Skip to content
Snippets Groups Projects
vis.ipynb 6.48 MiB
Newer Older
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from matplotlib import pyplot as plt\n",
    "import numpy as np\n",
    "import matplotlib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from vis.viewInd import viewInd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "rover\n",
      "# of Connections in ANN:  8\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "(<Figure size 1000x1000 with 1 Axes>,\n",
       " <matplotlib.axes._subplots.AxesSubplot at 0x2bc8c92b908>)"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5wAAAMHCAYAAABVE1hRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVxU56H/8e8zDIsgi4qgosZd3BXXuEREQNK0aWvam17TtNm73qZt1Jq1iWmiMUnbNM1tfllam8abpk3apDeNKLhFUTSuuOKuKCqKAsIgA8z5/QFyNYsBneEMzOf9evEKc2bOeb6TxIQvz5nnMZZlCQAAAAAAb3PYHQAAAAAA0DpROAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATTrsD4LMZY4ykLpLO250FAAAAgO0iJRValmXZHaQpKJz+q4ukY3aHAAAAAOA3uko6bneIpqBw+q/zklRQUKCoqCi7swAAAACwSVlZmbp16ya1wLsfKZx+LioqisIJAAAAoEVi0SAAAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4BIUTAAAAAOATFE4AAAAAgE9QOAEAAAAAPkHhBAAAAAD4hNPuAMCV1Hg8KnfXymNZchijtiFBcjr4PQkAAADQElA44XfKqqp1qMSlkxVVqqiu/dTzEcFB6hQRqp4x4YoKDbYhIQAAAIDGoHDCb1S4a7TlVKmKXG4ZSdbnva66VgdLXDpQ4lJceIhGxEcrIoR/lQEAAABvM8aslLTVsqyfXs353JsIv3CoxKWsw6d12uWW9Pll86KLz592uZV1+LQOlbh8mg8AAABA0zEtBNvtKT6vXWfKr+pcS5JlSVtOlaqqtlaJHSK9Gw4AAADAVWOGE7Y6VOK66rL5SbvOlOswM50AAACAzxhjMowxpcaY7zTm9RRONIu5c+dq4MCB8ng8Dccq3DXaVlTq1XG2FpWqwl0jSbr99tv1ta99zavXBwAAAAKVMeZbkv4m6TuWZb3RmHMonPC5wsJCLViwQHPnzpXjki1NtpwqlfVFH9Zsoou310rS448/rn//+99avny5dwcBAAAAAowx5oeSXpb0Vcuy3m/seRRO+NwLL7ygmJgYTZ8+veFYWVW1ilzuL1wcqOhYgW5J7KId69c2aixLUpHLrbKqavXu3VsZGRmaP3/+1YcHAAAAcIuk30pKtyxrRVNOpHAGMJfLpfz8fJ+O4Xa79frrr2vGjBmXzW4eKnHJ+GhMU399qe622uzsbB04cMBHowEAAACt3lZJpyXdaYxp0o/xFM4A9u9//1uJiYlKT09XTk6OT8ZYv369iouLNWXKlMuOn6yo+sLZzatl1V9fkpKTk2VZlj788EMfjQYAAAC0egckTZH0VUkvNuVECmcAu+WWW/TOO+/o5MmTmjhxok+K57p16yRJSUlJDceqPR5VVNd+5us9Ho9qa2oavjye2vrjtZcdr6397PMvqqiuVY3Ho7i4OCUkJPisUAMAAACBwLKsvaornbcYY37b2PNaxD6cxpi+kgJtg8UISdq6davatm3rs0F69uypP/7xj1qxYoVeeeUVTZw4UWPHjtVvf/tbjRs37pqvX1hYKGOMYmNjG45VuD+/LL700M+18r2/fer4E3feetnjQaOv19y/vHvFscvdtYoJcyguLk7Hjx9vYnIAAAAAl7IsK98YkyJppTGm1rKsB77oHL8vnPVlc6/dOewyefLkZh9z/fr1mjBhgk6dOnVZUbwalZWVCg4OVlBQUMMxzxWWpr31xw/oxtvubHh87vQpzf/hHfre48+o16ChDcfbRER84dgXxwkLC1NlZeXVxAcAAAACmmVZyZ94vFtSfGPP9/vCqf+b2fy2pN12BmlmEZI+WrVqlU9nOF0ul/7+97/rjTfeUHl5ub761a/qzjvv1IABA665bEpSbGys3G63KioqFFFfEh1X+JxxXNduiuvareFx0bECSVKXnr3VZ8iwJo19cZyzZ8+qR48eTUwOAAAA4Fq1hMJ50W7LsjbbHaK5GGOiJGn48OGKioryyRgff/yxvv71r6u0tFR33XWXHnzwQV133XVeHSMxMVGSdODAAQ0dWjdD2TYk6EqneE3bkCDV1NSooKBAX/rSl5plTAAAAAD/h0WDAlibNm103333ad++fXr55Ze9XjalulViJSk3N7fhmNPhUESwb0tnRHCQnA6H8vLy5HK5PrVKLgAAAADfo3AGsMGDB+upp57ySdG8qFu3bpo0aZLef//9y453igj16T6cnSJCJUnvvfeeYmNjlZ6e7qPRAAAAAHweCid87v7779eSJUsuWym2Z0x4o/bhjOvaTe/uKdTgseMbPZ5Vf/3a2lr95S9/0X333afQ0NCmBwcAAABwTSic8Lnp06dr9OjRmjdvXsOxqNBgxYWHeH2W02NZcppaRYY49eabb6q8vFyzZs3y8igAAAAAGoPCCZ8zxujVV19Vly5d5PF4Go6PiI/WFRasvbqxZOlfezbpqdWrdM7l0qJFixQTE+PdQQAAAAA0SktapRYt2ODBgzV48ODLjkWEODUsLlpbTpV6bZyRndqpb7uxem3LRu3r3FG9e3RXrcejIAe/WwEAAACaGz+Fw1Y9Y8I1MNY7+4wOjI1Uj5hwDY3vpGdTM5TWq4/+uiNPj6zI1sFzZ70yBgAAABCIjDFjjTE9mnoehRO2S+wQqRHx0XIYNfkznUaSw0hJ8dFK7PB/xTXU6dS3hw7Xk1NSZVmWHl2RrTfztqqqpsar2QEAAIDWzhjTR1KOpIPGmF5NOZfCCb/QMyZcaT06qmN4iKQvLp4Xn+8YHqK0Hh3VIyb8M1/Xq117/SolTbcOGqKsg/s1O3uJ8k6d9F5wAAAAoPV7RHU/ghtJw5pyorGsxmxOYR9jTJKkTZJGWpa12e48zcUYEyWptLS0VFFRUXbHaVZlVdU6VOLSyYoqVVTXfur5iOAgdYoIVc+YcEWFBjf6uifLz+u1zZu063SRJna/Tt8eOlxRbJcCAAAAP1dWVqbo6GhJirYsq6w5x66f3dwj6UVJP5X0oWVZNzX6fAqnfwrkwnmpGo9H5e5aeSxLDmPUNiRIzmtYAMiyLK06cliLtm+VwxjdPnSEJnTrLuPt5XIBAAAAL7G5cC6UlC5puqR1kjySBlqWld+Y87mlFn7N6XAoJixY7duEKCYs+JrKplS3RUtyj556Lu1GDeoYr//+eL2eWbtapysqvJQYAAAAaB3qZze/LWmeJHf94TOqu8W2USicCEjRYWH6ydjrNXP8RB0rLdWsrEx9uC9fHj+f8QcAAACa0X9JKpL06iXH/ihphjEmvjEXYB9OBLSkzl00ILaj3t65XYu2b9PaYwW6d8QoXRcTY3c0AAAAwG5/k/SWZVkXLvkI2j8lHZRU2pgLMMOJgNcmOFh3DE/SLyenqKqmRg+vyNLbO/LYQgUAAAABzbKsHMuycj9xuMayrFcty7rQmGtQOIF6/TrEat7UdE1PHKgP9uVrzrKl2ll0yu5YAAAAQItF4QQu4XQ4NH3AIM1PnaaYsDA9tXqVXtn0scrd7i8+GQAAAMBlWkLhLFHd0rsldgdB4EiIjNJjN0zR3SNGKvd4gWZmLVbusQL5+zZCAAAAgD/x+8JpWdZBSfH1fwWajTFGU3v11nNpGerfIVa/W79Oz6/LUbHLZXc0AAAAoEXw+8IpSZZlnbE7AwJX+zbh+tm4CfrpuPE6eO6sZmVnaumBfcx2AgAAAF+AbVGARhqT0FWDOsbprR15Wrh1i3IKjuq+pNFKiIqyOxoAAADgl1rEDCfgLyJCQnRP0ig9OnmKyt1uzVm2RO/s2qHq2lq7owEAAAB+55oKpzEm2RhjGWNivBUIaAkGxHbUvKnp+kq/RL2Xv1sPLc9SfjF3fgMAAACXalLhNMasNMb89pJDayV1llTq1VRNQOmFXUKCgvQfg4bo6ZQ0hTmdemLlcv1xyya5qqvtjgYAAAD4hWua4bQsy21Z1kmL1VMQwLpHx+iJ5Kn6zrARWn30iGYuXayNhcftjgUAAADYrtGF0xizUNJkSffXzyhaxpg7Lp1drH9cYoz5sjEm3xjjMsa8Y4yJMMZ81xhz2BhzzhjzojEm6JJrhxhjFhhjjhtjKowx640xyZc8f50x5n/rz60wxuw0xnzJGNND0or6l52rz7Kw/hxjjJltjDlojKk0xmwzxnzjkmtenBm9qf65C/XjDrnqv5sIWA5jlNGnr55Ny1CPmHb69boc/SY3R+cqK+2OBgAAANimKavU3i+pn6Qdkh6rPzboM14XLuknkr4lKVLSP+q/SiR9SVIvSe9KWiPp7fpz/iSpR/05hZK+LinTGDPEsqx9kl6SFCLpBkkVkgZKKpdUIOmW+uv1l1Qm6eJP+L+SNF3SDyTtqz/3TWPMacuyVl2S99n693ZS0tOS/mWM6WdZFvdFosliw8M1a/xE5R4r0J+3bdHMrEzNGDJUKT16yRhjdzwAAACgWTW6cFqWVWqMcUtyWZZ1UpKMMYmf8dJgST+wLOtA/WvekXS7pHjLssol7TLGrJA0RdLbxpjekv5TUlfLsgrrr/GcMSZD0p2SHpLUXdK7lmVtr3/+4MXBjDFn678tsiyrpP5YhKSfS0qxLGvdxXOMMRMlfU/SpYXzCcuysurP+66kY6orvH9r7N8b4FLGGF3frbuGxHfSou1b9frmTco5ekT3JI1Sl0i2UAEAAEDg8MU+nK6LZbPeKUmH68vmpcfi6r9PkmQk7f3EDFCopOL6738n6Q/GmHRJ2aorn3lXyDBQUpikrE9cM0TSlk+89mIhlWVZZ40x+ZIGXOHaQKO0DQnR90aO0YRu1+m1LRs1J3uppg8YqC/3S5TTwY5EAAAAaP18UTg/eSuq9TnHLv7E7ZBUK2lk/V8vVS5JlmW9ZoxZIukmSemSHjTGPGBZ1oufk+HitW+S9MnVW6oa8R5YBAleMzguXs9MnaZ/7Nmlv+/aqXXHCnRv0ij1ad/B7mgAAACATzV1msUtKegLX9U0W+qvGWdZ1v5PfJ28+CLLsgosy3rZsqzpkp6XdO8lmfSJXLtUVyy7f8Y1Cz4x/riL3xhj2qnuc6p7vPsWEehCnU795+Ch+lVKqpwOh365cpne2LZFF2r4qDAAAABar6bOcB6WNLZ+ddhyXeO2KpJkWdZeY8wiSW8YYx5QXQGNlZQiabtlWR/W7/25WNJeSe3qn9tdf4kjqpuR/LIx5kNJlZZlnTfGPCfpN8YYh+oWKIqSNF5SuWVZf74kwmPGmGLV3eb7lKQzkt671vcFfJaeMe00N3mqMvfv09937dDHhcd094hRGt6ps93RAAAAAK9ramF8TnW3ve6SdFp1i/l4w52S3lDdzGW+pH9JGqu6VWilutnLl1RXMjPrX/NDSbIs67ikX0qar7rS+Pv6cx6VNFfSg/XnLZH0FUmHPjH2HEkvSNokqbOkmy3LcgvwkSCHQzf1668FadPUJTJKC3JW6/cbclVWdcHuaAAAAIBXGcsKzI8r1u/zuUJSu4ur2/oTY0yUpNLS0lJFRbGyaWtlWZbWHD2iN/Lq1rK6fegITep+HVuoAAAAoEFZWZmio6MlKdqyrDI7MhhjklQ3STfSsqzNjT2PpTIBGxljNOm6Hno+/UYN79RZL2/coHlrVqmoovyLTwYAAAD8HIUT8ANRoWH60ehxmj1hkk6Wl2t21hJ9sHePaj0eu6MBAAAAVy1gC6dlWSstyzL+eDstAtfwTp21IG2aUnr20ls78vToimwdKjlndywAAADgqgRs4QT8VZgzWN8ZNkJzk6eq1rL0yPJs/c/2baqqqbE7GgAAANAkFE7AT/Vu30FPpaTpmwMHK3P/Ps3OXqLtRafsjgUAAAA0GoUT8GNOh0NfSxygZ1KnKTY8XPNWr9IfNq7X+aoqu6MBAAAAX4jCCbQAnSMj9cikZN07cpQ2FRZqVlamcgqOKFC3NQIAAEDLQOEEWghjjKb06KXn0jM0oGNHvbRhvRasXa0zLpfd0QAAAIDPROEEWpiYsDa6f+x4PTB+go6WlmpW1mIt3r9XHmY7AQAA4GecdgcAcHVGdk7QwNg4vbUjT2/mbVVOwVHdlzRK3aNj7I4GAAAASGKGE2jR2gQH664RI/XLySmqqqnRQ8uz9PbO7XLX1todDQAAAKBwAq1Bvw6xejolTV9PHKgP9u7RnOwl2n26yO5YAAAACHAUTqCVCA4K0i0DBmn+1GmKDA3Vkx+t1GubN6rC7bY7GgAAAAIUhRNoZRKiovT45BTdOTxJa48d1cysTG04fowtVAAAANDsKJxAK2SMUVrvPno2NUN92rfXb3PX6te5OTpbyRYqAAAAaD4UTqAV6xAerp+Pm6Cfjhuv/WfPamZWprIO7Ge2EwAAAM2CbVGAVs4YozEJXTWwY5z+uiNPf9q6WTkFR3Rv0mglREXZHQ8AAACtGDOcQIBoGxKie5JG6dEbklVWVaU5y5bo3d07Vc0WKgAAAPARCicQYAZ0jNP81Gn6ct/++ueeXXpoeZb2Fp+xOxYAAABaIQonEIBCgoJ06+ChejolTaFOp55YtVx/2rpZldXVdkcDAABAK0LhBAJY9+gYzU2eqm8PHa6PjhzSzKxMbTpx3O5YAAAAaCUonECAcxijG/v004K0DHWPjtbza3P0wvq1KrlQaXc0AAAAtHAUTgCSpI7hEZo9fpJ+NGasdp0u0sylmVpx+CBbqAAAgGZX4/Go5EK1zla6VXKhWjUej92RcJXYFgVAA2OMJnS7TkPiOunNvK16ddNGrTl6RPeMGKXOkZF2xwMAAK1YWVW1DpW4dLKiShXVn15FPyI4SJ0iQtUzJlxRocE2JMTVMMxe+CdjTJSk0tLSUkWxVyJsknfqpF7fsknnKis1fcAgfblffzkd3BgBAAC8p8Jdoy2nSlXkcstIulI7ufh8XHiIRsRHKyIkMObPysrKFB0dLUnRlmWV2ZHBGJMkaZOkkZZlbW70eRRO/0ThhL+oqqnRO7t36sN9+eoaFa37kkapd/sOdscCAACtwKESl7YVlcqyrlw0P8lIMkYaFhetnjHhvornN1py4WSqAsAVhTqdum3IMD05JVVBxuixlcv0l7ytqqqpsTsaAABowfYUn9eWU6XyNLFsSnWv91jSllOl2lN83hfx4CUUTgCN0qtdez05JVXfGjxU2Qf3a1Z2pradOml3LAAA0AIdKnFp15lyr1xr15lyHS5xeeVa8D4KJ4BGC3I49JV+iVqQmqH4iLZ6Zs1HeunjXJVVXbA7GgAA8ENz587VwIED5blkldkKd422FZV6dZytRaWqcNfdfXX77bfra1/7mlevj6vHZzj9FJ/hhL+zLEsfHTmsN7dvlZHR7UOHa2L362SMsTsaAADwA4WFherXr58WLlyob3zjGw3H1xQU67TL3eTbaK/ESOoYHqKJ3TrowIEDSkxM1JIlS5SSkuLFUezDZzgBBBxjjCb36Knn02/U0PhO+sPGDZqf85GKKrxzewwAAGjZXnjhBcXExGj69OkNx8qqqlXUiLJZdKxAtyR20Y71axs1liWpyOVWWVW1evfurYyMDM2fP//qw8NrKJwArklUaJh+PGacZk+YpMLzZZqdtUQf7stXLRs0AwAQsNxut15//XXNmDFDjku2VDtU4pKv7oUy9deX6m6rzc7O1oEDB3w0GhqLwgnAK4Z36qwFqRma0rOnFm3fpsdWLtPhknN2xwIAADZYv369iouLNWXKlMuOn6yo8uqttJey6q8vScnJybIsSx9++KGPRkNjUTgBeE2b4GB9d1iSnkieqmpPrR5enq23duSxhQoAAAFm3bp1kqSkpKSGY9Uejyqqaz/z9R6PR7U1NQ1fHk9t/fHay47X1n72+RdVVNeqxuNRXFycEhISlJOT46V3hKvltDsAgNanT/sOejolXR/s3aN/7N6l9ccLdO+IURoUF293NAAA0AwKCwtljFFsbGzDsQr355fFlx76uVa+97dPHX/izlsvezxo9PWa+5d3Lzt2suCIXGX/t+ptztl2igx1qm3btsrPz9fmzY1e38ZvlZc3rJExzBhTYVOMAVdzEqvU+ilWqUVrUXi+TK9t3qg9Z85oco8eum3IcLUNCbE7FgAA8KHvfe97WrhwoaqqqhqOna10a+XR4s98fdGxApWdO9vw+NzpU5r/wzv0vcefUa9BQxuOt4mIUEKvPg2Py84V6+4Jwy7bdgU+18+yrH2NfTEznAB8qktklB69YYqWHz6o/9mepy0nTui7w0ZoXNdubKECAEArFRsbK7fbrYqKCkVEREiSHFf4/35c126K69qt4XHRsQJJUpeevdVnyLDPPS+qXQe9uCTnshnO0Z3rZjinT5+uLl266Pe///21vh3blZeXa/LkyZJ0gyS7Zjgl6XxTyqZE4QTQDIwxmtqzt5I6ddHCbZv14oZcrT56RHeNGKnY8HC74wEAAC9LTEyUJB04cEBDh9bNULYNCfLJWJ26XXfZ4wl94yWPR6dPn9b06dMv+xxpS1VW1rD15ja79uG8WiwaBKDZtGvTRj8bN0E/u368Dpec06ysTGXu3ycPt/YDANCqJCcnS5Jyc3MbjjkdDkUE+6Z0XhQRHCSnw6G8vDy5XK5PrZKL5kfhBNDsRnfpqufSb9Sk7tfpjW1b9PjKZSooLf3iEwEAQIvQrVs3TZo0Se+///5lxztFhPp0H85OEaGSpPfee0+xsbFKT0/30WhoLBYN8lMsGoRAsefMab22eaNOVZTr5v4D9NX+AxQS5NvffgIAAN979913deutt+rIkSNKSEiQJJVVVSv78BmfjZnaI1YRTof69OmjGTNm6KmnnvLZWM2prKxM0dHRkhTNLbUA0ASJsR01b2q6bu4/QP/K360Hly3V7jOn7Y4FAACu0fTp0zV69GjNmzev4VhUaLDiwkO8PstpJMWFhygqNFhvvvmmysvLNWvWLC+PgqtB4QRgu+CgIH1z4GDNm5qutiEhenLVCr22eaNc1dV2RwMAAFfJGKNXX31VXbp0uWzbkhHx0fL2QvXG1F1XkjwejxYtWqSYmBjvDoKrwi21fopbahGoLMtS1sH9emvHdrVxOnXH8CSNSehqdywAAOBFh0pc2nLKe+s3JMVHq0dM6135viXfUkvh9FMUTgS6My6XFm7drM0nCjU6IUF3DEtSuzZt7I4FAAC8ZE/xee06U37N1xkYG6nEDm29kMh/UTjhdRROoG62c/3xY1q4dbPcnlrdNniYUnr2kvH2fTgAAMAWh0pc2lZUKsuSmtJKjOpuox0e17pnNi+icMLrKJzA/yl3u7Vo+1atOnxYibGxujtplBIi+XMBAEBrUOGu0ZZTpSpyuWV05eJ58fm48BCNiI9WRIizeULajMIJr6NwAp+2s+iUXt2yUcUul76eOFA39x8gp4O1zwAAaA3Kqqp1qMSlkxVVqqiu/dTzEcFB6hQRqp4x4YoKDbYhoX0onPA6Cifw2apqavTPPbv0v3vz1SUyUvcljVbfDh3sjgUAALzovNutR5cv1+3DRqh3u/ZqGxIU0L9kbsmFM3D/qQFokUKdTn1r8FA9lZKqkKAgPb5qmf68bbMq2UIFAIBWY+n+fVp6IF+L8jYpJiw4oMtmS8c/OQAtUo+YdpqbPFW3DRmmFYcOaXZ2pjafKLQ7FgAAuEZVNTX6x55dqrE82nSiUIdKztkdCdeAwgmgxQpyOPSlvv21IG2aEiKj9NzaNfrd+nUqvXDB7mgAAOAqLTt0QEdLSxQW5FRldbXe2bXD7ki4BhROAC1eXERb/WLCDfrB6DHaUXRKM7MWa+XhQ+Iz6gAAtCxVNTV6e+d2uWtr5bEsORxGyw4dZJazBaNwAmgVjDGa1L2HnkvP0PBOXfTKpo/11OpVOlV+7RtKAwCA5nHG5VKF262YsDBJUpjTqRCHQ4cpnC0Wq9T6KVapBa7NtlMn9fqWjSq9cEHfGDhYX+rTT0EsOAAAgN+7UFOtksoLuj/z3/rRmLEa2TlBESEhdseyFavUAoCfGRbfSc+mZii1Vx/9dUeeHlmRrYPnztodCwAAfIEwZ7AiQkIU5HCoTXBwwJfNlo7CCaDVCnU6dfvQ4XpySqosy9KjK7L1Zt5WVdXU2B0NAAAgIFA4AbR6vdq1169S0nTroCHKOrhfs7OXKO/USbtjAQAAtHoUTgABwelw6Ob+A/RM6jR1DI/Q/DUf6b8/Xq+yqiq7owEAALRaFE4AAaVT20g9PGmy7hs5WltOFmpW1mKtOXqELVQAAAB8gMIJIOAYY5Tco6eeS7tRgzrG678/Xq9n1q7W6YoKu6MBAAC0KhROAAErOixMPxl7vWaOn6hjpaWalZWpD/fly8NsJwAAgFc47Q4AAHZL6txFA2I76u2d27Vo+zatPVage0eM0nUxMXZHAwAAaNGY4QQASW2Cg3XH8CT9cnKKqmpq9PCKLL29I48tVAAAAK4BhRMALtGvQ6zmTU3X9MSB+mBfvuYsW6qdRafsjgUAANAiUTgB4BOcDoemDxik+anTFBMWpqdWr9Irmz5WudttdzQAAIAWhcIJAJ8jITJKj90wRXePGKnc4wWambVYuccK2EIFAACgkSicAHAFxhhN7dVbz6VlqOtdWI8AACAASURBVH+HWP1u/To9vy5HxS6X3dEAAAD8HoUTABqhfZtw/WzcBP103HgdPHdWs7IztfTAPmY7AQAAroBtUQCgCcYkdNWgjnF6a0eeFm7dopyCo7ovabQSoqLsjgYAAOB3mOEEgCaKCAnRPUmj9OjkKTpfVaU5y5bonV07VF1ba3c0AAAAv0LhBICrNCC2o+anTtNX+iXqvfzdemh5lvKLz9gdCwAAwG9QOAHgGoQEBek/Bg3R0ylpCnM69cTK5frjlk1yVVfbHQ0AAMB2FE4A8ILu0TF6InmqvjNshFYfPayZSxdrY+Fxu2MBAADYisIJAF7iMEYZffrq2bQbdV1MjH69Lke/yc3RucpKu6MBAADYgsIJAF4WGx6u2eMn6cdjxin/zBnNzMrUskMH2EIFAAAEHLZFAQAfMMZofLfuGhIXr0Xbt+n1zZuUc/SI7kkapS6RbKECAAACAzOcAOBDkaGh+v6oMXpw0mQVV1ZqTvZSvbdnl2o8HrujAQAA+ByFEwCawZC4eC1InaaMPn3191079fDyLO0/W2x3LAAAAJ+icAJAMwl1OjVjyDD9KiVVQcbolyuX6Y1tW3Shhi1UAABA60ThBIBm1jOmnZ6ckqoZg4dp+aGDmpWVqa0nT9gdCwAAwOsonABggyCHQzf1668FadPUJTJKC3JW6/cbclVWdcHuaAAAAF5D4QQAG8VFtNWcCTfoB6PGaNupE3pg6WJ9dOQwW6gAAIBWgcIJADYzxmjSdT30fPqNGt6ps17euEHz1qxSUUW53dEAAACuCYUTAPxEVGiYfjR6nGZPmKST5eWanbVEH+zdo1q2UAEAAC0UhRMA/MzwTp21IG2aUnr20ls78vToimwdKjlndywAAIAmo3ACgB8KcwbrO8NGaG7yVNValh5Znq3/2b5NVTU1dkcDAABoNAonAPix3u076KmUNH1z4GBl7t+n2dlLtL3olN2xAAAAGoXCCQB+zulw6GuJA/RM6jTFhodr3upV+sPG9TpfVWV3NAAAgCuicAJAC9E5MlKPTErWvSNHaVNhoWZlZSqn4AhbqAAAAL9F4QSAFsQYoyk9eum59AwN6NhRL21YrwVrV+uMy2V3NAAAgE+hcAJACxQT1kb3jx2vB8ZP0NHSUs3KWqzF+/fKw2wnAADwI067AwAArt7IzgkaGBunt3bk6c28rcopOKr7kkape3SM3dEAAACY4QSAlq5NcLDuGjFSj01OUVVNjR5anqW3d26Xu7bW7mgAACDAUTgBoJXo3yFWT6ek6euJA/XB3j2ak71Eu08X2R0LAAAEMAonALQiwUFBumXAIM2fOk2RoaF68qOVem3zRlW43XZHAwAAAYjCCQCtUEJUlB6fnKI7hydp7bGjmpmVqQ3Hj7GFCgAAaFYUTgBopYwxSuvdR8+mZqh3u/b6be5a/To3R2cr2UIFAAA0DwonALRyHcLD9cD1E3T/2Ou1/+xZzczKVNaB/cx2AgAAn2NbFAAIAMYYje3aTYPi4vXWjm3609bNyik4onuTRishKsrueAAAoJVihhMAAkjbkBDdmzRaj9yQrLKqKs1ZtkTv7t6parZQAQAAPkDhBIAANLBjnOZNTdeX+/bXP/fs0kPLs7S3+IzdsQAAQCtD4QSAABXqdOrWwUP1dEqaQp1OPbFquf60dbMqq6vtjgYAAFoJCicABLju0TGamzxVtw0Zro+OHNLMrExtOnHc7lgAAKAVoHACAOQwRl/q208L0jLUPTpaz6/N0Qvr16rkQqXd0QAAQAtG4QQANOgYHqHZ4yfpR2PGatfpIs1cmqkVhw+yhQoAALgqbIsCALiMMUYTul2nIXGd9GbeVr26aaPWHD2ie0aMUufISLvjAQCAFoQZTgDAZ4oKDdUPR4/VnIk36IzLpV9kL9H7+btV4/HYHQ0AALQQFE4AwBUNje+kBanTNK1PX/1t53Y9sjxLB84W2x0LAAC0ABROAMAXCnU6dduQYXpySqocxuixlcv0l7ytqqqpsTsaAADwYxROAECj9WrXXk9OSdW3Bg9V9sH9mpWdqW2nTtodCwAA+CkKJwCgSYIcDn2lX6IWpGYoPqKtnlnzkV76OFdlVRfsjgYAAPwMhRMAcFXi27bVQxMn63sjR2vryROauTRTq48cZgsVAADQgMIJALhqxhhN7tFTz6ffqKHxnfSHjRs0P+cjFVWU2x0NAAD4AQonAOCaRYWG6cdjxmn2hEkqPF+m2VlL9OG+fNWyhQoAAAGNwgkA8JrhnTprQWqGpvTsqUXbt+mxlct0uOSc3bEAAIBNKJwAAK9qExys7w5L0hPJU1XtqdXDy7P11o48tlABACAAUTgBAD7Rp30HPZ2Srm8OHKQP9+XrF8uWaGfRKbtjAQCAZkThBAD4jNPh0NcSB+qZ1GlqH9ZGT61epf+3aYPK3W67owEAgGZA4QQA+FyXyCg9esMU3Z00UhuOH9fMpYu1ruAoW6gAANDKUTgBAM3CGKOpPXvrubQM9Y+N1YsbcvXs2jU643LZHQ0AAPgIhRMA0KzatWmjn42boJ+OG6/DJec0KytTmfv3ycNsJwAArY7T7gAAgMA0JqGrBsfF660deXpj2xatLTiie5NGq1t0tN3RAACAlzDDCQCwTXhwsO4eMVKPTp4iV3W1Hlq+VH/ftUPu2lq7owEAAC+gcAIAbDcgtqPmTU3Xzf0H6F/5u/XgsqXafea03bEAAAhoxpgexhjrM75WNvYaFE4AgF8IDgrSNwcO1ryp6YoIDtaTq1botc0b5aqutjsaAACBqkBS50u+RkgqlvRRYy/AZzgBAH6la1S0Hk+eqqyD+/XXHdu1+USh7hiepDEJXe2OBgBAQLEsq1bSSUkyxoRJek/SOkmPN/YazHACAPyOwxhN691Xz6ZlqGe7dvpt7lr9JjdH5yor7Y4GAECgel1SpKQZlmV5GnsShRMA4Ldiw8M18/qJ+snY65V/5oweyFqsZQcPyGILFQAAmo0x5hFJGZJutizrfFPO5ZZaAIBfM8ZoXNduGhwXr0Xbt+r1LZuUU3BEdyeNUkJklN3xAABo1Ywxt0h6TNKNlmUdaOr5zHACAFqEtiEh+t7IMXp40mSdvVCpOdlL9I/dO1XjafRdPQAAoAmMMYMlvSHpGUk7jTGd6r/aN/YaFE4AQIsyKC5ez0ydppv69te7u3fpwWVLta+42O5YAAC0RqMkhUt6RNKJS77+0dgLUDgBAC1OqNOpbw0eqqdSUhUSFKTHVy3Tn7dtViVbqAAA4DWWZS20LMt8xldyY69B4QQAtFg9YtppbvJU3TZkmFYcOqTZ2ZnafKLQ7lgAAKAehRMA0KIFORz6Ut/+WpA2TQmRUXpu7Rr9bv06lV64YHc0AAACHoUTANAqxEW01S8m3KAfjB6jHUWnNDNrsVYePsQWKgAA2IhtUQAArYYxRpO699Cw+E76S942vbLpY+UUHNE9I0Ypvm1bu+MBABBwmOEEALQ6UaFh+tHosfrFxBt0qqJcs7Mz9b9796iWLVQAAGhWFE4AQKs1LL6Tnk3NUGqvPvrrjjw9siJbB8+dtTsWAAABg8IJAGjVQp1O3T50uJ6ckirLsvToimy9mbdVVTU1dkcDAKDVo3ACAAJCr3bt9auUNN06aIiyDu7X7Owlyjt10u5YAAC0CMYYczXnUTgBAAHD6XDo5v4D9EzqNHUMj9D8NR/pvz9er7KqKrujAQDgt4wx6ZIOGGMSmnouhRMAEHA6tY3Uw5Mm676Ro7X5RKFmZS3WmqNH2EIFAIBPqJ/Z/I2knpKeaur5FE4AQEAyxii5R089l56hgR3j9N8fr9cza1frdEWF3dEAAPAnN0saWP/9fzZ1lpPCCQAIaDFhbXT/2PF6YPwEHSst1aysTH24L18eZjsBAAGufnbzcUkb6w9dkPSLplyDwgkAgKSRnRP0bFqGknv01KLt2/TYymU6UlJidywAAOx0s6Thkl6pf/wXSfc1ZZaTwgkAQL02wcG6Y3iSfjk5RVU1NXp4RZbe3pHHFioAgIBzyezmSkmb6g+/LcmlJsxyUjgBAPiEfh1iNW9quqYnDtQH+/I1Z9lS7Sw6ZXcsAACaW6WkOZc8rlBd2Qxp7AUonAAAfAanw6HpAwZp/tRpigkL01OrV+mVTR+r3O22OxoAAD5n1RlvWdb6Txx/1bKs7zf2OhROAACuICEqSo/dMEV3jUhS7vECzcxarNxjBWyhAgBAI1A4AQD4AsYYpfbqo+fSMtSvfax+t36dnl+Xo2KXy+5oAAD4NQonAACN1L5NuH5+/QT9dNx4HTh3VrOyM7X0wD5mOwEA+BxOuwMAANDSjEnoqkEd4/TWjjwt3LpFOQVHdV/SaCVERdkdDQAAv8IMJwAAVyEiJET3JI3So5On6HxVleYsW6J3du1QdW2t3dEAAPAbFE4AAK7BgNiOmp86TV/pl6j38nfroeVZyi8+Y3csAAD8AoUTAIBrFBIUpP8YNERPp6QpzOnUEyuX649bNslVXW13NAAAbEXhBADAS7pHx+iJ5Kn6zrARWn30sGYuXayNhcftjgUAgG0onAAAeJHDGGX06atn027UdTEx+vW6HP0mN0fnKivtjgYAQLOjcAIA4AOx4eGaPX6SfjxmnPLPnNHMrEwtO3SALVQAAAGFbVEAAPARY4zGd+uuIXHxWrR9m17fvEk5R4/onqRR6hLJFioAgNaPGU4AAHwsMjRU3x81Rg9OmqziykrNyV6q9/bsUo3HY3c0AAB8isIJAEAzGRIXrwWp05TRp6/+vmunHl6epf1ni+2OBQCAz1A4AQBoRqFOp2YMGaZfpaQqyBj9cuUyvbFtiy7UsIUKAKD1oXACAGCDnjHt9OSUVM0YPEzLDx3UrKxMbT15wu5YAAB4FYUTAACbBDkcuqlffy1Im6YukVFakLNav9+Qq7KqC3ZHAwDAKyicAADYLC6ireZMuEE/GDVG206d0ANLF+ujI4fZQgUA0OJROAEA8APGGE26roeeT79Rw+I76+WNGzRvzSoVVZTbHQ0AgKtG4QQAwI9EhYbpx2PGafaESTpRfl6zs5bog717VMsWKgCAFojCCQCAHxreqbOeTctQSs9eemtHnh5dka1DJefsjgUAQJNQOAEA8FNhzmB9Z9gIzU2eqlrL0iPLs/U/27epqqbG7mgAADQKhRMAAD/Xu30HPZWSpm8OHKzM/fs0O3uJthedsjsWAABfiMIJAEAL4HQ49LXEAXomdZo6hIdr3upV+sPG9TpfVWV3NAAAPheFEwCAFqRzZKQenZSse5JGaWNhoWZlZSqn4AhbqAAA/BKFEwCAFsYYo5SevfRcWoYSYzvqpQ3rtWDtap1xueyOBgDAZSicAAC0UO3atNFPx43Xz6+foKOlpZqVtViL9++Vh9lOAICfcNodAAAAXJtRXRI0qGOc3tqRp79s26qcgqO6L2mUukfH2B0NABDgmOEEAKAVaBMcrLtGjNQvk1NUVVOjh5Zn6e2d2+WurbU7GgAggFE4AQBoRfp3iNXTKWn6euJAfbB3j+ZkL9Hu00V2xwIABCgKJwAArUxwUJBuGTBI86dOU2RoqJ78aKVe27xRFW633dEAAAGGwgkAQCuVEBWlxyen6M7hSVp77KhmZmVqw/FjbKECAGg2FE4AAFoxY4zSevfRs6kZ6t2uvX6bu1a/zs3R2Uq2UAEA+B6FEwCAANAhPFwPXD9B94+9XvvPntXMrExlHdjPbCcAwKfYFgUAgABhjNHYrt00KC5eb+3Ypj9t3aycgiO6N2m0EqKi7I4HAGiFmOEEACDAtA0J0b1Jo/XIDckqq6rSnGVL9O7unapmCxUAgJdROAEACFADO8Zp3tR0fblvf/1zzy49tDxLe4vP2B0LANCKUDgBAAhgoU6nbh08VE+npCnU6dQTq5brT1s3q7K62u5oAIBWgMIJAADUPTpGc5On6rYhw/XRkUOalZWpTSeO2x0LANDCUTgBAIAkyWGMvtS3nxakZahbdLSeX5ujF9avVcmFSrujAQBaKAonAAC4TMfwCM0eP0k/GjNWu04XaebSTK08fIgtVAAATca2KAAA4FOMMZrQ7ToNieukN/O26pVNH2vN0SO6e8RIdY6MtDseAKCFYIYTAAB8rqjQUP1w9FjNmXiDTrsqNGfZEr2fv1s1Ho/d0QAALQCFEwAAfKGh8Z20IHWa0nv31d92btcjy7N04Gyx3bEAtFI1HkvRYRGqqpVKLlTzS64WzPB5DP9kjImSVFpaWqqoqCi74wAA0ODgubN6bfNGHSktUUaffvqPgYMV6uRTOgCuTVlVtQ6VuHSyokoV1bWfej4iOEidIkLVMyZcUaHBNiS0T1lZmaKjoyUp2rKssuYe3xiTJGmTpJGWZW1u0rkUTv9E4QQA+LNaj0cf7t+rd3btUHRYmO4eMUrD4jvZHQtAC1ThrtGWU6UqcrllJF2pnVx8Pi48RCPioxUREhi/7GrJhZNbagEAQJMFORz6Sr9ELUjNUHxEWz2z5iO99HGuyqou2B0NQAtyqMSlrMOnddrllnTlsnnp86ddbmUdPq1DJS6f5sO1o3ACAICrFt+2rR6aOFnfGzlaW0+e0MylmVp95DBbqAD4QnuKz2vLqVJ5rC8ump9kSfJY0pZTpdpTfN4X8eAlFE4AAHBNjDGa3KOnnk+/UUPjO+kPGzdofs5HKqootzsaAD91qMSlXWe889+IXWfKdZiZTr9F4QQAAF4RFRqmH48Zp1njJ6rwfJlmZy3Rh/vyVcvqkkBAmzt3rgYOHChP/X8LKtw12lZU+rmv37F+rW5J7KId69c2eoytRaWqcNfo3LlziomJ0XvvvXfNueEdLBrkp1g0CADQklVWV+tvu7Zr6YH96hHTTvcmjVKPmHZ2xwLQzAoLC9WvXz8tXLhQ3/jGNyRJawqKddrl/tzbaF3l53Vs/1517dNP4W0jGzWOkdQxPEQTu3XQE088oTfffFM7d+5USEiId96IzVg0CAAA4BJtgoP13WFJenzyVFV7avXw8my9tSNPVTU1dkcD0IxeeOEFxcTEaPr06ZLqtj4pukLZlKTwtpHqN3xko8umVPeZziKXW2VV1fr+97+vw4cP65133rm28PAKCicAAPCZvh066OmUdH1jwCB9uC9fv1i2RDuLTtkdC0AzcLvdev311zVjxgw5HHW141CJS0ve+rN+/tVU3ZbUR7cl9dV/3ThJi349r+G8z7ql9sU5P9VtSX104sgh/eq+b+u2pD66L3mkFs5/QtXuKkl1s5yHSlyKj49XWlqaXn755WZ9v/hsFE4AAOBTTodDXx8wUM+kTlP7sDZ6avUq/b9NG1TudtsdDYAPrV+/XsXFxZoyZUrDsb/+9a965YkHNWj0OM1+8XX94qU/6ivfvU8XKr940Z+a6hrN/+EdGjpuon7x0p+UMv1b+uDPr+ifr74kqW6W82RFXflMTk5WTk6OSkpKfPLe0HiBsVMqAACwXZfIKD16wxQtP3xQ/7M9T1tOnNB3h43QuK7dZIyxOx4AL1u3bp0kKSkpSZJU7fFo28frFREVrbsf+VXD64ZeP6lR16upduvW/5qp8RlfaTjvwM48rf7gn/qPH/1cklRRXasaj0dJSUnyeDzKzc1VRkaGN98WmojCCQAAmo0xRlN79lZSpy5auG2zXtyQq9VHj+iuESMVGx5udzwAXlRYWChjjGJjYyVJFe5a9Rk6QosX/Um//vkPNPGmryoxabSi2nVo1PWMMRo1Je2yY9f1G6Dt61br4M68hmM5Z9upuLhYkrR27VrFxcV56R3Zp7y8YQuZYcaYChsiDLjaEymcAACg2bVr00Y/GzdBG44f08KtmzUrK1O3Dhqi9N595GC2E2gVKisrFRwcrKCgIEmSx7KU/NVvyFNTo+y/L9KzP7lXlsejPkOG6z/vn61hEyZf8XqhbdooJDTssmOe2lpVu92adctnz2I++eSTevLJJ73zhvzDRzaPf76pJ1A4AQCAbcYkdNXguHi9tSNPb2zborUFR3Rv0mh1q1v+H0ALFhsbK7fbrYqKCkVERDT8Minllm8p5ZZv6YLLpV0bc/X2i8/p6e9/Vy9mrlFcQtcmjRHapo0k6dl3MxuOje7cTof37tYdd9yhp59+WtOmTfPem7JJeXm5Jk+eLEk3SLJjhlOSzluWta+pJ1E4AQCArcKDg3X3iJEa3627Xt+8UQ8tX6qb+w/QV/sPUEj9zAiAlicxMVGSdODAAQ0dOlRtQy7/8xwWHq6kG1JUU+3WMz+6SwX785tcOC/qNWhow/cT+sbr+KH9kqSbbrpJQ4cO/bzTWoyysoatN7fZsQ/ntaBwAgAAvzAgtqPmTU3Xe/m79a/83co9VqB7kkZpQGxHu6MBuArJycmSpNzcXA0dOlROh0OvPjZLjpBQJSaNVkzHeJWcKdI/X3lR4ZFR6jNk+DWPGREcJKfDodzcXHXo0EFDhgy55mvi2rAtCgAA8BvBQUH65sDBmjc1XRHBwXpy1Qq9vmWTXNXVdkcD0ETdunXTpEmT9P777zccmzBxoo7uy9cfn35Mc+/6lhbOe1yde/TSr978p6LbN27xoM9jJHWKCJVlWfrXv/6lGTNmsAK2HzCWZdmdAZ/BGBMlqbS0tFRRUVF2xwEAoNl5LEtZB/frrzu2q43TqTuGJ2nMVd5uB8Ae7777rm699VYdOXJECQkJKquqVvbhMz4bL7VHrD5e85HS09O1c+fOhtt6W7qysjJF1322Pbql3VJL4fRTFE4AAOqccbn0p62btOXECY1OSNAdw5LUrn6hEAD+zbIsjR8/XiNHjtTvf/97SdKagmKddrnlzRZiJHUMD9HEbh00ZcoU9enTR6+++qoXR7BXSy6c3FILAAD8Wmx4uGZeP1E/GXu98s+c0cys/9/ev8d5Xdf5///9NcPM4AAzoyIgSIpHPCuKx1REPLSHatlf215s7VO7aZ/dtm3b1Kyt1uygke3WbntorfagfqrdT33sV6kIkpZ4FjzgOUREUU7CjDAww8y8v3+ArKjgAPPyPQPX6+XSJef1fr9er8dc6HLJG8/3+/W8ObcumB9/aQ79X1EUueaaazJ69Oj09PQkSY4d2Zy+/qRrUWy47sqVK3PGGWfkK1/5St/egO1mhbOfssIJAG+0urMz1z/yYG5/9tmMHz48H5lwfEYP8/+TMNAsWNWeuUta++x6E0Y2Z7+Wxj67Xn8zkFc4BWc/JTgBYMseXbok18y9Pyva2zN1/OH53UPGZ1CND27BQPLEilfy2PLVO3ydw4YPy/g9h/bBRP2X4KTPCU4A2LqOrq78vycey8+eejJjmoblwmMn5qA9d+wpl8Dba8Gq9jy0tDWVSrbpO51FNnyM9pgRO/fK5qsEJ31OcAJA7zy7amWumXN/nl21MucccGD+4LAjs1tdXbXHAnppTWdX5i5pzdL2zhTZeni++vqIxvocO7I5Q+oHvT1DVpngpM8JTgDove6enkyf/3T+69F5GdZQnz8+5rgcu/foao8FbIO2jvVZsKo9L63pyJr13W94fUhdbUYNaci4lsY0Nexaf6kkOOlzghMAtt3SNavz/bkP5OElS3Ly2LH54FHHpnnw4GqPBWyj+xcvzmdunZH3jj88Hzjy6Aytr92lv6c9kINz1/1TAwB2OiOGDM2nTz09fzrxhDyyZEkunnFTbnt2gS1UYID58WOPZGHry7np6cdSX5tdOjYHOn9yAMBOpSiKnPaO/XL1OeflmFGj868P3Jev3nF7lqze8adhAuV7bNnS3Lv4hdTV1GRZe3tu/s1T1R6JHSA4AYCdUlPD4Hxs4on59DtPz5I1q3PpzJvzs6eeSPfGzeeB/umH8x7Juq71GVTUpLamyH8/Ni/t69dXeyy2k+AEAHZqR48cla9POS9T9j8wP5z3cD73y5l5ZuXL1R4LeBPPt7VmzkuLU6kknT3d6erpyfL29sx+bmG1R2M7eWhQP+WhQQDQ955Z+XL+9YH7sqitNe868OC877Aj0jBo19hWAQaCjq6u/Grhs1m1bl2umXN/fvvgg3Pg7nvmpH3GZs/GnX+/zS0ZyA8NEpz9lOAEgHJ09fTkxqefzI8ffzQtg3fLnxx7XI4aOaraYwGv8UpHRz7685/mkyefkomj96n2OFU3kIPTR2oBgF3KoJqavPuQQ/O1Kedmr8YhueqOX+Wf7rsnbR0d1R4NYKcjOAGAXdKoocPy16edkYuOm5i5Ly3OJTNuyh3PLbSFCkAfEpwAwC6rKIpM2m9crj77XTl8r5H5p/vuydfu/HWWrVlT7dEAdgqCEwDY5TUPHpy/OPHkXHzKO/N8a2sumXFzbnz6yfRY7QTYIR7LBgCw0YS9R+fQ4XvlR48+kusfeSh3Pr8oFx57fPZtaan2aAADkhVOAIDX2K2uLh86ZkL+5ozJ6ejqyl//ckZ+NO/hdHR1VXs0gAFHcAIAvImD9xyeK886J1PHH5afP/1kPnPrLXls2dJqjwUwoAhOAIAtGFRTk6mHHp6rzjo3zYMH58u/ui3XzLkvqzs7qz0awIAgOAEA3sKYpqZ84fQz88fHTshdzy/KxTNuyj3PL7KFCsBbEJwAAL1QFEWm7H9grj77vBy8x/B865678o27ZmdFe3u1RwPotwQnAMA22GO3xvzVyafmL086JfNXvpxLZt6cGfN/Y7UT4E3YFgUAYDucMGafHL7XiPxg3sP5twfn5I5FC3PRhIkZ09RU7dEA+g0rnAAA22lIfX0+MuH4fP6MM/NKR0cuu3V6/u9j87K+u7vaowH0C4ITAGAHHTp8r1w15dz87sHjc8OTj+ezs2bkyRXLqz0WQNUJTgCAPlBfW5s/OPzIfHXy2Rk8aFC+eNusfH/uA1m7fn21RwOoGsEJANCH3tHcki9OOisfPPrY/Pq5Z3PxjJtz/+IXqj0WQFUITgCAPlZTcHdOKQAAIABJREFUFDnvwIPy9bPflXc0N+dv75qdb959Z1auXVvt0QDeVoITAKAkwxsbc+kpp+XPTzgpTyxflotn3JxZC56xhQqwy7AtCgBAiYqiyClj35EjR4zM9Y88lO/OuT93LFqYC489PnsPG1bt8QBKZYUTAOBtMKyhIf/7+BPymdPOyIr29nx65vTc8MTj6erpqfZoAKURnAAAb6MjR4zMtCnn5rwDD8p/PzYvfz1rRua/vKLaYwGUQnACALzNGgYNyvlHHp0vT56S2qLIF267Nf/50Nys67KFCrBzEZwAAFUyrmX3fOnMKTn/iKMza8EzuWTGzXnwpRerPRZAnxGcAABVVFtTk98++JBMO/vcjB7WlGmzf51v33t32jrWVXs0gB0mOAEA+oERQ4bmslNPz58ef0IeWvJiPnXLTfnVwmdtoQIMaIITAKCfKIoip+27X75xzrtyzKi98y/335sr77g9S9esrvZoANtFcAIA9DNNDYPzsYkn5dJTT8tLq1fn0hnT8/Onnki3LVSAAUZwAgD0U8eM2jvTzj43k8ftnx/Mezif/+XMLFi1stpjAfSa4AQA6McGD6rLB48+NldMOivdlUo+N2tm/s8jD6Wjq6vaowG8JcEJADAAHLDHnvnK5LPzvsOOyM2/eTqXzpyeeUuXVHssgK0SnAAAA8Sgmpq8d/yh+dqUczO8sTFf/fXt+Zf7780rHR3VHg3gTQlOAIABZu9hw/K50yblwuOOz/2LX8glM27OnYues4UK0O8ITgCAAagoipy53/65+pzzcuhee+Xb996daXf+Osvb26s9GsAmghMAYABrGbxbPnHiKfnUKafmudbWXDLjptz8m6fTY7UT6AcGVXsAAAB23HF7j8lhw0fkB/MezrUPz83sRQtz4YTj847mlmqPBuzCrHACAOwkdquryx8fe1z+5ozJWdfVlc/OmpEfPfpIOru7qz0asIsSnAAAO5mD9xyer04+O783/rD8/KknctnM6Xl8+bJqjwXsggQnAMBOqK62Nr9/6OG56qxzM6yhIV+6/Zf57pz7s6azs9qjAbsQwQkAsBMb09SUy8+YnA8fMyF3Pv9cLplxc+594flqjwXsIgQnAMBOriiKnH3Agfn6lPOy/+575Jt335m/vWt2Xl5rCxWgXIITAGAXsWdjYz518qn5xIkn5+mXV+TiGTdn5jO/ScUWKkBJbIsCALALKYoiJ+4zNoePGJkfzHso3587J7MXPZePHHt8xjQ1VXs8YCdjhRMAYBc0tL4+F06YmM+dPimt69blslun5yePP5qunp5qjwbsRAQnAMAu7LC9RuTKs87J7xx0SH7yxGP5zK235KkVy6s9FrCTEJwAALu4hkGD8v4jjspXJ5+dhkGD8sXbZ+XfHpyTtevXV3s0YIATnAAAJEne0dySKyadlQ8ceUx+tXBBLplxcx548YVqjwUMYIITAIBNaooiv3XQwZl29nkZ29ycb9w5O9+6586sWre22qMBA5DgBADgDfZqHJJLTzktHzvhxDy2bGkuvuXm3PbsAluoANvEtigAALypoihy6th9c+SIUbnu4Qfzrw/clzueW5g/Ofa47D1sWLXHAwYAK5wAAGxVU0ND/mziibnsnadnWfuaXHbr9Pz0ycdtoQK8JcEJAECvHDVyVKZNOTfnHHBQ/uvRR/K5WTMy/+UV1R4L6McEJwAAvdYwaFA+cOTR+dKZU1JTFPnCbbfm2ocfTEdXV7VHA/ohwQkAwDbbf/c98qUzp+QPjzgqM5/5TS6ZeXMeWvJStccC+hnBCQDAdqmtqcnvHjw+06acl5FDhuZrd/wq/3jfPWnr6Kj2aEA/ITgBANghI4cOzWffeUY+etzEPPjS4lx8y0359XPP2kIFEJwAAOy4oihyxn7j8o1z3pWjRo7KP993b742+1dZumZ1tUcDqkhwAgDQZ5oaBufPTzgpl556Wl54pS2XzpieG59+Mt22UIFdkuAEAKDPHTNq70ybcl7OHDcu1z/yUL5w261ZuGpVtccC3maCEwCAUuxWV5f/dfSEfHHSWVnf053PzpqRH8572BYqsAsRnAAAlOrAPfbMVyefk/cddnhufPqpXHbrLXl06ZJqjwW8DQQnAAClG1RTk/eOPyxXTTknuw8enK/8+vZ854F7s7qzs9qjASUSnAAAvG1GD2vK508/M38y4bjc+8ILufiWm3L384tsoQI7KcEJAMDbqiiKnDXugFx99nk5ZPjw/P09d+Xqu+7I8vb2ao8G9DHBCQBAVey+22755Emn5pMnn5IFK1fmkhk3Z/r8p9NjtRN2GoOqPQAAALu2iaP3yeF7jcwP5z2c/3hwbmY/tzAXHTcx+zQ1V3s0YAdZ4QQAoOoa6+ryx8cely+ccWba16/PZ269Jf/92Lys7+6u9mjADhCcAAD0G+OH75Urzzon7z7k0Pz/n3w8n7n1ljyxfFm1xwK2k+AEAKBfqautzfsOOyJXnnVOhtTX54rbf5nvzX0g7evXV3s0YBsJTgAA+qV9mppz+RmT86Fjjs0dzy3MxbfclHtfeL7aY8EuoyiKDxZFsaIoiobXHf9xURT/2ZtrCE4AAPqtoihyzgEH5etnn5f9d98j37z7zvzd3bOzcu3aao8Gu4L/TlKb5N2vHiiKYniS30nyb725gOAEAKDfG97YmE+dfGr+4sST8+Ty5bl4xs25dcH8VGyhAqWpVCprk/yfJB9+zeEPJHk+yW29uYZtUQAAGBCKoshJ+4zNESNG5vpHHsz35jyQ2c8tzEcmHJ/Rw5qqPR7srK5Jcl9RFGMqlcoL2RCf/17p5d/2WOEEAGBAGVpfn48ed0L++rQz8vK6tfn0zOn5f48/lq6enmqPBjudSqUyN8lDST5YFMWEJEcm+ffeni84AQAYkA4fMTJfO+vc/PZBh+T/Pv5oPjvrljy9YkW1x4Kd0XezYWXzj5PMrFQqi3p7ouAEAGDAahg0KH94xFH5yuQpqaupzeW335r/eGhO1tpCBfrS9UnGJLkwyfe35UTBCQDAgLdfy+65YtJZ+cCRR+eXCxbk0pk3Z+6Li6s9FuwUKpVKW5IfJ1md5IZtOVdwAgCwU6itqclvHXRIpp19bsYMa8rX77wj/3DvXWnrWFft0WBnsHeS6yuVSse2nCQ4AQDYqYwYMjSfPvX0/OnEE/LIkiX51C035fZnF9hCBbZDURR7FEXxh0kmJ/nHbT3ftigAAOx0iqLIae/YL0ePHJVrH34o33ngvtyxaGE+cuzxGTl0aLXHg4FkTpLdk3y6Uqk8ua0nW+EEAGCn1dQwOB+beGI+/c7Ts2TN6nx65vT87Kkn0m0LFeiVSqWyX6VSaa5UKldvz/mCEwCAnd7RI0fl61POy1n7H5Afzns4n//lzCxYtbLaY8FOT3ACALBLaBg0KBccdUy+dOaU9FQq+dysGbn+kYfS0dVV7dFgpyU4AQDYpey/+x758uSz8/7Dj8wt85/OpTOn5+ElL1V7LNgpCU4AAHY5g2pq8u5DDs3XppybvRqH5Ko7fpV/uu+evNKxTTs+AG9BcAIAsMsaNXRY/vq0M3LRcRMz96XFuXjGTZm9aKEtVKCPCE4AAHZpRVFk0n7jcvXZ78rhe43MP957T75256+zrH1NtUeDfqMoiouKopi0recJTgAASNI8eHD+4sSTc/Ep78zzra25dMbNufHpp9JjtZNdXFEURyf5TpJfFkVxwLacKzgBAOA1Juw9Ol8/+7ycse+4XP/Ig/nCbbfmudZV1R4LqukLSVo3/vN7t+VEwQkAAK+zW11dPnTMhPzNGZPT0dWVz86akR/Ne9gWKuxyNq5uTk3ydxsPXVQURa87UnACAMAWHLzn8Fx51jmZOv6w/PzpJ/OZW2/JY8uWVnsseDt9Icn8JDdu/PngJO/p7cmCEwAAtmJQTU2mHnp4rppybpoHD86Xf3VbrplzX1Z3dlZ7NCjVa1Y3v5yke+Ph+5L8TW9XOQUnAAD0wphhTfnC6WfmT449Lnc9vygXz7gp9zy/yBYq7Mz+KBtWN697zbHvJDk6yZG9uYDgBACAXiqKImftf0CuPvu8HLLn8HzrnrvyjbtmZ0V7e7VHgzJcleS0SqXy2i8vz01yWJJHenMBwQkAANtoj90a88mTTs1fnnRKnln5ci6ZeXNmzP+N1U52KpVKZUWlUnnxTY4/XqlUenpzjUF9PxYAAOwaThizTw7fa0R+MO/h/NuDc3LHooW5aMLEjGlqqvZo0C9Y4QQAgB0wpL4+H5lwfD5/xplZ3dmZy26dnv/72Lys7+5+65NhJyc4AQCgDxw6fK9cedY5+d2Dx+eGJx/PZ2fNyJMrlld7LKgqwQkAAH2kvrY2f3D4kfnq5LMzeNCgfPG2Wfn+3Aeydv36ao8GVSE4AQCgj72juSVfnHRWPnj0sfn1cwtz8Yyb88CLL1R7LHjbCU4AAChBTVHkvAMPytfPPi/7NrfkG3fOzjfvvjOr1q2t9mjwthGcAABQouGNjbnklHfm4yeclCeWL8vFt9ycWQuesYUKuwTbogAAQMmKosjJY9+RI0eOyvWPPJjvzrk/sxctzEeOPT57DxtW7fGgNFY4AQDgbTK0vj4fPe6EfPa0M7K8vT2fnjk9NzzxeLp6eqo9GpRCcAIAwNvsiBEjM23KuTnvwIPy34/Ny1/PmpH5L6+o9ljQ5wQnAABUQcOgQTn/yKPz5clTUlsU+cJtt+Y/H5qbdV22UGHnITgBAKCKxrXsni+dOSXnH3F0Zi14JpfOmJ4HX3qx2mNBnxCcAABQZbU1Nfntgw/JtLPPzd7DhmXa7F/n2/fenbaOddUeDXaI4AQAgH5ixJChuezU0/Onx5+Qh5a8mItvuTm/XvisLVQYsAQnAAD0I0VR5LR998s3znlXjh41Kv98/725avavsnTN6mqPBttMcAIAQD/U1DA4H5t4Ui499bS8+MoruXTG9Pz8qSfSbQsVBhDBCQAA/dgxo/bOtLPPzeRx++cH8x7O5385MwtWraz2WNArghMAAPq5wYPq8sGjj80Vk85Kd6WSz82amf/zyEPp6Oqq9miwVYITAAAGiAP22DNfmXx23nfYEbn5N0/n0pnTM2/pkmqPBVskOAEAYAAZVFOT944/NF+bcm6GNzbmq7++Pf9y/715paOj2qPBGwhOAAAYgPYeNiyfO21SLjzu+Ny/+IVcMuPm3LnoOVuo0K8ITgAAGKCKosiZ++2fq885L4futVe+fe/dmXbnr7O8vb3ao0ESwQkAAANey+Dd8okTT8mnTjk1z7W25pIZN+Xm3zydHqudVNmgag8AAAD0jeP2HpPDho/ID+Y9nGsfnpvZixbmwgnH5x3NLdUejV2UFU4AANiJ7FZXlz8+9rj8zRmTs66rK5+dNSM/evSRdHZ3V3s0dkGCEwAAdkIH7zk8X518dn5v/GH5+VNP5LKZ0/P48mXVHotdjOAEAICdVF1tbX7/0MNz1VnnZlhDQ750+y/z3Tn3Z01nZ7VHYxchOAEAYCc3pqkpl58xOR8+ZkLufP65XDLj5tz7wvPVHotdgOAEAIBdQFEUOfuAA/P1KeflgD32yDfvvjN/d/fsrFy7ttqjsRMTnAAAsAvZs7Exf3XSqfnLk07JUytW5FMzbsrMZ36Tii1UKIFtUQAAYBdTFEVOGLNPDttrRH447+F8f+6czF70XD4y4fiMGdZU7fHYiVjhBACAXdTQ+vp8ZMLx+fzpk9K6bl0umzk9P3n80XT19FR7NHYSghMAAHZxh+41IldNOTe/c9Ah+ckTj+Uzt96Sp1Ysr/ZY7AQEJwAAkPra2rz/iKPy1clnp2HQoHzx9ln59wfnZO369dUejQFMcAIAAJu8o7klV0w6K3901DG5feGCXDLj5sx5cXG1x2KAEpwAAMBmaooi7zrw4Ew7+7yMbW7O1XfekW/dc2da162r9mgMMIITAAB4U3s1Dsmlp5yWj51wYh5ftiwXz7gptz27wBYq9JptUQAAgC0qiiKnjt03R40YleseeTD/+sB9ueO5hfnIhOMyauiwao9HP2eFEwAAeEvDGhryp8efmMveeXqWta/Jp2dOz0+ffNwWKmyV4AQAAHrtqJGjMm3KuTn3gIPyX48+ks/NmpFnVr5c7bHopwQnAACwTRoGDcr5Rx6dL08+OzVFkc//cmauffjBdHR1VXs0+hnBCQAAbJdxLbvnS2dOyR8ecVRmPvObXDLz5jy05KXN3rM9EdrVU0nz4CHp6E5WrVvvY7sDWOEJU/1TURRNSVpbW1vT1NRU7XEAAGCrlqxene/OvT+PLl2aU9+xby446pisWNuez956Sy46bmLO3G//rZ7f1rE+C1a156U1HVmzvvsNrw+pq82oIQ0Z19KYpoa6sn6NfqmtrS3Nzc1J0lypVNqqMUNRFBOSPJDkuEqlMqfX5wnO/klwAgAw0FQqlfxq4bO57pEHk0rS0d2dR5ctzfjhw/PPv/2eNDU0vOGcNZ1dmbukNUvbO1Mk2VqdvPr6iMb6HDuyOUPqd41NNwZycPpILQAA0CeKosgZ+43LN855VwbX1eW+xc+npijyzMqV+dG8h9/w/gWr2jPj2WVZ1t6ZZOux+drXl7V3Zsazy7JgVXvf/gL0OcEJAAD0qXVdXVn8SluG1tenq6c7bR0d+Y+H5+apFcs3veeJFa9k7pLW9FTeOjRfr5Kkp5LMXdKaJ1a80qez07cEJwAA0KdefOWV9FQq2WO3xuw+eLc0DKrNivb2fG7WzCQbVjYfW766T+712PLVedZKZ7+1a3zoGQAAKN0VV1yRH/7wh5k3b17+6//3h1m1bl1Wrlubl9euzRPLl6WpoSFrOrvy0NLWXl/zf08+IYefcEo+ftU3t/ieB5e2Zq/G+jd8p/OCCy7IK6+8khtuuGG7fyd2jOAEAAB22OLFizNt2rT8+7//e2pqalKTZK8hQ7LXkCFJkpP2GZskuWPRivT1c0srGz9e+86xe252/PLLL8/48eMza9asTJ48uW9vSq/4SC0AALDDvvWtb6WlpSVTp07d4ntWtq/LC6te2ebvbL6VSpKl7Z1p61i/2fEDDjgg5513Xq666qo+viO9JTgBAIAd0tnZme9973s5//zzU1OzITGeffbZFEWRadOm5ctf/nLGjRuXvZqGZt49dyZJ2le/kv/42hfzp2edmPcfuW8uPH1Cvv/VL2Rd+9a/jznrJz/K748fnaXPL9rs+KP33JnmwfW57bbbNjt+wQUXZObMmZk/f37f/cL0mo/UAgAAO+See+7JihUrcuaZZ77htb//+7/PwQcfnKuvvjpPrenJ7mP2Tcfa9nzhgqlZ8dKLmfrRv8i+hxyaRU8/mR/+w9V57qkn8jf/9qMURbFNM2xp1XTSpEmpVCq58cYb8/GPf3w7fjt2hOAEAAB2yF133ZUkmTBhwhteGzx4cKZPn57U1uZnTy9JkvzkX/8hC598PFf+6Bc58MijkyRHnXxa9hi5d67+xIWZ++tfZsLp2/edy+6ens1+HjFiRMaMGZPZs2cLzioQnAAAwA5ZvHhxiqLI8OHD3/Dau9/97tTV1WXVuv/5fuUDt83M2IPGZ9yhh6e7q2vT8WPeOSlFUeTRe+/sdXC+tGhh2ttas/jZZ5Ikjzz+ZHZvadnsPUOHDs2TTz6ZOXPmbM+vV3WrV2/aQubooijWVGmMQ7fnJMEJAADskLVr16auri61tbVveG3vvfdOkvS85tG0q1Ysz0sLF+QPjnjHm16vbeXLvbpv28oV+fi5p6bnNauan/zzP9vi+4877rheXbcf+1W1B0jyyra8WXACAAA7ZPjw4ens7MyaNWsyZOM2KK969buYNa/5TmZTyx6pbxicj33lb9/0ek2777HFe9U3NCRJ1nd2ZMQ+Y/MP02enva01D9/561z7ja/k7779Tzn95BM3O2fq1KkZPXp0vv3tb2/X71dtq1evzhlnnJEkpyep1gpnkrxSqVSe3pYTBCcAALBDxo8fnySZP39+jjrqqDd9z9D6/1n9PO7MKfnJd/4+w3bfPSP3efNVzi0ZMWbDfp4Ln3o8Y/Y/MKPG7psk+fl/fjdJcuShh2z2XdKurq4sW7YsU6dOfdPvmA4EbW1tr/7jQ5VKpW1r7+1vBCcAALBDJk2alCS5++67txicg2pqMqSuNmvWd+d3Pnhh7r7lF/n8H/1efud/XZR9Dzk0lZ6eLH/xhTw4+1d594c/moOPfvM4PODIYzJ63AH5j2lXpLurK0ObW3LPjJvy+AP3Jklqazbf+fHhhx9Oe3v7mz5Bl/LZhxMAANghY8eOzWmnnZaf/vSnW33fqCENKZIMbmzMl6+7IWf+3vsz47+uy1c/+sF845P/O7+49vvZc+Tem1Yx30xtbW0+88//kTHjDsy/Xn5Z/v7Tf5G6+vpc+PmvvOn7b7jhhgwfPjznnHPOjvyKbKeiUtnSjjVUU1EUTUlaW1tb09TUVO1xAABgq3784x/n/e9/fxYuXJgxY8a86XvaOtZn5rPLS5thyn7D09RQt+nn7u7uHHjggTn//PPzla+8eZAOBG1tbWlubk6S5oH2kVornAAAwA6bOnVqJk6cmCuvvHKL72lqqMuIxvoUW3zH9imSjGis3yw2k+S6667L6tWrc8kll/TxHektwQkAAOywoihyzTXXZPTo0ZttU/J6x45sTtHHxVkUG677ej09Pbn++uvT8rp9OXn7+EhtP+UjtQAA7KwWrGrP3CWtfXa9CSObs19LY59dr7/xkVoAAIBeGtfSmMOGD+2Tax02fNhOHZsDnW1RAACAt934PYelobY2Dy1tTaWSbMvnLots+BjtMSN27pXNnYHgBAAAqmJcS2NGNNZn7pLWLG3vTJGth+err+/VWJ9jRzZnSL2c6e/8CQEAAFUzpH5Q3jl2z7R1rM+CVe15aU1H1qzvfuP76mozakhDxrU0vuFptPRfghMAAKi6poa6HD2yOUcnefGVV/LnN92YCydMzEn7jM3Q+toMqvH4mYHInxoAANCv/OypJ/Loshfzo0fnprlhkNgcwPzJAQAA/cbKtWvzi6efTCrJUytWZO5LL1Z7JHaA4AQAAPqNnz31RJa3t6ehtjbre7rzg3kPp1LZlmfY0p8ITgAAoF9oXbcuNzzxWDq7u7O+pyc9lUrmvrg4D1rlHLA8NAgAAOgX1vf05IA99sjwxiGZ8+LiHLTHnhneOCQ1RVHt0dhOheXp/qkoiqYkra2trWlqaqr2OAAA8LZ5paMjH/35T/PJk0/JxNH7VHucqmtra0tzc3OSNFcqlbZqz7MtfKQWAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIA3KIpir6IoXiqK4rOvOXZiURSdRVGc05trDCpvPAAAAAaqSqWyrCiKP05yQ1EUtyR5Isl1Sf6pUqnc0ptrCE4AAADeVKVSubEoimuSXJ/kviTrklzW2/N9pBYAAICtuTgbFiv/IMkHKpXKut6eKDgBAADYmv2TjM6Gftx3W070kVoAAADeVFEU9dnwcdofZcN3OL9XFMWRlUplSW/Ot8IJAADAlnwlSXOSv0gyLcnjSb7X25MFJwAAAG9QFMWkJH+Z5IJKpdJWqVR6klyQ5J1FUfxpb67hI7UAAAC8QaVSuS1J3euOPZekpbfXsMIJAABAKQQnAAAApRCcAAAAlEJwAgAAUArBCQAAQCkEJwAAAKUQnAAAAJRCcAIAAFAKwQkAAMBWFUUxoiiKUdt6nuAEAABgi4qiaE7yRJLFRVHsvy3nCk4AAAC25uNJdk9SJDliW04UnAAAALypjaubf5XkJxsPfWRbzhecAAAAbMnHkzQm+c7Gn3+rKIoDe3uy4AQAAOANXrO6+Z0kyzceXpnkc729huAEAADgzXw0G1Y3v/aaY/+W5I+KohjbmwsMKmMqAAAABrxHkny0Uqksfs2WKP9v43+v680FBCcAAABvUKlUbnqTwx2VSuXS3l7DR2oBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAA6Fe6eippHjwkHd3JqnXr09XTU+2R2E6Dqj0AAABAW8f6LFjVnpfWdGTN+u6cfeCELG1PZi1cniTSUsHCAAAQGklEQVQZUlebUUMaMq6lMU0NdVWelt4SnAAAQNWs6ezK3CWtWdremSJJZUvvW9+dZ1a1Z/6q9oxorM+xI5szpF7O9Hc+UgsAAFTFglXtmfHssixr70yy5dh81auvL2vvzIxnl2XBqvZS52PH+SsBAADgbffEilfy2PLV23VuJUmlksxd0pqO7u6M33NY3w5Hn7HCCQAAvK0WrGrf7th8vceWr86zVjr7LcEJAACU4oorrshhhx2Wntc8ZXZNZ1ceWtrap/d5cGlr1nR2JUkuuOCCvPe97+3T67P9BCcAANDnFi9enGnTpuWKK65ITc3/ZMfcJa2pvNWXNbfRqx+vTZLLL788v/jFLzJr1qy+vQnbRXACAAB97lvf+lZaWloyderUTcfaOtZnaXvnWz4caOnzi/L740dn3j139upelSRL2zvT1rE+BxxwQM4777xcddVV2z88fUZwAgAAfaqzszPf+973cv7552+2urlgVXuKku5ZbLx+suFjtTNnzsz8+fNLuhu9JTgBAIA+dc8992TFihU588wzNzv+0pqOt1zd3F6VjddPkkmTJqVSqeTGG28s6W70luAEAAD61F133ZUkmTBhwqZj63t6smZ995u+v6enJ91dXZv+09PTvfF492bHu7vf/PxXrVnfna6enowYMSJjxozJ7Nmz++g3YnvZhxMAAOhTixcvTlEUGT58+KZjazq3HIv/+Nm/ym03/Ncbjn/xw+/f7OfDJ56cK6798WbHXlq0MO1t//PU29kv755hDYMydOjQPPnkk5kzZ872/hr9xurVm7aQObooijVVGuPQ7TlJcAIAAH1q7dq1qaurS21t7aZjPVt5NO37//xTedcHPrzp55XLluSqP/tQPnr517L/4UdtOr7bkCGbnde2ckU+fu6pm2278nrHHXfc9vwK/dWvqj1Akle25c2CEwAA6FPDhw9PZ2dn1qxZkyEbI7Gm2PLjgkbsMzYj9hm76eelzy9Kkowed0AOPPLoLZ7XtPue+Yfpszdb4Zy494YVzqlTp2b06NH59re/vaO/TtWtXr06Z5xxRpKcnqRaK5xJ8kqlUnl6W04QnAAAQJ8aP358kmT+/Pk56qgNK5RD62u3dsp2GzV2381+PvWgkUlPT5YtW5apU6du9j3Sgaqtre3Vf3yoUqm0be29/Y2HBgEAAH1q0qRJSZK7775707FBNTUZUldOdL5qSF1tBtXU5OGHH057e/sbnpLL209wAgAAfWrs2LE57bTT8tOf/nSz46OGNJS6D+eoIQ1JkhtuuCHDhw/POeecU9Ld6C3BCQAA9LlPfOITmT59el544YVNx8a1NPZqH84R+4zNj59YnCNOPKXX96tsvH53d3euvfbaXHTRRWloaNj2welTghMAAOhzU6dOzcSJE3PllVduOtbUUJcRjfV9vspZJBnRWJ+mhrpcd911Wb16dS655JI+vgvbQ3ACAAB9riiKXHPNNRk9evRm25YcO7I5W3lg7Xbea8N1k6SnpyfXX399Wlpa+vYmbJeispX9cKieoiiakrS2tramqamp2uMAAECfWbCqPXOXtL71G3tpwsjm7NfS2GfX62/a2trS3NycJM2eUgsAALAV41oac9jwoX1yrcOGD9upY3Ogsw8nAADwthu/57A01NbmoaWtqVTSq4cJvarIho/RHjNi517Z3BkITgAAoCrGtTRmRGN95i5pzdL2zhTZeni++vpejfU5dmRzhtTLmf7OnxAAAFA1Q+oH5Z1j90xbx/osWNWel9Z0ZM367je+r642o4Y0ZFxLY5oa6qowKdtDcAIAAFXX1FCXo0c25+gkXT09Wd3ZnZ5KJTVFkaH1tRlU4/EzA5HgBAAA+pVBNTVpGSwwdwb+FAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFIITgAAAEohOAEAACiF4AQAAKAUghMAAIBSCE4AAABKITgBAAAoheAEAACgFIITAACAUghOAAAASjGo2gPA1nT19GR1Z3d6KpXUFEWG1tdmUI2/JwEAgIFAcNLvtHWsz4JV7XlpTUfWrO9+w+tD6mozakhDxrU0pqmhrgoTAgAAvSE46TfWdHZl7pLWLG3vTJGksqX3re/OM6vaM39Ve0Y01ufYkc0ZUu9/ygAA0N/4bCL9woJV7Znx7LIsa+9MsuXYfNWrry9r78yMZ5dlwar2UucDAAC2nWUhqu6JFa/kseWrt+vcSpJKJZm7pDUd3d0Zv+ewvh0OAADYblY4qaoFq9q3OzZf77Hlq/OslU4AAOg3BCdviyuuuCKHHXZYenp6Nh1b09mVh5a29ul9HlzamjWdXUmSCy64IO9973v79PoAAEDvCU5Kt3jx4kybNi1XXHFFal6zpcncJa2pvNWXNbfRqx+vTZLLL788v/jFLzJr1qy+vQkAANArgpPSfetb30pLS0umTp266Vhbx/osbe98y4cDLX1+UX5//OjMu+fOXt2rkmRpe2faOtbngAMOyHnnnZerrrpq+4cHAAC2m+Dchd1xxx153/vel9tvv720e3R2duZ73/tezj///M1WNxesak9R0j2LjddPNnysdubMmZk/f35JdwMAALZEcO7CRo0ald/85jeZNGlSJk+eXEp43nPPPVmxYkXOPPPMzY6/tKbjLVc3t1dl4/WTZNKkSalUKrnxxhtLuhsAALAlgnMXduCBB2bOnDm54YYbsnLlylLC86677kqSTJgwYdOx9T09WbO++03f39PTk+6urk3/6enp3ni8e7Pj3d1vfv6r1qzvTldPT0aMGJExY8Zk9uzZffQbAQAAvVX6PpxFURyUxOaI225Ikjz44IMZOnRoqTcaO3Zsvvvd7+bGG2/MFVdckUmTJuW73/1u/uRP/mSHr7148eIURZHhw4dvOramc8ux+I+f/avcdsN/veH4Fz/8/s1+Pnziybni2h9v9d6rO7vTMrgmI0aMyAsvvLCNkwMAADuq1ODcGJtPlXmPnd0ZZ5xRlftedNFFec973rNZKG6PtWvXpq6uLrW1tZuO9Wzl0bTv//NP5V0f+PCmn1cuW5Kr/uxD+ejlX8v+hx+16fhuQ4a85b1fvc/gwYOzdu3a7RkfAADYAWWvcL66svlHSR4v+V47myFJfnX77beXtsLZ0dGR66+/Ptddd13a29vze7/3e/nQhz6UkSNHpqWlZYdjM0mGDx+ezs7OrFmzJkM2RmJNseXHBY3YZ2xG7DN2089Ln1+UJBk97oAceOTR23TvV+/z8ssvZ7/99tvGyQEAgB1V+kdqN3q8UqnMeZvutVMoiqIpSY455pg0NTWVco8f/ehHueaaa3LhhRfmsssuyz777NPn9xg/fnySZP78+TnqqA0rlEPra7d2Sp8ZWl+brq6uLFq0KL/1W7/1ttwTAAD4H29XcNIPve9978t73vOeDB48uLR7TJo0KUly9913bwrOQTU1GVJXu8UHB/WFIXW1GVRTkzkPPpj29vY3PCUXAAAon6fU7sJqampKjc1kwwOJTjvttPz0pz/d7PioIQ2l7sM5akhDkuSGG27I8OHDc84555R0NwAAYEsEJ6X7xCc+kenTp2/2pNhxLY292odzxD5j8+MnFueIE0/p9f0qG6/f3d2da6+9NhdddFEaGhq2fXAAAGCHCE5KN3Xq1EycODFXXnnlpmNNDXUZ0Vjf56ucRZIRjfVpaqjLddddl9WrV+eSSy7p47sAAAC9ITgpXVEUueaaazJ69Oj09PRsOn7syOZs5YG123mvDddNkp6enlx//fVpaWnp25sAAAC9UlS2sifiDl+8KCYkeSDJcZ5Su202PqW2tbW1tbSn1PYHC1a1Z+6S1j673oSRzdmvpbHPrgcAANXW1taW5ubmJGmuVCpt1Z5nW1jhpKrGtTTmsOF9s8/oYcOHiU0AAOhHbItC1Y3fc1gaamvz0NLWVCrp1cOEXlVkw8dojxlhZRMAAPobwUm/MK6lMSMa6zN3SWuWtnemyNbD89XX92qsz7EjmzOk3v+UAQCgv/Fv6fQbQ+oH5Z1j90xbx/osWNWel9Z0ZM367je+r642o4Y0ZFxLY5oa6qowKQAA0BuCk36nqaEuR49sztFJunp6srqzOz2VSmqKIkPrazOoxlePAQBgIBCc9GuDamrSMlhgAgDAQOTf5AEAACiF4AQAAKAUghMAAIBSCE4AAABKUXZwrkrSs/G/AQAA2IWU+pTaSqXyTFEUIyuVyvIy7wMAAED/U/pHasUmAADArsl3OAEAACiF4AQAAKAUghMAAIBSbFNwFkVxW1EU39zK688WRfGXOz4WAAAAA11fP6V2YpI1fXxNAAAABqA+Dc5KpbKsL68HAADAwLU93+EcVBTFt4uiWFUUxYqiKL5cFEWRvPEjtUVR/FVRFI8URbGmKIpFRVH8U1EUQ1/z+r5FUfysKIqVG9/zaFEUv9UHvxcAAABVtj3B+b+SdCU5MclfJPlkko9s4b09G99zxMbzJieZ9prX/zFJQ5LTkxyZ5NNJVm/HTAAAAPQz2/OR2kVJPlmpVCpJniyK4shsiM5rXv/GSqXy2gcMLSiK4vNJ/jnJn2089o4kP65UKo9s/PmZ7ZgHAACAfmh7Vjjv3hibr7oryUFFUdS+/o1FUZxZFMWMoiheKIrilST/mWTPoiiGbHzL3yf5XFEUs4ui+GJRFEdtxzwAAAD0Q6Xtw1kUxb5JbkwyL8nvJzkuycc2vlyXJJVK5btJ9k9ybTZ8pPb+oig+XtZMAAAAvH22JzhPepOfn65UKt2vO358Nnxk91OVSuXuSqXyVJLRr79YpVJZVKlU/qVSqUxN8o0kF27HTAAAAPQz2/MdzrFFUfxtku8kmZDk40k+9Sbvm7/x+h8viuJnSU5N8r9f+4aiKL6Z5KYkTyXZPRseKvT4dswEAABAP7M9K5z/mWS3JPdmw1Nm/yHJv77+TZVK5cEkf5UNT56dl+QDST7zurfVbrzG40luTvJk/ueBQgAAAAxgxebP/6G/KIqiKUlra2trmpqaqj0OAABQJW1tbWlubk6S5kql0lbtebZFaQ8NAgAAYNcmOAEAACiF4AQAAKAUghMAAIBSbM+2KLyN2toG1HeCAQCAPjaQm8BTavupoijGJHm+2nMAAAD9xj6VSuWFag+xLQRnP1UURZFkdJJXqj0LAABQdcOSLK4MsIATnAAAAJTCQ4MAAAAoheAEAACgFIITAACAUghOAAAASiE4AQAAKIXgBAAAoBSCEwAAgFL8f9zE50q7dyDuAAAAAElFTkSuQmCC\n",
      "image/svg+xml": [
       "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n",
       "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n",
       "  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n",
       "<!-- Created with matplotlib (https://matplotlib.org/) -->\r\n",
       "<svg height=\"558pt\" version=\"1.1\" viewBox=\"0 0 665.938585 558\" width=\"665.938585pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n",
       " <defs>\r\n",
       "  <style type=\"text/css\">\r\n",
       "*{stroke-linecap:butt;stroke-linejoin:round;}\r\n",
       "  </style>\r\n",
       " </defs>\r\n",
       " <g id=\"figure_1\">\r\n",
       "  <g id=\"patch_1\">\r\n",
       "   <path d=\"M -0 558 \r\n",
       "L 665.938585 558 \r\n",
       "L 665.938585 0 \r\n",
       "L -0 0 \r\n",
       "z\r\n",
       "\" style=\"fill:none;\"/>\r\n",
       "  </g>\r\n",
       "  <g id=\"axes_1\">\r\n",
       "   <g id=\"patch_2\">\r\n",
       "    <path d=\"M 74.067769 550.8 \r\n",
       "L 632.067769 550.8 \r\n",
       "L 632.067769 7.2 \r\n",
       "L 74.067769 7.2 \r\n",
       "z\r\n",
       "\" style=\"fill:#ffffff;\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"patch_3\">\r\n",
       "    <path clip-path=\"url(#p86f1a8b499)\" d=\"M 122.489256 52.692605 \r\n",
       "Q 349.417482 197.57858 575.403363 341.862901 \r\n",
       "\" style=\"fill:none;stroke:#21918c;stroke-linecap:round;stroke-opacity:0.75;\"/>\r\n",
       "    <path clip-path=\"url(#p86f1a8b499)\" d=\"M 573.567236 338.792292 \r\n",
       "L 575.403363 341.862901 \r\n",
       "L 571.8452 341.489438 \r\n",
       "L 573.567236 338.792292 \r\n",
       "z\r\n",
       "\" style=\"fill:#21918c;fill-opacity:0.75;stroke:#21918c;stroke-linecap:round;stroke-opacity:0.75;\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"patch_4\">\r\n",
       "    <path clip-path=\"url(#p86f1a8b499)\" d=\"M 583.646281 347.125724 \r\n",
       "Q 583.646281 290.837833 583.646281 235.667975 \r\n",
       "\" style=\"fill:none;stroke:#21918c;stroke-linecap:round;stroke-opacity:0.75;\"/>\r\n",
       "    <path clip-path=\"url(#p86f1a8b499)\" d=\"M 582.046281 238.867975 \r\n",
       "L 583.646281 235.667975 \r\n",
       "L 585.246281 238.867975 \r\n",
       "L 582.046281 238.867975 \r\n",
       "z\r\n",
       "\" style=\"fill:#21918c;fill-opacity:0.75;stroke:#21918c;stroke-linecap:round;stroke-opacity:0.75;\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"patch_5\">\r\n",
       "    <path clip-path=\"url(#p86f1a8b499)\" d=\"M 583.646281 468.362891 \r\n",
       "Q 583.646281 412.074999 583.646281 356.905142 \r\n",
       "\" style=\"fill:none;stroke:#21918c;stroke-linecap:round;stroke-opacity:0.75;\"/>\r\n",
       "    <path clip-path=\"url(#p86f1a8b499)\" d=\"M 582.046281 360.105142 \r\n",
       "L 583.646281 356.905142 \r\n",
       "L 585.246281 360.105142 \r\n",
       "L 582.046281 360.105142 \r\n",
       "z\r\n",
       "\" style=\"fill:#21918c;fill-opacity:0.75;stroke:#21918c;stroke-linecap:round;stroke-opacity:0.75;\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"patch_6\">\r\n",
       "    <path clip-path=\"url(#p86f1a8b499)\" d=\"M 583.646281 225.888558 \r\n",
       "Q 583.646281 169.600666 583.646281 114.430808 \r\n",
       "\" style=\"fill:none;stroke:#21918c;stroke-linecap:round;stroke-opacity:0.75;\"/>\r\n",
       "    <path clip-path=\"url(#p86f1a8b499)\" d=\"M 582.046281 117.630808 \r\n",
       "L 583.646281 114.430808 \r\n",
       "L 585.246281 117.630808 \r\n",
       "L 582.046281 117.630808 \r\n",
       "z\r\n",
       "\" style=\"fill:#21918c;fill-opacity:0.75;stroke:#21918c;stroke-linecap:round;stroke-opacity:0.75;\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"matplotlib.axis_1\">\r\n",
       "    <g id=\"xtick_1\"/>\r\n",
       "    <g id=\"xtick_2\"/>\r\n",
       "    <g id=\"xtick_3\"/>\r\n",
       "    <g id=\"xtick_4\"/>\r\n",
       "    <g id=\"xtick_5\"/>\r\n",
       "    <g id=\"xtick_6\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"matplotlib.axis_2\">\r\n",
       "    <g id=\"ytick_1\"/>\r\n",
       "    <g id=\"ytick_2\"/>\r\n",
       "    <g id=\"ytick_3\"/>\r\n",
       "    <g id=\"ytick_4\"/>\r\n",
       "    <g id=\"ytick_5\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"PathCollection_1\">\r\n",
       "    <defs>\r\n",
       "     <path d=\"M 0 8.660254 \r\n",
       "C 2.296726 8.660254 4.499694 7.747755 6.123724 6.123724 \r\n",
       "C 7.747755 4.499694 8.660254 2.296726 8.660254 0 \r\n",
       "C 8.660254 -2.296726 7.747755 -4.499694 6.123724 -6.123724 \r\n",
       "C 4.499694 -7.747755 2.296726 -8.660254 0 -8.660254 \r\n",
       "C -2.296726 -8.660254 -4.499694 -7.747755 -6.123724 -6.123724 \r\n",
       "C -7.747755 -4.499694 -8.660254 -2.296726 -8.660254 0 \r\n",
       "C -8.660254 2.296726 -7.747755 4.499694 -6.123724 6.123724 \r\n",
       "C -4.499694 7.747755 -2.296726 8.660254 0 8.660254 \r\n",
       "z\r\n",
       "\" id=\"m2400aed9b2\" style=\"stroke:#add8e6;\"/>\r\n",
       "    </defs>\r\n",
       "    <g clip-path=\"url(#p86f1a8b499)\">\r\n",
       "     <use style=\"fill:#add8e6;stroke:#add8e6;\" x=\"122.489256\" xlink:href=\"#m2400aed9b2\" y=\"520.321677\"/>\r\n",
       "     <use style=\"fill:#add8e6;stroke:#add8e6;\" x=\"583.646281\" xlink:href=\"#m2400aed9b2\" y=\"104.651391\"/>\r\n",
       "     <use style=\"fill:#add8e6;stroke:#add8e6;\" x=\"122.489256\" xlink:href=\"#m2400aed9b2\" y=\"52.692605\"/>\r\n",
       "     <use style=\"fill:#add8e6;stroke:#add8e6;\" x=\"583.646281\" xlink:href=\"#m2400aed9b2\" y=\"347.125724\"/>\r\n",
       "     <use style=\"fill:#add8e6;stroke:#add8e6;\" x=\"583.646281\" xlink:href=\"#m2400aed9b2\" y=\"468.362891\"/>\r\n",
       "     <use style=\"fill:#add8e6;stroke:#add8e6;\" x=\"583.646281\" xlink:href=\"#m2400aed9b2\" y=\"225.888558\"/>\r\n",
       "    </g>\r\n",
       "   </g>\r\n",
       "   <g id=\"patch_7\">\r\n",
       "    <path d=\"M 74.067769 550.8 \r\n",
       "L 74.067769 7.2 \r\n",
       "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"patch_8\">\r\n",
       "    <path d=\"M 632.067769 550.8 \r\n",
       "L 632.067769 7.2 \r\n",
       "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"patch_9\">\r\n",
       "    <path d=\"M 74.067769 550.8 \r\n",
       "L 632.067769 550.8 \r\n",
       "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"patch_10\">\r\n",
       "    <path d=\"M 74.067769 7.2 \r\n",
       "L 632.067769 7.2 \r\n",
       "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n",
       "   </g>\r\n",
       "   <g id=\"text_1\">\r\n",
       "    <g clip-path=\"url(#p86f1a8b499)\">\r\n",
       "     <!-- ( + ) -->\r\n",
       "     <defs>\r\n",
       "      <path d=\"M 31 75.875 \r\n",
       "Q 24.46875 64.65625 21.28125 53.65625 \r\n",
       "Q 18.109375 42.671875 18.109375 31.390625 \r\n",
       "Q 18.109375 20.125 21.3125 9.0625 \r\n",
       "Q 24.515625 -2 31 -13.1875 \r\n",
       "L 23.1875 -13.1875 \r\n",
       "Q 15.875 -1.703125 12.234375 9.375 \r\n",
       "Q 8.59375 20.453125 8.59375 31.390625 \r\n",
       "Q 8.59375 42.28125 12.203125 53.3125 \r\n",
       "Q 15.828125 64.359375 23.1875 75.875 \r\n",
       "z\r\n",
       "\" id=\"DejaVuSans-40\"/>\r\n",
       "      <path id=\"DejaVuSans-32\"/>\r\n",
       "      <path d=\"M 46 62.703125 \r\n",
Loading
Loading full blame...