
        # if(m23==0.0)
        #     x = atan( m23, m33 )
        # end
        # if(m12==0.0)
        #     z = atan( m12, m11 )
        # end

    else

        x = atan( m32, m22 )
        z = 0;

    end
    
    return [x y z]
    
end

function toAxisOriginalVector3(pV,axis)
    # xaxis=[1 0 0]
    
    # vector=copy(axis)
    # vector=normalize(collect(Iterators.flatten(vector)))

    # p = SVector(pV[1],pV[2], pV[3])
    # q=setFromUnitVectors(xaxis, vector)
    
    # v= q * p
    # return [v[1] v[2] v[3]]

    xaxis=[1 0 0]

    vector=copy(axis)
    vector=normalize(collect(Iterators.flatten(vector)))

    p = SVector(pV[1],pV[2], pV[3])    

    q=setFromUnitVectors(xaxis, vector)
    
    qq=Quat(q[1],q[2],q[3],q[4])
    d=17
    qw=round(q[1], digits=d)
    qx=round(q[2], digits=d)
    qy=round(q[3], digits=d)
    qz=round(q[4], digits=d)

    rot=setFromRotationMatrix(copy(quatToMatrix( copy([qw qx qy qz])  )))

    return applyQuaternion1( copy(pV) ,setQuaternionFromEuler(copy(rot)) )
end

function toAxisXVector3(pV,axis) #TODO CHANGE
    # xaxis=[1 0 0]
    # vector=copy(axis)
    # vector=normalize(collect(Iterators.flatten(vector)))
    # p = SVector(pV[1],pV[2], pV[3])
    # q=setFromUnitVectors(vector,xaxis)
    
    # v= q * p
    # return [v[1] v[2] v[3]]

    xaxis=[1 0 0]

    vector=copy(axis)
    vector=normalize(collect(Iterators.flatten(vector)))

    p = SVector(pV[1],pV[2], pV[3])    

    q=setFromUnitVectors(vector,xaxis)
    
    qq=Quat(q[1],q[2],q[3],q[4])
    d=17
    qw=round(q[1], digits=d)
    qx=round(q[2], digits=d)
    qy=round(q[3], digits=d)
    qz=round(q[4], digits=d)
    

    rot=setFromRotationMatrix(copy(quatToMatrix( copy([qw qx qy qz])  )))

    
    return applyQuaternion1( copy(pV) ,setQuaternionFromEuler(copy(rot)) )
end
#transforms a vec3D in the original orientation of the bond to that as if the bond was in +X direction

function toAxisOriginalQuat(pQ,axis)
    # xaxis=[1 0 0]  
    # vector=copy(axis)
    # vector=normalize(collect(Iterators.flatten(vector)))

    # p = SVector(pQ[1],pQ[2], pQ[3])
    # q=setFromUnitVectors(xaxis, vector)
    
    # v=q * p
    # return Quat(1.0,v[1],v[2],v[3])

    xaxis=[1 0 0]

    vector=copy(axis)
    vector=normalize(collect(Iterators.flatten(vector)))

    
    p = SVector(pQ[1],pQ[2], pQ[3])     

    q=setFromUnitVectors(xaxis,vector)
    
    qq=Quat(q[1],q[2],q[3],q[4])
    d=17
    qw=round(q[1], digits=d)
    qx=round(q[2], digits=d)
    qy=round(q[3], digits=d)
    qz=round(q[4], digits=d)

    rot=setFromRotationMatrix(copy(quatToMatrix( copy([qw qx qy qz])  )))
    v=applyQuaternion1( copy([pQ[1] pQ[2] pQ[3]]) ,setQuaternionFromEuler(copy(rot)) )

    return [1.0 v[1] v[2] v[3]]
    
end

function  toAxisXQuat(pQ,axis)
    # xaxis=[1 0 0]  
    # vector=copy(axis)
    # vector=normalize(collect(Iterators.flatten(vector)))

    # p = SVector(q.x,q.y, q.z)
    # q=setFromUnitVectors(vector,xaxis)
    
    # v=q * p
    # return Quat(q.w,v[1],v[2],v[3])

    xaxis=[1 0 0]

    vector=copy(axis)
    vector=normalize(collect(Iterators.flatten(vector)))

    p = SVector(pQ.x,pQ.y, pQ.z)   

    q=setFromUnitVectors(vector,xaxis)
    
    qq=Quat(q[1],q[2],q[3],q[4])
    d=17
    qw=round(q[1], digits=d)
    qx=round(q[2], digits=d)
    qy=round(q[3], digits=d)
    qz=round(q[4], digits=d)

    rot=setFromRotationMatrix(copy(quatToMatrix( copy([qw qx qy qz])  )))
    v=applyQuaternion1( copy([pQ.x pQ.y pQ.z ]) ,setQuaternionFromEuler(copy(rot)) )
    return Quat(1.0,v[1],v[2],v[3])
    # return [1.0 v[1] v[2] v[3]]
end
#transforms a vec3D in the original orientation of the bond to that as if the bond was in +X direction


function ToRotationVector(a)  
	if (a.w >= 1.0 || a.w <= -1.0) 
		return [0 0 0]
    end
	squareLength = 1.0-a.w*a.w; # because x*x + y*y + z*z + w*w = 1.0, but more susceptible to w noise (when 
	SLTHRESH_ACOS2SQRT= 2.4e-3; # SquareLength threshhold for when we can use square root optimization for acos. From SquareLength = 1-w*w. (calculate according to 1.0-W_THRESH_ACOS2SQRT*W_THRESH_ACOS2SQRT
    
	if (squareLength < SLTHRESH_ACOS2SQRT) # ???????
		return [a.x  a.y  a.z] *(2.0*sqrt((2-2*a.w)/squareLength)); # acos(w) = sqrt(2*(1-x)) for w close to 1. for w=0.001, error is 1.317e-6
	else 
		return [a.x a.y a.z] * (2.0*acos(a.w)/sqrt(squareLength));
    end                                    
end 
# !< Returns a rotation vector representing this quaternion rotation. Adapted from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/


function FromRotationVector(VecIn)
    theta=VecIn/2.0
    thetaMag2=norm(theta)*norm(theta)
    DBL_EPSILONx24 =5.328e-15
    if thetaMag2*thetaMag2 < DBL_EPSILONx24
        qw=1.0 - 0.5*thetaMag2
		s=1.0 - thetaMag2 / 6.0
    else
        thetaMag = sqrt(thetaMag2)
		qw=cos(thetaMag)
		s=sin(thetaMag) / thetaMag
    end
    qx=theta[1]*s
    qy=theta[2]*s
    qz=theta[3]*s;
    
    return Quat(qw,qx,qy,qz)
end


function FromAngleToPosX(a, RotateFrom) #highly optimized at the expense of readability
    
    SMALL_ANGLE_RAD= 1.732e-2 # Angles less than this get small angle approximations. To get: Root solve atan(t)/t-1+MAX_ERROR_PERCENT. From: MAX_ERROR_PERCENT = (t-atan(t))/t 
    SMALL_ANGLE_W =0.9999625 # quaternion W value corresponding to a SMALL_ANGLE_RAD. To calculate, cos(SMALL_ANGLE_RAD*0.5).
    W_THRESH_ACOS2SQRT= 0.9988 # Threshhold of w above which we can approximate acos(w) with sqrt(2-2w). To get: Root solve 1-sqrt(2-2wt)/acos(wt) - MAX_ERROR_PERCENT. From MAX_ERROR_PERCENT = (acos(wt)-sqrt(2-2wt))/acos(wt)

    
	if (RotateFrom[1]==0 && RotateFrom[2]==0 && RotateFrom[3]==0) 
		return 0 #leave off if it slows down too much!!
    end

    # Catch and handle small angle:
    YoverX = RotateFrom[2]/RotateFrom[1]
    ZoverX = RotateFrom[3]/RotateFrom[1]
    if (YoverX<SMALL_ANGLE_RAD && YoverX>-SMALL_ANGLE_RAD && ZoverX<SMALL_ANGLE_RAD && ZoverX>-SMALL_ANGLE_RAD) # ??? //Intercept small angle and zero angle
		ax=0
		ay=0.5*ZoverX
		az=-0.5*YoverX
        aw = 1+0.5*(-a.y*a.y-a.z*a.z) # w=sqrt(1-x*x-y*y), small angle sqrt(1+x) ~= 1+x/2 at x near zero.
        return Quat(aw,ax,ay,az)
    end

    #  more accurate non-small angle:
    RotFromNorm = copy(RotateFrom)
    RotFromNorm=normalize(collect(Iterators.flatten(RotFromNorm))) #  Normalize the input...

    theta = acos(RotFromNorm[1])  # because RotFromNorm is normalized, 1,0,0 is normalized, and A.B = |A||B|cos(theta) = cos(theta)
    if(theta >(π-DISCARD_ANGLE_RAD)) # ??????
        aw=0
		ax=0
		ay=1
		az=0
        return Quat(aw,ax,ay,az)
    end  # 180 degree rotation (about y axis, since the vector must be pointing in -x direction

    AxisMagInv = 1.0/sqrt(RotFromNorm[3]*RotFromNorm[3]+RotFromNorm[2]*RotFromNorm[2])
     # Here theta is the angle, axis is RotFromNorm.Cross(Vec3D(1,0,0)) = Vec3D(0, RotFromNorm.z/AxisMagInv, -RotFromNorm.y/AxisMagInv), which is still normalized. (super rolled together)
    aa = 0.5*theta
    s = sin(a)
	aw= cos(aa)
	ax= 0
	ay= RotFromNorm[3]*AxisMagInv*s
	az = -RotFromNorm[2]*AxisMagInv*s  # angle axis function, reduced
	return Quat(aw,ax,ay,az)

end
 # !< Overwrites this quaternion with the calculated rotation that would transform the specified RotateFrom vector to point in the positve X direction. Note: function changes this quaternion.  @param[in] RotateFrom An arbitrary direction vector. Does not need to be normalized.


function axialStrain(positiveEnd)
	# strainRatio = pVPos->material()->E/pVNeg->material()->E;
	strainRatio=1.0
	return positiveEnd ? (2.0 *strain*strainRatio/(1.0+strainRatio)) : (2.0*strain/(1.0+strainRatio))
end

function updateStrain( axialStrain,E) # ?from where strain
	strain = axialStrain # redundant?
	currentTransverseStrainSum=0.0 # ??? todo
    linear=true
    maxStrain=100000000000000000000;# ?? todo later change
	if linear
		if axialStrain > maxStrain
			maxStrain = axialStrain # remember this maximum for easy reference
        end
		return stress(axialStrain,E)
	else 
		if (axialStrain > maxStrain) # if new territory on the stress/strain curve
			maxStrain = axialStrain # remember this maximum for easy reference
			returnStress = stress(axialStrain,E) # ??currentTransverseStrainSum
			if (nu != 0.0) 
				strainOffset = maxStrain-stress(axialStrain,E)/(_eHat*(1-nu)) # precalculate strain offset for when we back off
			else 
                strainOffset = maxStrain-returnStress/E # precalculate strain offset for when we back off
            end
		else  # backed off a non-linear material, therefore in linear region.
			relativeStrain = axialStrain-strainOffset #  treat the material as linear with a strain offset according to the maximum plastic deformation
            if (nu != 0.0) 
				returnStress = stress(relativeStrain,E)
			else 
				returnStress = E*relativeStrain
            end
        end
		return returnStress
    end
end

function stress( strain , E ) #end,transverseStrainSum, forceLinear){
	#  reference: http://www.colorado.edu/engineering/CAS/courses.d/Structures.d/IAST.Lect05.d/IAST.Lect05.pdf page 10
	#  if (isFailed(strain)) return 0.0f; //if a failure point is set and exceeded, we've broken!
	#   var E =setup.edges[0].stiffness; //todo change later to material ??
	#   var E=1000000;//todo change later to material ??
	#   var scaleFactor=1;
    return E*strain;

	#  #   if (strain <= strainData[1] || linear || forceLinear){ //for compression/first segment and linear materials (forced or otherwise), simple calculation
        
        #   if (nu==0.0) return E*strain;
		#   else return _eHat*((1-nu)*strain + nu*transverseStrainSum); 
		#  else return eHat()*((1-nu)*strain + nu*transverseStrainSum); 
	#  #  }

	#  //the non-linear feature with non-zero poissons ratio is currently experimental
	#  int DataCount = modelDataPoints();
	#  for (int i=2; i<DataCount; i++){ //go through each segment in the material model (skipping the first segment because it has already been handled.
	#  	if (strain <= strainData[i] || i==DataCount-1){ //if in the segment ending with this point (or if this is the last point extrapolate out) 
	#  		float Perc = (strain-strainData[i-1])/(strainData[i]-strainData[i-1]);
	#  		float basicStress = stressData[i-1] + Perc*(stressData[i]-stressData[i-1]);
	#  		if (nu==0.0f) return basicStress;
	#  		else { //accounting for volumetric effects
	#  			float modulus = (stressData[i]-stressData[i-1])/(strainData[i]-strainData[i-1]);
	#  			float modulusHat = modulus/((1-2*nu)*(1+nu));
	#  			float effectiveStrain = basicStress/modulus; //this is the strain at which a simple linear stress strain line would hit this point at the definied modulus
	#  			float effectiveTransverseStrainSum = transverseStrainSum*(effectiveStrain/strain);
	#  			return modulusHat*((1-nu)*effectiveStrain + nu*effectiveTransverseStrainSum);
	#  		}
	#  	}
	#  }

	#  assert(false); //should never reach this point
	#  return 0.0f;
end 

function ToEulerAngles(q) # TODO I THINK WRONG
    # roll (x-axis rotation)
    sinr_cosp = (2 * (q.w * q.x + q.y * q.z)    )== -0.0 ? 0.0 : (2 * (q.w * q.x + q.y * q.z)    )
    cosr_cosp = (1 - 2 * (q.x * q.x + q.y * q.y))== -0.0 ? 0.0 : (1 - 2 * (q.x * q.x + q.y * q.y))
    
    roll = atan(sinr_cosp, cosr_cosp)
   

    # pitch (y-axis rotation)
    sinp = 2 * (q.w * q.y - q.z * q.x)
    if (abs(sinp) >= 1)
        pitch = copysign(π / 2, sinp) #  use 90 degrees if out of range
    else
        pitch = asin(sinp)
    end

    # yaw (z-axis rotation)
    siny_cosp = 2 * (q.w * q.z + q.x * q.y)
    cosy_cosp = 1 - 2 * (q.y * q.y + q.z * q.z)
    yaw = atan(siny_cosp, cosy_cosp)
    

    return [roll pitch yaw]
end
# ToEulerAngles(Quat(1.0,1.0,1.0,1.0))


# http://klas-physics.googlecode.com/svn/trunk/src/general/Integrator.cpp (reference)
function timeStep(dt,node,static,currentTimeStep)
	previousDt = dt
	linMom=copy(N_linMom[node])
    angMom=copy(N_angMom[node])
    orient=copy(N_orient[node])
	pos=copy(N_currPosition[node])
    
    
	if (dt == 0.0) 
		return 0
    end

	if(all(N_restrained_degrees_of_freedom[node] .>=1))
		#  pos = originalPosition() + ext->translation();
		#  orient = ext->rotationQuat();
		#  haltMotion();
		#  #  pos=copy(N_position[node])
		#  #  node.currPosition=pos.clone();
		#  #  linMom = new THREE.Vector3(0,0,0);
		#  #  angMom = new THREE.Vector3(0,0,0);
		#  #  node.displacement={x:0,y:0,z:0};

		#  node.orient=orient.clone();
		#  node.linMom=linMom.clone();
		#  node.angMom=angMom.clone();
		return 0
    end
    

	# Translation
	curForce = force(node,static,currentTimeStep)

	# var fricForce = curForce.clone();

	# if (isFloorEnabled()) floorForce(dt, &curForce); //floor force needs dt to calculate threshold to "stop" a slow voxel into static friction.

	# fricForce = curForce - fricForce;

	# assert(!(curForce.x != curForce.x) || !(curForce.y != curForce.y) || !(curForce.z != curForce.z)); //assert non QNAN
	linMom=linMom+curForce*dt
    

	massInverse=8e-6 # todo ?? later change
	translate=linMom*(dt*massInverse) # ??massInverse

    #  //	we need to check for friction conditions here (after calculating the translation) and stop things accordingly
	# if (isFloorEnabled() && floorPenetration() >= 0){ //we must catch a slowing voxel here since it all boils down to needing access to the dt of this timestep.
	#  	double work = fricForce.x*translate.x + fricForce.y*translate.y; //F dot disp
	#  	double hKe = 0.5*mat->_massInverse*(linMom.x*linMom.x + linMom.y*linMom.y); //horizontal kinetic energy

	#  	if(hKe + work <= 0) setFloorStaticFriction(true); //this checks for a change of direction according to the work-energy principle

	#  	if (isFloorStaticFriction()){ //if we're in a state of static friction, zero out all horizontal motion
	#  		linMom.x = linMom.y = 0;
	#  		translate.x = translate.y = 0;
	#  	}
	#  }
	#  else setFloorStaticFriction(false);
    pos=pos+translate
    
    
    N_currPosition[node]=copy(pos)
    N_displacement[node]=N_displacement[node]+translate

	# Rotation
	curMoment = moment(node)
    angMom=angMom+curMoment*dt
    

    
	momentInertiaInverse=1.0 # todo ?? later change
    # orient=orient.*FromRotationVector(copy(angMom)*(dt*momentInertiaInverse))
    
    temp=FromRotationVector(copy(angMom)*(dt*momentInertiaInverse))
    
    orient=Quat(orient.w*temp.w,orient.x*temp.x,orient.y*temp.y,orient.z*temp.z)
    
	# orient.multiply(FromRotationVector(angMom.clone().multiplyScalar((dt*momentInertiaInverse)))) # tupdate the orientation //momentInertiaInverse

    N_orient[node]=copy(orient)
    
	
	eul = ToEulerAngles(orient) # TODO I THINK WRONG
    
    N_angle[node]=copy(eul)

    N_linMom[node]=copy(linMom)
    N_angMom[node]=copy(angMom)
    
    
	
	#  if (ext){//?? todo fix 
	#  	var size = 1;//change
	#  	if (ext->isFixed(X_TRANSLATE)) {pos.x = ix*size + ext->translation().x; linMom.x=0;}
	#  	if (ext->isFixed(Y_TRANSLATE)) {pos.y = iy*size + ext->translation().y; linMom.y=0;}
	#  	if (ext->isFixed(Z_TRANSLATE)) {pos.z = iz*size + ext->translation().z; linMom.z=0;}
	#  	if (ext->isFixedAnyRotation()){ //if any rotation fixed, all are fixed
	#  		if (ext->isFixedAllRotation()){
	#  			orient = ext->rotationQuat();
	#  			angMom = Vec3D<double>();
	#  		}
	#  		else { //partial fixes: slow!
	#  			Vec3D<double> tmpRotVec = orient.ToRotationVector();
	#  			if (ext->isFixed(X_ROTATE)){ tmpRotVec.x=0; angMom.x=0;}
	#  			if (ext->isFixed(Y_ROTATE)){ tmpRotVec.y=0; angMom.y=0;}
	#  			if (ext->isFixed(Z_ROTATE)){ tmpRotVec.z=0; angMom.z=0;}
	#  			orient.FromRotationVector(tmpRotVec);
	#  		}
	#  	}
	#  }

	#  poissonsStrainInvalid = true;
end

function force(node,static,currentTimeStep) 
	# forces from internal bonds
	totalForce=[0 0 0]
	# new THREE.Vector3(node.force.x,node.force.y,node.force.z);
	#  todo 
    
    
    
	totalForce=totalForce+N_intForce[node]

	#  for (int i=0; i<6; i++){ 
	#  	if (links[i]) totalForce += links[i]->force(isNegative((linkDirection)i)); # total force in LCS
	#  }
	totalForce = RotateVec3D(N_orient[node],totalForce); # from local to global coordinates
    

	# assert(!(totalForce.x != totalForce.x) || !(totalForce.y != totalForce.y) || !(totalForce.z != totalForce.z)); //assert non QNAN

	# other forces
	if(static)
        totalForce=totalForce+N_force[node]
	#  }else if(currentTimeStep<50){
	#  	totalForce.add(new THREE.Vector3(node.force.x,node.force.y,node.force.z));
	else
		#  var ex=0.1;
		#  if(node.force.y!=0){
		#  	var f=400*Math.sin(currentTimeStep*ex);
		#  	totalForce.add(new THREE.Vector3(0,f,0));
			
		#  }
		x=N_position[node][3]
		t=currentTimeStep
		wave=getForce(x,t)
        totalForce=totalForce+[0 wave 0]		
    end
    

	#  if (externalExists()) totalForce += external()->force(); //external forces
	#  totalForce -= velocity()*mat->globalDampingTranslateC(); //global damping f-cv
	#  totalForce.z += mat->gravityForce(); //gravity, according to f=mg

	#  if (isCollisionsEnabled()){
	#  	for (std::vector<CVX_Collision*>::iterator it=colWatch->begin(); it!=colWatch->end(); it++){
	#  		totalForce -= (*it)->contactForce(this);
	#  	}
	#  }
	# todo make internal forces 0 again
    N_intForce[node]=[0 0 0] # do i really need it?
    
	#  node.force.x=0;
	#  node.force.y=0;
	#  node.force.z=0;
    
    
	return totalForce
end

function moment(node) 
	#moments from internal bonds
	totalMoment=[0 0 0]
	# for (int i=0; i<6; i++){ 
	# 	if (links[i]) totalMoment += links[i]->moment(isNegative((linkDirection)i)); //total force in LCS
	# }

    totalMoment=totalMoment+N_intMoment[node]
    
	totalMoment = RotateVec3D(N_orient[node],totalMoment);
    
    totalMoment=totalMoment+N_moment[node]

	#other moments
	# if (externalExists()) totalMoment += external()->moment(); //external moments
	# totalMoment -= angularVelocity()*mat->globalDampingRotateC(); //global damping
	
    N_intMoment[node]=[0 0 0] # do i really need it?
    
	return totalMoment
end

function updateDataAndSave(setup,fileName)
    nodes      = setup["nodes"]
    edges      = setup["edges"]
    voxCount=size(nodes)[1]
    linkCount=size(edges)[1]

    i=1
	for edge in edges
        edge["stress"]=E_stress[i]
        i=i+1

    end
    
 
    i=1          
	for node in nodes
        node["displacement"]["x"]=N_displacement[i][1]
        node["displacement"]["y"]=N_displacement[i][2]
        node["displacement"]["z"]=N_displacement[i][3]
        
        node["angle"]["x"]=N_angle[i][1]
        node["angle"]["y"]=N_angle[i][2]
        node["angle"]["z"]=N_angle[i][3]
        i=i+1

    end
    
    # pass data as a json string (how it shall be displayed in a file)
    stringdata = JSON.json(setup)

    # write the file with the stringdata variable information
    open(fileName, "w") do f
            write(f, stringdata)
         end
    
end


###############################################################################################
latticeSize=9
numTimeSteps=200
save=false

setup = Dict()
open("../json/setupTestUni9.json", "r") do f
    global setup
    dicttxt = String(read(f))  # file information to string
    setup=JSON.parse(dicttxt)  # parse and transform data
end

setup=setup["setup"]
############# nodes
N_position=[]
N_degrees_of_freedom=[]
N_restrained_degrees_of_freedom=[]
N_displacement=[]
N_angle=[]
N_currPosition=[]
N_linMom=[]
N_angMom=[]
N_intForce=[]
N_intMoment=[]
N_moment=[]
N_posTimeSteps=[]
N_angTimeSteps=[]
N_force=[]
N_orient=[]

############# edges
E_source=[]
E_target=[]
E_area=[]
E_density=[]
E_stiffness=[]
E_stress=[]
E_axis=[]
E_currentRestLength=[]
E_pos2=[]
E_angle1v=[]
E_angle2v=[]
E_angle1=[]
E_angle2=[]
E_currentTransverseStrainSum=[]
E_stressTimeSteps=[]

########
voxCount=0
linkCount=0
nodes      = setup["nodes"]
edges      = setup["edges"]
voxCount=size(nodes)[1]
linkCount=size(edges)[1]
strain =0 #todooo moveeee


######## ######## ######## ######## 
# println(toAxisXVector3([-5,0,-5 ],[-0.7071067811865475,0,-0.7071067811865475 ]))
# println(toAxisXVector3([5,-5,0  ],[0.7071067811865475,-0.7071067811865475,0  ]))
# println(toAxisXVector3([-5,5,0  ],[-0.7071067811865475,0.7071067811865475,0  ]))
# println(toAxisXVector3([-5,-5,0 ],[-0.7071067811865475,-0.7071067811865475,0 ]))
# println(toAxisXVector3([5,0,5   ],[0.7071067811865475,0,0.7071067811865475   ]))
# println(toAxisXVector3([0,5,5   ],[0,0.7071067811865475,0.7071067811865475   ]))

# println()
# println(toAxisOriginalVector3([1 0 0],[0 0 1]))
# println(toAxisOriginalVector3([0 1 0],[0 0 1]))
# println(toAxisOriginalVector3([0 0 1],[0 0 1]))

# println()

# println(toAxisXVector3([1 0 0],[0 0 1]))
# println(toAxisXVector3([0 1 0],[0 0 1]))
# println(toAxisXVector3([0 0 1],[0 0 1]))

# println()
dt=0.0251646

t=@timed simulateParallel(setup,numTimeSteps,dt,true,10)
time=t[2]
println("ran latticeSize $latticeSize with $voxCount voxels and $linkCount edges for $numTimeSteps time steps took $time seconds")
# setup["animation"]["exaggeration"]=75444

if save
    updateDataAndSave(setup,"../json/trialJuliaParallel.json")
end