Skip to content
Snippets Groups Projects
parallelFEAGPU.jl 39.6 KiB
Newer Older
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020

using LinearAlgebra
using Plots
import JSON
# using Quaternions
using StaticArrays, Rotations
using Distributed
using StaticArrays, BenchmarkTools
using Base.Threads
using CUDAnative
using CuArrays,CUDAdrv 
using Test
import Base: +, * , -, ^


########################################

struct Vector3
    x::Float64
    y::Float64
    z::Float64
    function Vector3()
        x=0.0
        y=0.0
        z=0.0
        new(x,y,z)
    end
    function Vector3(x,y,z)
       new(x,y,z)
    end
end
struct Quaternion
    x::Float64
    y::Float64
    z::Float64
    w::Float64
    function Quaternion()
        x=0.0
        y=0.0
        z=0.0
        w=1.0
        new(x,y,z,w)
    end
    function Quaternion(x,y,z,w)
        new(x,y,z,w)
    end
end
struct RotationMatrix
    te1::Float64
    te2::Float64
    te3::Float64
    te4::Float64
    te5::Float64
    te6::Float64
    te7::Float64
    te8::Float64
    te9::Float64
    te10::Float64
    te11::Float64
    te12::Float64
    te13::Float64
    te14::Float64
    te15::Float64
    te16::Float64
    function RotationMatrix()
        te1 =0.0
        te2 =0.0
        te3 =0.0
        te4 =0.0
        te5 =0.0
        te6 =0.0
        te7 =0.0
        te8 =0.0
        te9 =0.0
        te10=0.0
        te11=0.0
        te12=0.0
        te13=0.0
        te14=0.0
        te15=0.0
        te16=0.0
        new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)
    end
    function RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)
        new(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)
    end
end

+(f::Vector3, g::Vector3)=Vector3(f.x+g.x , f.y+g.y,f.z+g.z )
-(f::Vector3, g::Vector3)=Vector3(f.x-g.x , f.y-g.y,f.z-g.z )
*(f::Vector3, g::Vector3)=Vector3(f.x*g.x , f.y*g.y,f.z*g.z )

+(f::Vector3, g::Number)=Vector3(f.x+g , f.y+g,f.z+g )
-(f::Vector3, g::Number)=Vector3(f.x-g , f.y-g,f.z-g )
*(f::Vector3, g::Number)=Vector3(f.x*g , f.y*g,f.z*g )

+(g::Vector3, f::Number)=Vector3(f.x+g , f.y+g,f.z+g )
-(g::Vector3, f::Number)=Vector3(g-f.x , g-f.y,g-f.z )
*(g::Vector3, f::Number)=Vector3(f.x*g , f.y*g,f.z*g )

addX(f::Vector3, g::Number)=Vector3(f.x+g , f.y,f.z)
addY(f::Vector3, g::Number)=Vector3(f.x , f.y+g,f.z )
addZ(f::Vector3, g::Number)=Vector3(f.x , f.y,f.z+g )

function normalizeVector3(f::Vector3)
    leng=sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z))
    return Vector3(f.x/leng,f.y/leng,f.z/leng)
    
end


function normalizeQuaternion(f::Quaternion)
    l = sqrt((f.x * f.x) + (f.y * f.y) + (f.z * f.z)+ (f.w * f.w))
    if l === 0 
        qx = 0
        qy = 0
        qz = 0
        qw = 1
    else 
        l = 1 / l
        qx = f.x * l
        qy = f.y * l
        qz = f.z * l
        qw = f.w * l
    end
    return Quaternion(qx,qy,qz,qw)
end

function normalizeQuaternion1!(fx::Float64,fy::Float64,fz::Float64,fw::Float64)
    l = sqrt((fx * fx) + (fy * fy) + (fz * fz)+ (fw * fw))
    if l === 0 
        qx = 0.0
        qy = 0.0
        qz = 0.0
        qw = 1.0
    else 
        l = 1.0 / l
        qx = fx * l
        qy = fy * l
        qz = fz * l
        qw = fw * l
    end
    return qx,qy,qz,qw
end


function dotVector3(f::Vector3, g::Vector3)
    return (f.x * g.x) + (f.y * g.y) + (f.z * g.z)
end

function Base.show(io::IO, v::Vector3)
    print(io, "x:$(v.x), y:$(v.y), z:$(v.z)")
end

function Base.show(io::IO, v::Quaternion)
    print(io, "x:$(v.x), y:$(v.y), z:$(v.z), w:$(v.z)")
end

Base.Broadcast.broadcastable(q::Vector3) = Ref(q)

########################################
function simulateParallel(numTimeSteps,dt,static=true)
    # initialize(setup)
    
    for i in 1:numTimeSteps
        # println("Timestep:",i)
        doTimeStep(dt,static,i)
    end
end
########################################
function initialize(setup)
	nodes      = setup["nodes"]
    edges      = setup["edges"]
    
    i=1
	# pre-calculate current position
	for node in nodes
        # element=parse(Int,node["id"][2:end])
        N_position[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])
        N_restrained[i]=node["restrained_degrees_of_freedom"][1] ## todo later consider other degrees of freedom
        N_displacement[i]=Vector3(node["displacement"]["x"],node["displacement"]["y"],node["displacement"]["z"])
        N_angle[i]=Vector3(node["angle"]["x"],node["angle"]["y"],node["angle"]["z"])
        N_force[i]=Vector3(node["force"]["x"],node["force"]["y"],node["force"]["z"])
        N_currPosition[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])

        # for dynamic simulations
        # append!(N_posTimeSteps,[[]])
        # append!(N_angTimeSteps,[[]])
        
        i=i+1
	end 
    
    i=1
	# pre-calculate the axis
	for edge in edges
        # element=parse(Int,edge["id"][2:end])
        
        # find the nodes that the lements connects
        fromNode = nodes[edge["source"]+1]
        toNode = nodes[edge["target"]+1]

        
        node1 = [fromNode["position"]["x"] fromNode["position"]["y"] fromNode["position"]["z"]]
        node2 = [toNode["position"]["x"] toNode["position"]["y"] toNode["position"]["z"]]
        
        length=norm(node2-node1)
        axis=normalize(collect(Iterators.flatten(node2-node1)))
        
        E_source[i]=edge["source"]+1
        E_target[i]=edge["target"]+1
        E_area[i]=edge["area"]
        E_density[i]=edge["density"]
        E_stiffness[i]=edge["stiffness"]
        E_axis[i]=Vector3(axis[1],axis[2],axis[3])
        E_currentRestLength[i]=length
        
        N_edgeID[E_source[i],N_currEdge[E_source[i]]]=i
        N_edgeFirst[E_source[i],N_currEdge[E_source[i]]]=true
        N_currEdge[E_source[i]]+=1
        
        N_edgeID[E_target[i],N_currEdge[E_target[i]]]=i
        N_edgeFirst[E_target[i],N_currEdge[E_target[i]]]=false
        N_currEdge[E_target[i]]+=1
       
        
        # for dynamic simulations
        # append!(E_stressTimeSteps,[[]])
        
        i=i+1
	end 
end
########################################
function doTimeStep(dt,static,currentTimeStep)
    # update forces: go through edges, get currentposition from nodes, calc pos2 and update stresses and interior forces of nodes
    run_updateEdges!(
        E_sourceGPU, 
        E_targetGPU,
        E_areaGPU,
        E_densityGPU,
        E_stiffnessGPU,
        E_stressGPU,
        E_axisGPU,
        E_currentRestLengthGPU,
        E_pos2GPU,
        E_angle1vGPU,
        E_angle2vGPU,
        E_angle1GPU,
        E_angle2GPU,
        E_intForce1GPU,
        E_intMoment1GPU,
        E_intForce2GPU,
        E_intMoment2GPU,
        N_currPositionGPU,
        N_orientGPU)
    
    # update forces: go through nodes and update interior force (according to int forces from edges), integrate and update currpos
    run_updateNodes!(dt,currentTimeStep,
        N_positionGPU, 
        N_restrainedGPU,
        N_displacementGPU,
        N_angleGPU,
        N_currPositionGPU,
        N_linMomGPU,
        N_angMomGPU,
        N_intForceGPU,
        N_intMomentGPU,
        N_forceGPU,
        N_momentGPU,
        N_orientGPU,
        N_edgeIDGPU, 
        N_edgeFirstGPU, 
        E_intForce1GPU,
        E_intMoment1GPU,
        E_intForce2GPU,
        E_intMoment2GPU)
    
end
########################################
function updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,E_angle2v,E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,N_currPosition,N_orient)

    index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
    stride = blockDim().x * gridDim().x
    ## @cuprintln("thread $index, block $stride")
    N=length(E_source)
    for i = index:stride:N
        
        @inbounds pVNeg=N_currPosition[E_source[i]]
        @inbounds pVPos=N_currPosition[E_target[i]]
        
        @inbounds oVNeg=N_orient[E_source[i]]
        @inbounds oVPos=N_orient[E_target[i]]
        
        @inbounds oldPos2=E_pos2[i] #?copy?
        @inbounds oldAngle1v = E_angle1v[i]
        @inbounds oldAngle2v =  E_angle2v[i]# remember the positions/angles from last timestep to calculate velocity
        
            # E_pos2[i],E_angle1v[i],E_angle2v[i],E_angle1[i],E_angle2[i],
        @inbounds E_pos2[i],E_angle1v[i],E_angle2v[i],E_angle1[i],E_angle2[i],totalRot= orientLink!(E_currentRestLength[i],pVNeg,pVPos,oVNeg,oVPos,E_axis[i])
        @inbounds m=(E_pos2[i].x/E_currentRestLength[i])
        @inbounds _stress=updateStrain(m,E_stiffness[i])
        @inbounds E_stress[i]=_stress
            # @cuprintln(_stress)
        
        @inbounds l   = E_currentRestLength[i]
        @inbounds E = E_stiffness[i]
        
        nu=0
        L = 5.0
        a1 = E*L # EA/L : Units of N/m
        a2 = E * L*L*L / (12.0*(1+nu)) # GJ/L : Units of N-m
        b1 = E*L # 12EI/L^3 : Units of N/m
        b2 = E*L*L/2.0 # 6EI/L^2 : Units of N (or N-m/m: torque related to linear distance)
        b3 = E*L*L*L/6.0 # 2EI/L : Units of N-m
        @inbounds currentTransverseArea=E_area[i]
        
        x=(_stress*currentTransverseArea)
        @inbounds y=(b1*E_pos2[i].y-b2*(E_angle1v[i].z + E_angle2v[i].z))
        @inbounds z=(b1*E_pos2[i].z + b2*(E_angle1v[i].y + E_angle2v[i].y))
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        
        # Use Curstress instead of -a1*Pos2.x to account for non-linear deformation 
        forceNeg = Vector3(x,y,z)
        # forceNeg = Vector3((_stress*currentTransverseArea),(b1*E_pos2[edge].y-b2*(E_angle1v[i].z + E_angle2v[i].z)),(b1*E_pos2[i].z + b2*(E_angle1v[i].y + E_angle2v[i].y))) # Use Curstress instead of -a1*Pos2.x to account for non-linear deformation 
        forcePos = Vector3(-x,-y,-z)
        
        @inbounds x= (a2*(E_angle2v[i].x-E_angle1v[i].x))
        @inbounds y= (-b2*E_pos2[i].z-b3*(2.0*E_angle1v[i].y+E_angle2v[i].y))
        @inbounds z=(b2*E_pos2[i].y - b3*(2.0*E_angle1v[i].z + E_angle2v[i].z))  
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        momentNeg = Vector3(x,y,z)
        # momentNeg = Vector3((a2*(E_angle2v[i].x-E_angle1v[i].x)) , (-b2*E_pos2[i].z-b3*(2.0*E_angle1v[i].y+E_angle2v[i].y)),(b2*E_pos2[i].y - b3*(2.0*E_angle1v[i].z + E_angle2v[i].z)))

        @inbounds x= (a2*(E_angle1v[i].x-E_angle2v[i].x))
        @inbounds y= (-b2*E_pos2[i].z- b3*(E_angle1v[i].y+2.0*E_angle2v[i].y))
        @inbounds z=(b2*E_pos2[i].y - b3*(E_angle1v[i].z + 2.0*E_angle2v[i].z))
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        momentPos = Vector3(x,y,z)
            # momentPos = Vector3((a2*(E_angle1v[i].x-E_angle2v[i].x)) , (-b2*E_pos2[i].z- b3*(E_angle1v[i].y+2.0*E_angle2v[i].y)),(b2*E_pos2[i].y - b3*(E_angle1v[i].z + 2.0*E_angle2v[i].z)))
        smallAngle=false
        if !smallAngle # ?? check
            @inbounds forceNeg = RotateVec3DInv(E_angle1[i],forceNeg)
            @inbounds momentNeg = RotateVec3DInv(E_angle1[i],momentNeg)
        end
        
        @inbounds forcePos = RotateVec3DInv(E_angle2[i],forcePos)
        @inbounds momentPos = RotateVec3DInv(E_angle2[i],momentPos)

        # println(momentPos)

        @inbounds forceNeg =toAxisOriginalVector3(forceNeg,E_axis[i])
        @inbounds forcePos =toAxisOriginalVector3(forcePos,E_axis[i])

        @inbounds momentNeg=toAxisOriginalQuat(momentNeg,E_axis[i])# TODOO CHECKKKKKK
        @inbounds momentPos=toAxisOriginalQuat(momentPos,E_axis[i])

        # println(momentPos[2]," ",momentPos[3]," ",momentPos[4]," ",momentPos[1]," ")

        @inbounds E_intForce1[i] =forceNeg
        @inbounds E_intForce2[i] =forcePos
        #@inbounds E_intForce1[i] =E_intForce1[i]+forceNeg
        #@inbounds E_intForce2[i] =E_intForce2[i]+forcePos
        
        
        #@inbounds x= E_intMoment1[i].x+momentNeg.x
        #@inbounds y= E_intMoment1[i].y+momentNeg.y
        #@inbounds z= E_intMoment1[i].z+momentNeg.z
        @inbounds x= momentNeg.x
        @inbounds y= momentNeg.y
        @inbounds z= momentNeg.z  
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        
        @inbounds E_intMoment1[i]=Vector3(x,y,z)
        
        #@inbounds x= E_intMoment2[i].x+momentNeg.x
        #@inbounds y= E_intMoment2[i].y+momentNeg.y
        #@inbounds z= E_intMoment2[i].z+momentNeg.z
        @inbounds x= momentNeg.x
        @inbounds y= momentNeg.y
        @inbounds z= momentNeg.z
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        
        @inbounds E_intMoment2[i]=Vector3(x,y,z)
        
        
    end
    return
end

function run_updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,E_angle2v,E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,N_currPosition,N_orient)
    N=length(E_source)
    numblocks = ceil(Int, N/256)
    CuArrays.@sync begin
        @cuda threads=256 blocks=numblocks updateEdges!(E_source,E_target,E_area,E_density,E_stiffness,E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,E_angle2v,E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,N_currPosition,N_orient)
    end
end
########################################

function updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement,N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)

    index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
    stride = blockDim().x * gridDim().x
    ## @cuprintln("thread $index, block $stride")
    N,M=size(N_edgeID)
    for i = index:stride:N
        @inbounds if N_restrained[i]
            return
        else
            for j in 1:M
                temp=N_edgeID[i,j]
                @inbounds if (N_edgeID[i,j]!=-1)
                    #@cuprintln("i $i, j $j, N_edgeID[i,j] $temp")
                    @inbounds N_intForce[i]=ifelse(N_edgeFirst[i,j], N_intForce[i]+E_intForce1[N_edgeID[i,j]], N_intForce[i]+E_intForce2[N_edgeID[i,j]] )
                    @inbounds N_intMoment[i]=ifelse(N_edgeFirst[i,j], N_intMoment[i]+E_intMoment1[N_edgeID[i,j]], N_intMoment[i]+E_intMoment2[N_edgeID[i,j]] )
                end
            end
            @inbounds curForce = force(N_intForce[i],N_orient[i],N_force[i],true,currentTimeStep)
            
            @inbounds N_force[i]=Vector3(0,0,0) ##????
            
            @inbounds N_intForce[i]=Vector3(0,0,0)
            
            @inbounds N_linMom[i]=N_linMom[i]+curForce*Vector3(dt,dt,dt) #todo make sure right
            massInverse=8e-6 # todo ?? later change
            @inbounds translate=N_linMom[i]*Vector3((dt*massInverse),(dt*massInverse),(dt*massInverse)) # ??massInverse
            
            @inbounds N_currPosition[i]=N_currPosition[i]+translate
            @inbounds N_displacement[i]=N_displacement[i]+translate
            
            # Rotation
            @inbounds curMoment = moment(N_intMoment[i],N_orient[i],N_moment[i]) 

            @inbounds N_intMoment[i]=Vector3(0,0,0) # do i really need it?
            
            @inbounds N_angMom[i]=N_angMom[i]+curMoment*Vector3(dt,dt,dt)
            momentInertiaInverse=1.0 # todo ?? later change
            @inbounds temp=FromRotationVector(N_angMom[i]*Vector3((dt*momentInertiaInverse),(dt*momentInertiaInverse),(dt*momentInertiaInverse)))
            
            @inbounds x= N_orient[i].x*temp.x
            @inbounds y= N_orient[i].y*temp.y
            @inbounds z= N_orient[i].z*temp.z
            @inbounds w= N_orient[i].w*temp.w
            x=convert(Float64,x)
            y=convert(Float64,y)
            z=convert(Float64,z)
            w=convert(Float64,w)
            
            @inbounds N_orient[i]=Quaternion(x,y,z,w)
        end
    end
    return
end


function run_updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement, N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)
    N=length(N_intForce)
    numblocks = ceil(Int, N/256)
    CuArrays.@sync begin
        @cuda threads=256 blocks=numblocks updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement, N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_moment,N_orient,N_edgeID,N_edgeFirst,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2)
    end
end

########################################
function orientLink!(currentRestLength,pVNeg,pVPos,oVNeg,oVPos,axis)  # updates pos2, angle1, angle2, and smallAngle //Quat3D<double> /*double restLength*/
        
    pos2 = toAxisXVector3(pVPos-pVNeg,axis) # digit truncation happens here...
    angle1 = toAxisXQuat(oVNeg,axis)
    angle2 = toAxisXQuat(oVPos,axis)
    
    
    # println(angle1[2]," ",angle1[3]," ",angle1[4]," ",angle1[1])
    
    totalRot = conjugate(angle1) #keep track of the total rotation of this bond (after toAxisX()) # Quat3D<double>
    pos2 = RotateVec3D(totalRot,pos2)
    
    
    angle2 = Quaternion(angle2.x*totalRot.x,angle2.y*totalRot.y,angle2.z*totalRot.z,angle2.w*totalRot.w)
    angle1 = Quaternion(0.0,0.0,0.0,1.0)#new THREE.Quaternion() #zero for now...

    smallAngle=true #todo later remove
    
    
    if (smallAngle)	 #Align so Angle1 is all zeros
        #pos2[1] =pos2[1]- currentRestLength #only valid for small angles
        pos2=Vector3(pos2.x-currentRestLength,pos2.y,pos2.z)
    else  #Large angle. Align so that Pos2.y, Pos2.z are zero.
        # FromAngleToPosX(angle1,pos2) #get the angle to align Pos2 with the X axis
        # totalRot = angle1.clone().multiply(totalRot)  #update our total rotation to reflect this
        # angle2 = angle1.clone().multiply(  angle2) #rotate angle2
        # pos2 = new THREE.Vector3(pos2.length() - currentRestLength, 0, 0);
    end
    
    angle1v = ToRotationVector(angle1)
    angle2v = ToRotationVector(angle2)
#     pos2,angle1v,angle2v,angle1,angle2,
    return pos2,angle1v,angle2v,angle1,angle2,totalRot
end
########################################
function toAxisXVector3(pV::Vector3,axis::Vector3) #TODO CHANGE

    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)
    q=setFromUnitVectors(vector,xaxis)
    
    # d=17
    # qw=round(q[1], digits=d)
    # qx=round(q[2], digits=d)
    # qy=round(q[3], digits=d)
    # qz=round(q[4], digits=d)
    
 
    rot=setFromRotationMatrix(quatToMatrix( q  ))
    
    return applyQuaternion1( pV ,setQuaternionFromEuler(rot) )
end

function toAxisOriginalVector3(pV::Vector3,axis::Vector3)
    
    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)

    q=setFromUnitVectors(xaxis,vector)
    

    rot=setFromRotationMatrix(quatToMatrix( q  ))

    return applyQuaternion1( pV ,setQuaternionFromEuler(rot) )
end

function  toAxisXQuat(pQ::Quaternion,axis::Vector3)
    
    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)


    q=setFromUnitVectors(vector,xaxis)
        
    #d=17
    #qw=round(q[1], digits=d)
    #qx=round(q[2], digits=d)
    #qy=round(q[3], digits=d)
    #qz=round(q[4], digits=d)
    #

    rot=setFromRotationMatrix(quatToMatrix( q  ))
    
    pV=Vector3(pQ.x,pQ.y,pQ.z)
    v=applyQuaternion1( pV ,setQuaternionFromEuler(rot) )
    
    return Quaternion(v.x,v.y,v.z,1.0)
    
    # return [1.0 v[1] v[2] v[3]]
end

function toAxisOriginalQuat(pQ::Vector3,axis::Vector3)
    xaxis=Vector3(1.0,0.0,0.0)

    vector=normalizeVector3(axis)
    
    q=setFromUnitVectors(xaxis,vector)
    

    rot=setFromRotationMatrix(quatToMatrix( q  ))
    
    pV=Vector3(pQ.x,pQ.y,pQ.z)
    v=applyQuaternion1( pV ,setQuaternionFromEuler(rot) )
    
    return Quaternion(v.x,v.y,v.z,1.0)
    
end

########################################
function setFromUnitVectors(vFrom::Vector3, vTo::Vector3)
    # assumes direction vectors vFrom and vTo are normalized
    EPS = 0.000001;
    r= dotVector3(vFrom,vTo)+1.0
    # r =  dot(vFrom,vTo)+1

    if r < EPS
        r = 0;
        if abs( vFrom.x ) > abs( vFrom.z ) 
            qx = - vFrom.y
            qy = vFrom.x
            qz = 0
            qw = r
        else 
            qx = 0
            qy = - vFrom.z
            qz = vFrom.y
            qw = r
        end
   else 
        # crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
        qx = vFrom.y * vTo.z - vFrom.z * vTo.y
        qy = vFrom.z * vTo.x - vFrom.x * vTo.z
        qz = vFrom.x * vTo.y - vFrom.y * vTo.x
        qw = r

    end
    qx= (qx==-0) ? 0 : qx
    qy= (qy==-0) ? 0 : qy
    qz= (qz==-0) ? 0 : qz
    qw= (qw==-0) ? 0 : qw
        
    
    mx=qx*qx
    my=qy*qy
    mz=qz*qz
    mw=qw*qw
    mm=mx+my
    mm=mm+mz
    mm=mm+mw
    mm=convert(Float64,mm)#??????????????????? todo check later
    
    l=CUDAnative.sqrt(mm)
    #@cuprintln(CUDAnative.sqrt(4.0))
    
    #l = sqrt((qx * qx) + (qy * qy) + (qz * qz)+ (qw * qw))
    if l === 0 
        qx = 0.0
        qy = 0.0
        qz = 0.0
        qw = 1.0
    else 
        l = 1.0 / l
        qx = qx * l
        qy = qy * l
        qz = qz * l
        qw = qw * l
    end

    # return qx,qy,qz,qw
    return Quaternion(qx,qy,qz,qw)
    
    # return normalizeQ(Quat(qw,qx,qy,qz))
    # return Quat(nn[1], nn[2], nn[3], nn[4])

end

function quatToMatrix( quaternion::Quaternion)

    #te = RotationMatrix()
    
    x = quaternion.x
    y = quaternion.y
    z = quaternion.z
    w = quaternion.w
    
    x2 = x + x
    y2 = y + y
    z2 = z + z
    xx = x * x2
    xy = x * y2
    xz = x * z2
    yy = y * y2
    yz = y * z2
    zz = z * z2
    wx = w * x2
    wy = w * y2
    wz = w * z2

    sx = 1.0
    sy = 1.0
    sz = 1.0

    te1 = ( 1 - ( yy + zz ) ) * sx
    te2 = ( xy + wz ) * sx
    te3 = ( xz - wy ) * sx
    te4 = 0;

    te5 = ( xy - wz ) * sy
    te6 = ( 1 - ( xx + zz ) ) * sy
    te7 = ( yz + wx ) * sy
    te8 = 0;

    te9 = ( xz + wy ) * sz
    te10 = ( yz - wx ) * sz
    te11 = ( 1 - ( xx + yy ) ) * sz
    te12 = 0

    te13 = 0 #position.x;
    te14 = 0 #position.y;
    te15 = 0 #position.z;
    te16 = 1
    
    te= RotationMatrix(te1,te2,te3,te4,te5,te6,te7,te8,te9,te10,te11,te12,te13,te14,te15,te16)

    return te

end

function  setFromRotationMatrix(m::RotationMatrix)
    #te = m
    #m11 = (te[ 1 ]== -0.0) ? 0.0 : te[ 1 ]
    #m12 = (te[ 5 ]== -0.0) ? 0.0 : te[ 5 ]
    #m13 = (te[ 9 ]== -0.0) ? 0.0 : te[ 9 ]
    #m21 = (te[ 2 ]== -0.0) ? 0.0 : te[ 2 ]
    #m22 = (te[ 6 ]== -0.0) ? 0.0 : te[ 6 ]
    #m23 = (te[ 10]== -0.0) ? 0.0 : te[ 10]
    #m31 = (te[ 3 ]== -0.0) ? 0.0 : te[ 3 ]
    #m32 = (te[ 7 ]== -0.0) ? 0.0 : te[ 7 ]
    #m33 = (te[ 11]== -0.0) ? 0.0 : te[ 11]

    m11 = convert(Float64,m.te1 )
    m12 = convert(Float64,m.te5 )
    m13 = convert(Float64,m.te9 )
    m21 = convert(Float64,m.te2 )
    m22 = convert(Float64,m.te6 )
    m23 = convert(Float64,m.te10)
    m31 = convert(Float64,m.te3 )
    m32 = convert(Float64,m.te7 )
    m33 = convert(Float64,m.te11)



    y = CUDAnative.asin( clamp( m13, - 1, 1 ) ) ##check if has to be changed to cuda

    if ( abs( m13 ) < 0.9999999 ) 
        
        x = atan( - m23, m33 )
        z = atan( - m12, m11 )#-m12, m11
        # if(m23==0.0)
        #     x = atan( m23, m33 )
        # end
        # if(m12==0.0)
        #     z = atan( m12, m11 )
        # end

    else

        x = atan( m32, m22 )
        z = 0;

    end
    
    return Vector3(x,y,z)
    
end

function setQuaternionFromEuler(euler::Vector3)
    x=euler.x
    y=euler.y
    z=euler.z
    
    
    c1 = CUDAnative.cos( x / 2.0 )
    c2 = CUDAnative.cos( y / 2.0 )
    c3 = CUDAnative.cos( z / 2.0 )

    s1 = CUDAnative.sin( x / 2.0 )
    s2 = CUDAnative.sin( y / 2.0 )
    s3 = CUDAnative.sin( z / 2.0 )
    
   
    x = s1 * c2 * c3 + c1 * s2 * s3
    y = c1 * s2 * c3 - s1 * c2 * s3
    z = c1 * c2 * s3 + s1 * s2 * c3
    w = c1 * c2 * c3 - s1 * s2 * s3
        
    return Quaternion(x,y,z,w)
end

function applyQuaternion1(e::Vector3,q2::Quaternion)
    x = e.x
    y = e.y
    z = e.z

    qx = q2.x
    qy = q2.y
    qz = q2.z
    qw = q2.w

    # calculate quat * vector

    ix = qw * x + qy * z - qz * y
    iy = qw * y + qz * x - qx * z
    iz = qw * z + qx * y - qy * x
    iw = - qx * x - qy * y - qz * z

    # calculate result * inverse quat

    xx = ix * qw + iw * - qx + iy * - qz - iz * - qy
    yy = iy * qw + iw * - qy + iz * - qx - ix * - qz
    zz = iz * qw + iw * - qz + ix * - qy - iy * - qx

    return Vector3(xx,yy,zz)
end

########################################

function conjugate(q::Quaternion)
    x= (-q.x==-0) ? 0.0 : -q.x
    y= (-q.y==-0) ? 0.0 : -q.y
    z= (-q.z==-0) ? 0.0 : -q.z
    w=q.w
    x=convert(Float64,x)
    y=convert(Float64,y)
    z=convert(Float64,z)
    w=convert(Float64,w)
    return Quaternion(x,y,z,w)
end

function RotateVec3D(a::Quaternion, f::Vector3)   
    fx= (f.x==-0) ? 0 : f.x
    fy= (f.y==-0) ? 0 : f.y
    fz= (f.z==-0) ? 0 : f.z
    # fx= f.x
    # fy= f.y
    # fz= f.z
    tw = fx*a.x + fy*a.y + fz*a.z
    tx = fx*a.w - fy*a.z + fz*a.y
    ty = fx*a.z + fy*a.w - fz*a.x
    tz = -fx*a.y + fy*a.x + fz*a.w

    return Vector3((a.w*tx+a.x*tw+a.y*tz-a.z*ty),(a.w*ty-a.x*tz+a.y*tw+a.z*tx),(a.w*tz+a.x*ty-a.y*tx+a.z*tw))
end
#!< Returns a vector representing the specified vector "f" rotated by this quaternion. @param[in] f The vector to transform.

function RotateVec3DInv(a::Quaternion, f::Vector3)  
    fx=f.x
    fy=f.y
    fz=f.z
    tw = a.x*fx + a.y*fy + a.z*fz
    tx = a.w*fx - a.y*fz + a.z*fy
    ty = a.w*fy + a.x*fz - a.z*fx
    tz = a.w*fz - a.x*fy + a.y*fx
    return Vector3((tw*a.x + tx*a.w + ty*a.z - tz*a.y),(tw*a.y - tx*a.z + ty*a.w + tz*a.x),(tw*a.z + tx*a.y - ty*a.x + tz*a.w))
end
#!< Returns a vector representing the specified vector "f" rotated by the inverse of this quaternion. This is the opposite of RotateVec3D. @param[in] f The vector to transform.

function ToRotationVector(a::Quaternion)  
    if (a.w >= 1.0 || a.w <= -1.0) 
        return Vector3(0.0,0.0,0.0)
    end
    squareLength = 1.0-a.w*a.w; # because x*x + y*y + z*z + w*w = 1.0, but more susceptible to w noise (when 
    SLTHRESH_ACOS2SQRT= 2.4e-3; # SquareLength threshhold for when we can use square root optimization for acos. From SquareLength = 1-w*w. (calculate according to 1.0-W_THRESH_ACOS2SQRT*W_THRESH_ACOS2SQRT

    if (squareLength < SLTHRESH_ACOS2SQRT) # ???????
        x=a.x*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))
        y=a.y*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))
        z=a.z*(2.0*CUDAnative.sqrt((2-2*a.w)/squareLength))
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
 
        return Vector3(x,y,z) ; # acos(w) = sqrt(2*(1-x)) for w close to 1. for w=0.001, error is 1.317e-6
    else 
        x=a.x*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))
        y=a.y*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))
        z=a.z*(2.0*CUDAnative.acos(a.w)/CUDAnative.sqrt(squareLength))
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)

        return Vector3(x,y,z)
    end                                    
end 
# !< Returns a rotation vector representing this quaternion rotation. Adapted from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/

function FromRotationVector(VecIn::Vector3)
    theta=VecIn*Vector3(0.5,0.5,0.5)
    ntheta=CUDAnative.sqrt((theta.x * theta.x) + (theta.y * theta.y) + (theta.z * theta.z))
    thetaMag2=ntheta*ntheta
    
    DBL_EPSILONx24 =5.328e-15
    if thetaMag2*thetaMag2 < DBL_EPSILONx24
        qw=1.0 - 0.5*thetaMag2
		s=1.0 - thetaMag2 / 6.0
    else
        thetaMag = CUDAnative.sqrt(thetaMag2)
		qw=CUDAnative.cos(thetaMag)
		s=CUDAnative.sin(thetaMag) / thetaMag
    end
    qx=theta.x*s
    qy=theta.y*s
    qz=theta.z*s
    
    qx=convert(Float64,qx)
    qy=convert(Float64,qy)
    qz=convert(Float64,qz)
    qw=convert(Float64,qw)
    
    return Quaternion(qx,qy,qz,qw)
end
########################################

function updateStrain( axialStrain,E) # ?from where strain
    strain = axialStrain # redundant?
    currentTransverseStrainSum=0.0 # ??? todo
    linear=true
    maxStrain=1000000000000000;# ?? todo later change
    if linear
        if axialStrain > maxStrain
            maxStrain = axialStrain # remember this maximum for easy reference
        end
        return stress(axialStrain,E)
    else 
        if (axialStrain > maxStrain) # if new territory on the stress/strain curve
            maxStrain = axialStrain # remember this maximum for easy reference
            returnStress = stress(axialStrain,E) # ??currentTransverseStrainSum
            if (nu != 0.0) 
                strainOffset = maxStrain-stress(axialStrain,E)/(_eHat*(1.0-nu)) # precalculate strain offset for when we back off
            else 
                strainOffset = maxStrain-returnStress/E # precalculate strain offset for when we back off
            end
        else  # backed off a non-linear material, therefore in linear region.
            relativeStrain = axialStrain-strainOffset #  treat the material as linear with a strain offset according to the maximum plastic deformation
            if (nu != 0.0) 
                returnStress = stress(relativeStrain,E)
            else 
                returnStress = E*relativeStrain
            end
        end
        return returnStress
    end
end

function stress( strain , E ) #end,transverseStrainSum, forceLinear){
    #  reference: http://www.colorado.edu/engineering/CAS/courses.d/Structures.d/IAST.Lect05.d/IAST.Lect05.pdf page 10
    #  if (isFailed(strain)) return 0.0f; //if a failure point is set and exceeded, we've broken!
    #   var E =setup.edges[0].stiffness; //todo change later to material ??
    #   var E=1000000;//todo change later to material ??
    #   var scaleFactor=1;
    #     @cuprintln(E*strain)
    return E*strain;

    #  #   if (strain <= strainData[1] || linear || forceLinear){ //for compression/first segment and linear materials (forced or otherwise), simple calculation

        #   if (nu==0.0) return E*strain;
        #   else return _eHat*((1-nu)*strain + nu*transverseStrainSum); 
        #  else return eHat()*((1-nu)*strain + nu*transverseStrainSum); 
    #  #  }

      #//the non-linear feature with non-zero poissons ratio is currently experimental
      #int DataCount = modelDataPoints();
      #for (int i=2; i<DataCount; i++){ //go through each segment in the material model (skipping the first segment because it has already been handled.
      #  if (strain <= strainData[i] || i==DataCount-1){ //if in the segment ending with this point (or if this is the last point extrapolate out) 
      #      float Perc = (strain-strainData[i-1])/(strainData[i]-strainData[i-1]);
      #      float basicStress = stressData[i-1] + Perc*(stressData[i]-stressData[i-1]);
      #      if (nu==0.0f) return basicStress;
      #      else { //accounting for volumetric effects
      #          float modulus = (stressData[i]-stressData[i-1])/(strainData[i]-strainData[i-1]);
      #          float modulusHat = modulus/((1-2*nu)*(1+nu));
      #          float effectiveStrain = basicStress/modulus; //this is the strain at which a simple linear stress strain line would hit this point at the definied modulus
      #          float effectiveTransverseStrainSum = transverseStrainSum*(effectiveStrain/strain);
      #          return modulusHat*((1-nu)*effectiveStrain + nu*effectiveTransverseStrainSum);
      #      }
      #  }
      #}

    #  assert(false); //should never reach this point
    #  return 0.0f;
end 

function force(N_intForce,N_orient,N_force,static,currentTimeStep) 
    # forces from internal bonds
    totalForce=Vector3(0,0,0)
    # new THREE.Vector3(node.force.x,node.force.y,node.force.z);
    #  todo 


    totalForce=totalForce+N_intForce

    #  for (int i=0; i<6; i++){ 
    #  	if (links[i]) totalForce += links[i]->force(isNegative((linkDirection)i)); # total force in LCS
    #  }
    totalForce = RotateVec3D(N_orient,totalForce); # from local to global coordinates


    # assert(!(totalForce.x != totalForce.x) || !(totalForce.y != totalForce.y) || !(totalForce.z != totalForce.z)); //assert non QNAN

    # other forces
    if(static)
        totalForce=totalForce+N_force
    #  }else if(currentTimeStep<50){
    #  	totalForce.add(new THREE.Vector3(node.force.x,node.force.y,node.force.z));
    else
        #  var ex=0.1;
        #  if(node.force.y!=0){
        #  	var f=400*Math.sin(currentTimeStep*ex);
        #  	totalForce.add(new THREE.Vector3(0,f,0));

        #  }
        #x=N_position[node][3]
        #t=currentTimeStep
        #wave=getForce(x,t)