Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020
# based on https://curate.nd.edu/show/dv13zs28316
function hcastruc1(X, E, nu, p, tgS, s, scond, k, neighbors, bcond, itmax, vtol, ctype, ttype, T, xfilter, sfilter)
states=[]
anim=Animation()
# INPUT PARAMETERS
nelx, nely = size(X);
# CORRECT DENSITY
X[X .< 0.001] .= 0.001;
X[X .> 1.000] .= 1.000;
# START HCA ALGORITHM
println("running hca...")
# FE-ANALYSIS
#SED = fea(copy(X), fxF, fxU, Ymod, nu, p);
SED,U = fea(copy(X), p,E,nu)
# MECHANICAL STIMULUS
S=zeros(size(X))
if ttype==1
S = SED;
else
S = SED./X;
end
# PLOT
it = 0;
SE = sum(sum(SED,dims=1));
M = sum(sum(X,dims=1));
println("t: $it, SE: $SE, M: $M")
efX=zeros(size(X))
efS=zeros(size(X))
# EFFECTIVE RELATIVE MASS
if xfilter
if bcond==1 #fixed bcond
efX = doavgf(X,neighbors,0);
elseif bcond==2 #periodic bcond bcond==1 #fixed bcond
efX = doavgp(X,neighbors);
end
else
efX .= X;
end
# EFFECTIVE STIMULUS
if sfilter
if bcond==1 #fixed bcond
efS = doavgf(S,neighbors,0);
elseif bcond==2 #periodic bcond
efS = doavgp(S,neighbors);
end
else
efS = copy(S);
end
# EFFECTIVE ERROR SIGNAL
efE = zeros(size(efS));
efE[efS .> tgS] .= efS[efS .> tgS] .- (1+s)*tgS[efS .> tgS];
efE[efS .< tgS] .= efS[efS .< tgS] .- (1-s)*tgS[efS .< tgS];
# FOR INTEGRAL CONTROL: CREATE HISTORY OF STATES FOR INTEGRAL CONTROL
efEhis = zeros(size(efE,1),size(efE,2),T+2);
efEsum = zeros(size(efE,1),size(efE,2));
# FOR CONVERGENCE
Mtol = Inf;
# FOR CONVERGENCE PLOT
ITplt = 0; SEplt = SE; Mplt = M;
# FOR DERIVATIVE CONTROL
efEold = efE; #default
#efEold = zeros(size(efE)); #modified
# LOOP
Xnew = copy(X);
Mold = 0;
while (it<itmax )
# while (it<itmax && Mtol>vtol)
it = it + 1;
# SURFACE CONDITION
xid = efE .!=0;
sneighbors = 4;
if scond==2 #soft surface condition
if bcond==1 #fixed bcond
sfX = doavgf(X,sneighbors,0); #average in N+1 neighbors
elseif bcond==2 #periodic bcond
sfX = doavgf(X,sneighbors,0); #average in N+1 neighbors
end
xid=(sfX.<1.000) .& (sfX.>0.001)
#x=[1 2 3;5 3 1]
#m=(x.<3) .& (x.>1)
#yyy=zeros(Int,size(sfX));zzz=zeros(Int,size(sfX))
#yyy[sfX.<1.000 ].=1;zzz[sfX.>0.001].=1
#xid = yyy .& zzz
#xid .= (sfX.<1.000 .& sfX.>0.001);
elseif scond==3 #strict surface condition
if bcond==1 #fixed bcond
sfX = doavgf(X,sneighbors,0); #avg in N+1 neighbors
lzX = lookznf(X,sneighbors,0); #look for zeros around
loX = lookonf(X,sneighbors,0); #look for ones around
elseif bcond==2 #periodic bcond
sfX = doavgp(X,sneighbors); #average in N+1 neighbors
lzX = lookznp(X,sneighbors); #look for zeros around
loX = lookonp(X,sneighbors); #look for ones around
end
xid=(sfX.<0.999) .& (sfX.>0.001)
#xid .= (sfX.<0.999 .& sfX.>0.001);# | (X<0.999 & X>0.001);
xid[X.<=0.001] .= loX[X.<=0.001];
xid[X.>=1.000] .= lzX[X.>=1.000];
end
# UPDATE RULE
if ctype== "f"
#display("SED")
#display(heatmap(SED',xaxis=nothing,yaxis=nothing,legend=nothing,c=:greys,title="it: $it"))
#display("Xnew")
#display(heatmap(Xnew',xaxis=nothing,yaxis=nothing,legend=nothing,c=:greys,title="it: $it"))
#display("efX")
#display(heatmap(efX',xaxis=nothing,yaxis=nothing,legend=nothing,c=:greys,title="it: $it"))
#display("efE")
#display(heatmap(efE',xaxis=nothing,yaxis=nothing,legend=nothing,c=:greys,title="it: $it"))
Xnew[xid] .= efX[xid] + k[1]*sign.(efE[xid]);
elseif ctype== "p"
Xnew[xid] .= efX[xid] + k[2]*efE[xid]./tgS[xid];
elseif ctype== "i"
Xnew[xid] .= efX[xid] + k[3]*efEsum[xid]./tgS[xid];
elseif ctype== "d"
Xnew[xid] .= efX[xid] + k[4]*(efE[xid] - efEold[xid])./tgS[xid];
elseif ctype=="e" #ratio approach
if ttype==1
Xnew[xid] = k[5]*efX[xid].*(efS[xid]./tgS[xid]).^(1.0/p);
elseif ttype==2
Xnew[xid] = k[5]*efX[xid].*(tgS[xid]./efS[xid]).^(1.0/p-1.0);
end
elseif ctype== "n" #ratio approach variable set point
if ttype==1
Xnew[xid] .= k[5].*efX[xid].*(S[xid]./efS[xid]).^(1/p);
elseif ttype==2
Xnew[xid] .= k[5].*efX[xid].*(efS[xid]./S[xid]).^(1.0/p-1.0);
end
elseif ctype== "pi"
Xnew[xid] = efX[xid] + k[2]*efE[xid]./tgS[xid];
Xnew[xid] = Xnew[xid] + k[3]*efEsum[xid]./tgS[xid];
elseif ctype== "pd"
Xnew[xid] = efX[xid] + k[2]*efE[xid]./tgS[xid];
Xnew[xid] = Xnew[xid] + k[4]*(efE[xid] - efEold[xid])./tgS[xid];
elseif ctype== "id"
Xnew[xid] = efX[xid] + k[3]*efEsum[xid]./tgS[xid];
Xnew[xid] = Xnew[xid] + k[4]*(efE[xid] - efEold[xid])./tgS[xid];
elseif ctype== "pid"
Xnew[xid] = efX[xid] + k[2]*efE[xid]./tgS[xid];
Xnew[xid] = Xnew[xid] + k[3]*efEsum[xid]./tgS[xid];
Xnew[xid] = Xnew[xid] + k[4]*(efE[xid] - efEold[xid])./tgS[xid];
end
# FE-ANALYSIS
#println(efE);
# println(Xnew);
#if(minimum(Xnew)<0.0)
# Xnew.=Xnew.-minimum(Xnew).+s#amira added to remove negative values TODO make sure right ?? //or add xmin?
#end
Xnew[Xnew.<=0.0].=s #amira added to remove negative values TODO make sure right ?? //or add xmin?
if(minimum(Xnew)>0)
SEDnew,U = fea(copy(Xnew), p,E,nu);
# MECHANICAL STIMULUS
if ttype==1
Snew = SEDnew;
else
Snew = SEDnew./Xnew;
end
# CONVERGENCE
Mnew = sum(sum(Xnew,dims=1));
Mtol = (abs(Mnew - M) .+ abs(M - Mold))./2.0;
# UPDATE
SED = SEDnew;
X = Xnew;
S = Snew;
Mold = M;
M = Mnew;
# FOR DERIVATIVE CONTROL
efEold = efE;
# EFFECTIVE RELATIVE MASS
if xfilter
if bcond==1 #fixed bcond
efX = doavgf(X,neighbors,0);
elseif bcond==2 #periodic bcond
efX = doavgp(X,neighbors);
end
else
efX = X;
end
# EFFECTIVE STIMULUS
if sfilter
if bcond==1 #fixed bcond
efS = doavgf(S,neighbors,0);
elseif bcond==2 #periodic bcond
efS = doavgp(S,neighbors);
end
else
efS = S;
end
# EFFECTIVE ERROR SIGNAL
efE = zeros(size(S));
efE[efS .> tgS] .= efS[efS .> tgS] .- (1+s).*tgS[efS .> tgS];
efE[efS .< tgS] .= efS[efS .< tgS] .- (1-s).*tgS[efS .< tgS];
# FOR INTEGRAL CONTROL: SUM OF STORED EFFECTIVE STIMULI EST
efEsum .= efEsum .+ efE .- efEhis[:,:,1];
efEhis[:,:,T+2] .= efE;
for t in 1:T+1
efEhis[:,:,t] .= efEhis[:,:,t+1];
end
# PLOT DENSITIES
SE = sum(sum(SED));
println("t: $it, SE: $SE, M: $M")
# STORE FOR CONVERGENCE PLOT
display(Gray.(Xnew'))
display(heatmap(Xnew',xaxis=nothing,yaxis=nothing,legend=nothing,c=:greys,title="it: $it"))
heatmap(clamp.(Xnew',0,1),xaxis=nothing,yaxis=nothing,legend=nothing,c=:greys,title="it: $it")
append!(states,[clamp.(Xnew',0,1)])
frame(anim)
else
display("ERROR Xnew has negative values!!")
it=itmax+1
end
end
# SAVE FINAL RESULTS
cells = Xnew;
return anim,cells,states
end
#############################################
function doavgf(c,neighbors,val)
# DOAVGF(X, neighbors,val) sums around each X using fixed boundary
# conditions. val is the fixed value.
nely,nelx = size(c);
cext=zeros(nely+2,nelx+2);
cextm=zeros(nely+4,nelx+4);
if neighbors > 24 # Global (nelx*ney-1)
csum = ones(size(c))*sum(sum(c));
else
csum = c; # no neighbors (N=0)
if neighbors > 0 # von Newmann (N=4) > 24 # Global (nelx*ney-1)
# extends c field for fixed BC
cext[nely+2, nelx+2] = val;
cext[2:nely+1, 2:nelx+1] = c;
x = 2:nelx+1;
y = 2:nely+1;
csum = csum +
cext[y,x.+1] + cext[y,x.-1] +
cext[y.+1,x] + cext[y.-1,x];
if neighbors > 4 # Moore (N=8)von Newmann (N=4) > 24 # Global (nelx*ney-1)
csum = csum +
cext[y.+1,x.+1] + cext[y.-1,x.-1] +
cext[y.+1,x.-1] + cext[y.-1,x.+1];
if neighbors > 8 # MvonN (N=12)Moore (N=8)von Newmann (N=4) > 24 # Global (nelx*ney-1)
cextm[nely+4, nelx+4] = val;
cextm[3:nely+2, 3:nelx+2] = c;
y = 3:nely+2; x = 3:nelx+2;
csum = csum +
cextm[y.-2, x] + cextm[y.+2, x] +
cextm[y, x.-2] + cextm[y, x.+2];
if neighbors > 12 # Extended Moore (N=24)MvonN (N=12)Moore (N=8)von Newmann (N=4) > 24 # Global (nelx*ney-1)
csum = csum +
cextm[y.-2, x.-2] + cextm[y.-2, x.-1] +
cextm[y.-2, x.+1] + cextm[y.-2, x.+2] +
cextm[y.+2, x.-2] + cextm[y.+2, x.-1] +
cextm[y.+2, x.+1] + cextm[y.+2, x.+2] +
cextm[y.-1, x.-2] + cextm[y.+1, x.-2] +
cextm[y.-1, x.+2] + cextm[y.+1, x.+2];
end
end
end
end
end
cavg = csum./(neighbors+1); # average csum (matrix)
return cavg
end
#-----------------------------------------------------------------
function doavgp(c,neighbors)
# DOAVGNP(X, neighbors) sums around each X using fixed periodic
# conditions
nely,nelx = size(c);
x = 1:nelx;
y = 1:nely;
if neighbors > 24 # Global (nelx*ney-1)
csum = ones(size(c))*sum(sum(c))-c;
else
csum = zeros(size(c)); # no neighbors (N=0)
if neighbors > 0 # von Newmann (N=4)
csum[mod.(y,nely).+1, mod.(x,nelx).+1] = csum[mod.(y,nely).+1, mod.(x,nelx).+1] +
c[mod.(y,nely).+1, mod.(x.+1,nelx).+1] +
c[mod.(y,nely).+1, mod.(x.-1,nelx).+1] +
c[mod.(y.+1,nely).+1, mod.(x,nelx).+1] +
c[mod.(y.-1,nely).+1, mod.(x,nelx).+1];
if neighbors > 4 # Moore (N=8)
csum[mod.(y,nely).+1, mod.(x,nelx).+1] = csum[mod.(y,nely).+1, mod.(x,nelx).+1] +
c[mod.(y.+1,nely).+1, mod.(x.+1,nelx).+1] +
c[mod.(y.-1,nely).+1, mod.(x.-1,nelx).+1] +
c[mod.(y.+1,nely).+1, mod.(x.-1,nelx).+1] +
c[mod.(y.-1,nely).+1, mod.(x.+1,nelx).+1];
if neighbors > 8 # MvonN (N=12)
csum[mod.(y,nely).+1, mod.(x,nelx).+1] = csum[mod.(y,nely).+1, mod.(x,nelx).+1] .+
c[mod.(y.-2,nely).+1, mod.(x,nelx).+1] .+
c[mod.(y.+2,nely).+1, mod.(x,nelx).+1] .+
c[mod.(y,nely).+1, mod.(x.-2,nelx).+1] .+
c[mod.(y,nely).+1, mod.(x.+2,nelx).+1];
if neighbors > 12 # Extended Moore (N=24)
csum[mod.(y,nely)+1, mod.(x,nelx)+1] = csum[mod.(y,nely)+1, mod.(x,nelx)+1] +
c[mod.(y.-2,nely)+1, mod.(x.-2,nelx)+1] +
c[mod.(y.-2,nely)+1, mod.(x.-1,nelx)+1] +
c[mod.(y.-2,nely)+1, mod.(x.+1,nelx)+1] +
c[mod.(y.-2,nely)+1, mod.(x.+2,nelx)+1] +
c[mod.(y.+2,nely)+1, mod.(x.-2,nelx)+1] +
c[mod.(y.+2,nely)+1, mod.(x.-1,nelx)+1] +
c[mod.(y.+2,nely)+1, mod.(x.+1,nelx)+1] +
c[mod.(y.+2,nely)+1, mod.(x.+2,nelx)+1] +
c[mod.(y.-1,nely)+1, mod.(x.-2,nelx)+1] +
c[mod.(y.+1,nely)+1, mod.(x.-2,nelx)+1] +
c[mod.(y.-1,nely)+1, mod.(x.+2,nelx)+1] +
c[mod.(y.+1,nely)+1, mod.(x.+2,nelx)+1];
end
end
end
end
end
cavg = csum./(neighbors); # average csum (matrix)
return cavg
end
###############################################
function lookznf(c,neighbors,val)
# LOOKZNF(X, neighbors) products around each X using fixed boundary
# conditions
# if nargin <3
# val=0;
# end
c[c.<=0.001].=0;
nely,nelx = size(c);
cext=zeros(nely+2,nelx+2);
cextm=zeros(nely+4,nelx+4);
cpro = copy(c);
if neighbors <= 24
cpro = c; # no neighbors (N=0)
if neighbors > 0 # von Newmann (N=4)
# extends c field for fixed BC
cext[nely+2, nelx+2] = val;
cext[2:nely+1, 2:nelx+1] = c;
x = 2:nelx+1;
y = 2:nely+1;
cpro = 1*
cext[y,x.+1] .* cext[y,x.-1] .*
cext[y.+1,x] .* cext[y.-1,x];
if neighbors > 4 # Moore (N=8)
cpro = cpro .*
cext[y.+1,x.+1] .* cext[y.-1,x.-1] .*
cext[y.+1,x.-1] .* cext[y.-1,x.+1];
if neighbors > 8 # MvonN (N=12)
cextm[nely+4, nelx+4] = val;
cextm[3:nely+2, 3:nelx+2] = c;
y = 3:nely+2; x = 3:nelx+2;
cpro = cpro .*
cextm[y.-2, x] .* cextm[y.+2, x] .*
cextm[y, x.-2] .* cextm[y, x.+2];
if neighbors > 12 # Extended Moore (N=24)
csum = csum .*
cextm[y.-2, x.-2] .* cextm[y.-2, x.-1] .*
cextm[y.-2, x.+1] .* cextm[y.-2, x.+2] .*
cextm[y.+2, x.-2] .* cextm[y.+2, x.-1] .*
cextm[y.+2, x.+1] .* cextm[y.+2, x.+2] .*
cextm[y.-1, x.-2] .* cextm[y.+1, x.-2] .*
cextm[y.-1, x.+2] .* cextm[y.+1, x.+2];
end
end
end
end
end
cproy=copy(cpro)
cpro[cproy.>0].=0
cpro[cproy.==0].=1
return cpro
end
#-----------------------------------------------------------------
function lookznp(c,neighbors)
# LOOKZNP(X, neighbors) products around each X using fixed periodic
# conditions
c[c.<=0.001].=0;
nely,nelx = size(c);
x = 1:nelx;
y = 1:nely;
cpro = copy(c);
if neighbors <= 24
if neighbors > 0 # von Newmann (N=4)
cpro[mod.(y,nely).+1, mod.(x,nelx).+1] =
c[mod.(y,nely).+1, mod.(x+1,nelx).+1] .*
c[mod.(y,nely).+1, mod.(x-1,nelx).+1] .*
c[mod.(y.+1,nely).+1, mod.(x,nelx).+1] .*
c[mod.(y.-1,nely).+1, mod.(x,nelx).+1];
if neighbors > 4 # Moore (N=8)
cpro[mod(y,nely)+1, mod(x,nelx)+1] =
cpro[mod.(y,nely).+1, mod.(x,nelx).+1] .*
c[mod.(y.+1,nely).+1, mod.(x.+1,nelx).+1] .*
c[mod.(y.-1,nely).+1, mod.(x.-1,nelx).+1] .*
c[mod.(y.+1,nely).+1, mod.(x.-1,nelx).+1] .*
c[mod.(y.-1,nely).+1, mod.(x.+1,nelx).+1];
if neighbors > 8 # MvonN (N=12)
cpro[mod(y,nely)+1, mod(x,nelx)+1] =
cpro[mod(y,nely)+1, mod.(x,nelx)+1] .*
c[mod.(y.-2,nely)+1, mod.(x,nelx)+1] .*
c[mod.(y.+2,nely)+1, mod.(x,nelx)+1] .*
c[mod.(y,nely)+1, mod.(x.-2,nelx)+1] .*
c[mod.(y,nely)+1, mod.(x.+2,nelx)+1];
if neighbors > 12 # Extended Moore (N=24)
cpro[mod(y,nely)+1, mod(x,nelx)+1] =
cpro[mod(y,nely)+1, mod(x,nelx)+1] .*
c[mod.(y.-2,nely).+1, mod.(x.-2,nelx).+1] .*
c[mod.(y.-2,nely).+1, mod.(x.-1,nelx).+1] .*
c[mod.(y.-2,nely).+1, mod.(x.+1,nelx).+1] .*
c[mod.(y.-2,nely).+1, mod.(x.+2,nelx).+1] .*
c[mod.(y.+2,nely).+1, mod.(x.-2,nelx).+1] .*
c[mod.(y.+2,nely).+1, mod.(x.-1,nelx).+1] .*
c[mod.(y.+2,nely).+1, mod.(x.+1,nelx).+1] .*
c[mod.(y.+2,nely).+1, mod.(x.+2,nelx).+1] .*
c[mod.(y.-1,nely).+1, mod.(x.-2,nelx).+1] .*
c[mod.(y.+1,nely).+1, mod.(x.-2,nelx).+1] .*
c[mod.(y.-1,nely).+1, mod.(x.+2,nelx).+1] .*
c[mod.(y.+1,nely).+1, mod.(x.+2,nelx).+1];
end
end
end
end
end
cproy=copy(cpro)
cpro[cproy.>0].=0
cpro[cproy.==0].=1
return cpro
end
#####################################
function lookonf(c,neighbors,val)
# LOOKONF(X, neighbors) sums around each X using fixed boundary
# conditions
# if nargin <3
# val=0;
# end
c[c.>=0.999].=1;
c[c.<0.999].=0;
nely,nelx = size(c);
cext=zeros(nely+2,nelx+2);
cextm=zeros(nely+4,nelx+4);
if neighbors <= 24 # Global (nelx*ney-1)
csum = zeros(size(c)); # no neighbors (N=0)
if neighbors > 0 # von Newmann (N=4)
# extends c field for fixed BC
cext[nely+2, nelx+2] = val;
cext[2:nely+1, 2:nelx+1] = c;
x = 2:nelx+1;
y = 2:nely+1;
csum = csum + cext[y,x+1] + cext[y,x-1] +
cext[y.+1,x] + cext[y.-1,x];
if neighbors > 4 # Moore (N=8)
csum = csum + cext[y.+1,x.+1] + cext[y.-1,x.-1] +
cext[y.+1,x.-1] + cext[y.-1,x.+1];
if neighbors > 8 # MvonN (N=12)
cextm[nely+4, nelx+4] = val;
cextm[3:nely+2, 3:nelx+2] = c;
y = 3:nely+2; x = 3:nelx+2;
csum = csum + cextm[y-2, x] + cextm[y+2, x] +
cextm[y, x.-2] + cextm[y, x.+2];
if neighbors > 12 # Extended Moore (N=24)
csum = csum +
cextm[y.-2, x.-2] + cextm[y.-2, x.-1] +
cextm[y.-2, x.+1] + cextm[y.-2, x.+2] +
cextm[y.+2, x.-2] + cextm[y.+2, x.-1] +
cextm[y.+2, x.+1] + cextm[y.+2, x.+2] +
cextm[y.-1, x.-2] + cextm[y.+1, x.-2] +
cextm[y.-1, x.+2] + cextm[y.+1, x.+2];
end
end
end
end
end
cavg = csum./(neighbors); # average csum (matrix)
cout = cavg > 0;
return cout
end
#-----------------------------------------------------------------
function looknp(c,neighbors)
# LOOKONP(X, neighbors) sums around each X using fixed periodic
# conditions
c[c.>=0.999].=1;
c[c.<0.999].=0;
nely,nelx = size(c);
x = 1:nelx;
y = 1:nely;
if neighbors <= 24
csum = zeros(size(c)); # no neighbors (N=0)
if neighbors > 0 # von Newmann (N=4)
csum[mod.(y,nely).+1, mod.(x,nelx)+1] =
csum[mod(y,nely).+1, mod.(x,nelx).+1] +
c[mod.(y,nely).+1, mod.(x.+1,nelx).+1] +
c[mod.(y,nely).+1, mod.(x.-1,nelx).+1] +
c[mod.(y.+1,nely).+1, mod.(x,nelx).+1] +
c[mod.(y.-1,nely).+1, mod.(x,nelx).+1];
if neighbors > 4 # Moore (N=8)
csum[mod.(y,nely)+1, mod.(x,nelx).+1] =
csum[mod.(y,nely).+1, mod.(x,nelx).+1] +
c[mod.(y.+1,nely).+1, mod.(x.+1,nelx).+1] +
c[mod.(y.-1,nely).+1, mod.(x.-1,nelx).+1] +
c[mod.(y.+1,nely).+1, mod.(x.-1,nelx).+1] +
c[mod.(y.-1,nely).+1, mod.(x.+1,nelx).+1];
if neighbors > 8 # MvonN (N=12)
csum[mod(y,nely)+1, mod(x,nelx)+1] =
csum[mod.(y,nely).+1, mod.(x,nelx).+1] +
c[mod.(y.-2,nely).+1, mod.(x,nelx).+1] +
c[mod.(y.+2,nely).+1, mod.(x,nelx).+1] +
c[mod.(y,nely).+1, mod.(x.-2,nelx).+1] +
c[mod.(y,nely).+1, mod.(x.+2,nelx).+1];
if neighbors > 12 # Extended Moore (N=24)
csum[mod(y,nely)+1, mod(x,nelx)+1] =
csum[mod(y,nely)+1, mod(x,nelx)+1] +
c[mod.(y.-2,nely).+1, mod.(x.-2,nelx).+1] +
c[mod.(y.-2,nely).+1, mod.(x.-1,nelx).+1] +
c[mod.(y.-2,nely).+1, mod.(x.+1,nelx).+1] +
c[mod.(y.-2,nely).+1, mod.(x.+2,nelx).+1] +
c[mod.(y.+2,nely).+1, mod.(x.-2,nelx).+1] +
c[mod.(y.+2,nely).+1, mod.(x.-1,nelx).+1] +
c[mod.(y.+2,nely).+1, mod.(x.+1,nelx).+1] +
c[mod.(y.+2,nely).+1, mod.(x.+2,nelx).+1] +
c[mod.(y.-1,nely).+1, mod.(x.-2,nelx).+1] +
c[mod.(y.+1,nely).+1, mod.(x.-2,nelx).+1] +
c[mod.(y.-1,nely).+1, mod.(x.+2,nelx).+1] +
c[mod.(y.+1,nely).+1, mod.(x.+2,nelx).+1];
end
end
end
end
end
cavg = csum./(neighbors); # average csum (matrix)
cout = cavg>0;
return cout
end
######################################
function fea(x, p,E,nu)
nelx = size(x,1)+1;
nely = size(x,2)+1;
latticeSize=2
setup=getSetup(latticeSize)
maxNumTimeSteps=5000
maxNumFiles=200
saveEvery=round(maxNumTimeSteps/maxNumFiles)
maxNumFiles=round(maxNumTimeSteps/saveEvery)-2
setup["maxNumFiles"]=maxNumFiles
save=false
metavoxel,displacements=runMetavoxel2DGPULive!(setup,x,nelx,nely,p,E,nu,maxNumTimeSteps,saveEvery,maxNumFiles,save)
k=[1/2-nu/6,1/8+nu/8,-1/4-nu/12,-1/8+3*nu/8,-1/4+nu/12,-1/8-nu/8,nu/6,1/8-3*nu/8]
KE = E/(1-nu^2)*[ k[0+1] k[1+1] k[2+1] k[3+1] k[4+1] k[5+1] k[6+1] k[7+1];
k[1+1] k[0+1] k[7+1] k[6+1] k[5+1] k[4+1] k[3+1] k[2+1];
k[2+1] k[7+1] k[0+1] k[5+1] k[6+1] k[3+1] k[4+1] k[1+1];
k[3+1] k[6+1] k[5+1] k[0+1] k[7+1] k[2+1] k[1+1] k[4+1];
k[4+1] k[5+1] k[6+1] k[7+1] k[0+1] k[1+1] k[2+1] k[3+1];
k[5+1] k[4+1] k[3+1] k[2+1] k[1+1] k[0+1] k[7+1] k[6+1];
k[6+1] k[3+1] k[4+1] k[1+1] k[2+1] k[7+1] k[0+1] k[5+1];
k[7+1] k[2+1] k[1+1] k[4+1] k[3+1] k[6+1] k[5+1] k[0+1] ]
SED = zeros(nelx-1,nely-1)
U = zeros(nelx,nely,2)
for ii in 0:(nelx-1)
for jj in 0:(nely-1)
i=((ii)*nely +(jj))+1
if(ii<nelx-1&&jj<nely-1)
Ue=[displacements[i].x;displacements[i].y;
displacements[((ii+1)*nely +(jj))+1].x;displacements[((ii+1)*nely +(jj))+1].y;
displacements[((ii+1)*nely +(jj+1))+1].x;displacements[((ii+1)*nely +(jj+1))+1].y;
displacements[((ii)*nely +(jj+1))+1].x;displacements[((ii)*nely +(jj+1))+1].y]
SEDi = 1/2*x[ii+1,jj+1]^p*Ue'*KE*Ue;
SED[ii+1,jj+1]=SED[ii+1,jj+1]+SEDi
end
U[ii+1,jj+1,1]=displacements[i].x
U[ii+1,jj+1,2]=displacements[i].y
end
end
# return SED
return SED,U
end
#####################