Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020
# BASED ON https://github.com/jonhiller/Voxelyze
function updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement,N_angle,N_currPosition,N_linMom,N_angMom,
N_intForce,N_intMoment,N_force,N_fixedDisplacement,N_moment,N_orient,N_edgeID,N_edgeFirst,N_material,N_poissonStrain,
E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,E_axis, E_strain,E_material)
index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
stride = blockDim().x * gridDim().x
## @cuprintln("thread $index, block $stride")
N,M=size(N_edgeID)
for i = index:stride:N
isFloorEnabled=floorEnabled();#todo make these arguments ??
# @inbounds if lengthVector3(Vector3(convert(Float64,N_displacement[i].x),
# convert(Float64,N_displacement[i].y),convert(Float64,N_displacement[i].z))) >1000.0 #todo ?? change this according to ratio
# # @cuprintln("DIVERGEDNODE!!!!!!!!!!")
# return
# end
@inbounds if N_restrained[i]
@inbounds N_linMom[i]=Vector3(0,0,0)
@inbounds N_angMom[i]=Vector3(0,0,0)
@inbounds if(N_material[i].poisson)
@inbounds N_poissonStrain[i]=strain(i,N_material[i].poisson,i, N_edgeID, N_edgeFirst, E_axis, E_strain, E_material, N_restrained[i], N_material[i])
end
return
elseif N_fixedDisplacement[i].x != 0.0 || N_fixedDisplacement[i].y != 0.0 || N_fixedDisplacement[i].z != 0.0
@inbounds N_linMom[i]=Vector3(0,0,0)
@inbounds N_angMom[i]=Vector3(0,0,0)
@inbounds if(N_material[i].poisson)
@inbounds N_poissonStrain[i]=strain(i,N_material[i].poisson,i, N_edgeID, N_edgeFirst, E_axis, E_strain, E_material, N_restrained[i], N_material[i])
end
@inbounds translate=externalDisplacement(currentTimeStep,N_position,N_fixedDisplacement[i])
@inbounds N_currPosition[i]=N_currPosition[i]+translate
@inbounds N_displacement[i]=N_displacement[i]+translate
else
for j in 1:M
@inbounds if (N_edgeID[i,j]!=-1)
#@cuprintln("i $i, j $j, N_edgeID[i,j] $temp")
@inbounds N_intForce[i]=ifelse(N_edgeFirst[i,j], N_intForce[i]+E_intForce1[N_edgeID[i,j]], N_intForce[i]+E_intForce2[N_edgeID[i,j]] )
@inbounds N_intMoment[i]=ifelse(N_edgeFirst[i,j], N_intMoment[i]+E_intMoment1[N_edgeID[i,j]], N_intMoment[i]+E_intMoment2[N_edgeID[i,j]] )
end
end
FloorStaticFriction=false;
prec=1e8
#get properties
@inbounds E=roundd(N_material[i].E,prec)
@inbounds nomSize=roundd(N_material[i].nomSize,prec)
@inbounds mass=roundd(N_material[i].mass,prec)
@inbounds massInverse=roundd(N_material[i].massInverse,prec)
@inbounds curForce = force(i,N_intForce[i],N_orient[i],N_force[i],N_position[i],currentTimeStep,N_material[i],N_linMom[i])
fricForce = Vector3(curForce.x,curForce.y,curForce.z);
if (isFloorEnabled)
@inbounds curForce,FloorStaticFriction=floorForce!(dt,curForce,N_currPosition[i],
Vector3(N_linMom[i].x,N_linMom[i].y ,N_linMom[i].z),FloorStaticFriction,N_material[i])
end
fricForce = curForce-fricForce;
# if(i==25)
# x=N_intForce[i].x*1e6
# y=N_intForce[i].y*1e6
# z=N_intForce[i].z*1e6
# @cuprintln("N_intForce[i] x $x 1e-6, y $y 1e-6, z $z 1e-6")
# x=curForce.x*1e6
# y=curForce.y*1e6
# z=curForce.z*1e6
# @cuprintln("curForce x $x 1e-6, y $y 1e-6, z $z 1e-6")
# x=N_linMom[i].x*1e6
# y=N_linMom[i].y*1e6
# z=N_linMom[i].z*1e6
# @cuprintln("N_linMom[i] x $x 1e-6, y $y 1e-6, z $z 1e-6")
# x=translate.x*1e0
# y=translate.y*1e0
# z=translate.z*1e0
# @cuprintln("translate x $x, y $y, z $z")
# @cuprintln("")
# end
# x=N_orient[i].x*1e6
# y=N_orient[i].y*1e6
# z=N_orient[i].z*1e6
# @cuprintln("N_orient[i] x $x 1e-6, y $y 1e-6, z $z 1e-6")
# x=N_linMom[i].x*1e6
# y=N_linMom[i].y*1e6
# z=N_linMom[i].z*1e6
# @cuprintln("N_linMom[i] x $x 1e-6, y $y 1e-6, z $z 1e-6")
# x=curForce.x*1e6
# y=curForce.y*1e6
# z=curForce.z*1e6
# @cuprintln("curForce x $x 1e-6, y $y 1e-6, z $z 1e-6")
# @cuprintln("dt $dt")
# @cuprintln("massInverse $massInverse")
#########################################
# @inbounds N_intForce[i]=Vector3(0,0,0) #??
@inbounds N_linMom[i]=N_linMom[i]+curForce*Vector3(dt,dt,dt) #todo make sure right
@inbounds translate=N_linMom[i]*Vector3((dt*massInverse),(dt*massInverse),(dt*massInverse)) # ??massInverse
############################
#we need to check for friction conditions here (after calculating the translation) and stop things accordingly
@inbounds if (isFloorEnabled && floorPenetration( convert(Float64,N_currPosition[i].x),convert(Float64,N_currPosition[i].y),N_material[i].nomSize)>= 0.0 )#we must catch a slowing voxel here since it all boils down to needing access to the dt of this timestep.
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
work =convert(Float64,fricForce.x*translate.x + fricForce.z*translate.z); #F dot disp
@inbounds hKe = 0.5*massInverse*convert(Float64,(N_linMom[i].x*N_linMom[i].x + N_linMom[i].z*N_linMom[i].z)); #horizontal kinetic energy
if((hKe + work) <= 0.0)
FloorStaticFriction=true; #this checks for a change of direction according to the work-energy principle
end
if(FloorStaticFriction)
#if we're in a state of static friction, zero out all horizontal motion
N_linMom[i]=Vector3(0.0 ,convert(Float64,N_linMom[i].y) ,0.0)
translate=Vector3(0.0 ,convert(Float64,translate.y) ,0.0)
end
else
FloorStaticFriction=false
end
@inbounds N_currPosition[i]=N_currPosition[i]+translate
@inbounds N_displacement[i]=N_displacement[i]+translate
# Rotation
@inbounds curMoment = moment(N_intMoment[i],N_orient[i],N_moment[i],N_material[i],N_angMom[i])
@inbounds N_intMoment[i]=Vector3(0,0,0) # do i really need it?
@inbounds N_intForce[i]=Vector3(0,0,0) # do i really need it?
@inbounds N_angMom[i]=N_angMom[i]+curMoment*Vector3(dt,dt,dt)
@inbounds momentInertiaInverse=N_material[i].momentInertiaInverse
@inbounds temp=FromRotationVector(N_angMom[i]*Vector3((dt*momentInertiaInverse),(dt*momentInertiaInverse),(dt*momentInertiaInverse)))
@inbounds N_orient[i]=multiplyQuaternions(temp,N_orient[i])
@inbounds N_angle[i]=ToRotationVector(N_orient[i])
# x=N_orient[i].x*1e0
# y=N_orient[i].y*1e0
# z=N_orient[i].z*1e0
# @cuprintln("N_orient[i] x $x, y $y, z $z ")
# @cuprintln("momentInertiaInverse $momentInertiaInverse")
# if (ext){
# double size = mat->nominalSize();
# if (ext->isFixed(X_TRANSLATE)) {pos.x = ix*size + ext->translation().x; linMom.x=0;}
# if (ext->isFixed(Y_TRANSLATE)) {pos.y = iy*size + ext->translation().y; linMom.y=0;}
# if (ext->isFixed(Z_TRANSLATE)) {pos.z = iz*size + ext->translation().z; linMom.z=0;}
# if (ext->isFixedAnyRotation()){ //if any rotation fixed, all are fixed
# if (ext->isFixedAllRotation()){
# orient = ext->rotationQuat();
# angMom = Vec3D<double>();
# }
# else { //partial fixes: slow!
# Vec3D<double> tmpRotVec = orient.ToRotationVector();
# if (ext->isFixed(X_ROTATE)){ tmpRotVec.x=0; angMom.x=0;}
# if (ext->isFixed(Y_ROTATE)){ tmpRotVec.y=0; angMom.y=0;}
# if (ext->isFixed(Z_ROTATE)){ tmpRotVec.z=0; angMom.z=0;}
# orient.FromRotationVector(tmpRotVec);
# }
# }
# }
# if(i==17)
# x=(N_currPosition[i].x-0.004)*1e6
# y=N_currPosition[i].y*1e6
# z=N_currPosition[i].z*1e6
# @cuprintln("pos 17 x $x 1e-6, y $y 1e-6, z $z 1e-6")
# @cuprintln("")
# end
# if(i==25)
# x=(N_currPosition[i].x)*1e6
# y=N_currPosition[i].y*1e6
# z=N_currPosition[i].z*1e6
# @cuprintln("pos 25 x $x 1e-6, y $y 1e-6, z $z 1e-6")
# @cuprintln("")
# end
# if(i==41)
# x=curForce.x*1e6
# y=curForce.y*1e6
# z=curForce.z*1e6
# @cuprintln("curForce x $x 1e-6, y $y 1e-6, z $z 1e-6")
# x=(N_currPosition[i].x-0.004)*1e6
# y=N_currPosition[i].y*1e6
# z=N_currPosition[i].z*1e6
# @cuprintln("pos x $x 1e-6, y $y 1e-6, z $z 1e-6")
# @cuprintln("")
# end
####poisson
@inbounds if(N_material[i].poisson)
@inbounds N_poissonStrain[i]=strain(i,N_material[i].poisson,i, N_edgeID, N_edgeFirst, E_axis, E_strain, E_material, N_restrained[i], N_material[i])
end
end
end
return
end
function run_updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement, N_angle,N_currPosition,
N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_fixedDisplacement,N_moment,N_orient,N_edgeID,N_edgeFirst,N_material,N_poissonStrain,
E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,E_axis, E_strain,E_material)
N=length(N_intForce)
numblocks = ceil(Int, N/256)
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
@cuda threads=256 blocks=numblocks updateNodes!(dt,currentTimeStep,N_position, N_restrained,N_displacement,
N_angle,N_currPosition,N_linMom,N_angMom,N_intForce,N_intMoment,N_force,N_fixedDisplacement,N_moment,N_orient,N_edgeID,N_edgeFirst,N_material,N_poissonStrain,
E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,E_axis, E_strain,E_material)
end
end
############################
function strain(i,poissonStrain,id,N_edgeID,N_edgeFirst, E_axis, E_strain,E_material,fixed,mat)
###if no connections in the positive and negative directions of a particular axis, strain is zero
###if one connection in positive or negative direction of a particular axis, strain is that strain - ?? and force or constraint?
###if connections in both the positive and negative directions of a particular axis, strain is the average.
# intStrRet= [0.0, 0.0, 0.0] ###intermediate strain return value. axes according to linkAxis enum
# numBondAxis = [0,0,0]; ###number of bonds in this axis (0,1,2). axes according to linkAxis enum
# tension = [false,false,false];
intStrRet1=0.0
intStrRet2=0.0
intStrRet3=0.0
numBondAxis1=0.0
numBondAxis2=0.0
numBondAxis3=0.0
tension1=false
tension2=false
tension3=false
N,M=size(N_edgeID)
for j in 1:M
@inbounds linkID=N_edgeID[id,j]
# @cuprintln("id $id, j $j, linkID $linkID")
if (linkID!=-1)
# if (E_strain[j]!=0.0)
@inbounds axis= normalizeVector3(E_axis[linkID])
@inbounds strain1=axialStrain( N_edgeFirst[id,j],E_strain[linkID],E_material[linkID])
# if (E_strain[j]!=0.0)
# @cuprint("strain1 $strain1")
# end
x= abs(convert(Float64,axis.x))*strain1 #todo change for general axis
y= abs(convert(Float64,axis.y))*strain1 #todo change for general axis
z= abs(convert(Float64,axis.z))*strain1 #todo change for general axis
if (axis.x!=0.0)
intStrRet1+=x
numBondAxis1+=1
# if(i==32)
# @cuprintln("strain1 x $(strain1)")
# end
end
if (axis.y!=0.0)
intStrRet2+=y
numBondAxis2+=1
end
if (axis.z!=0.0)
intStrRet3+=z
numBondAxis3+=1
end
# end
end
end
# @cuprintln("intStrRet 11 x $(intStrRet1*1e6) *1e-6, y $(intStrRet2*1e6) *1e-6, z $(intStrRet3*1e6) *1e-6")
# for i =1:3
if (numBondAxis1>1.0)
intStrRet1=intStrRet1 /numBondAxis1 ###average
end
if (poissonStrain)
tension1 = ((numBondAxis1==2.0) || (fixed&&numBondAxis1==1.0))
#(ext && (numBondAxis[i]==1 && (ext.isFixed((dofComponent)(1<<i)) || ext.force()[i] != 0)))); #if both sides pulling, or just one side and a fixed or forced voxel...
end
if (numBondAxis2>1.0)
intStrRet2=intStrRet2 /numBondAxis2 ###average
end
if (poissonStrain)
tension2 = ((numBondAxis2==2.0) || (fixed&&numBondAxis2==1.0))
#(ext && (numBondAxis[i]==1 && (ext.isFixed((dofComponent)(1<<i)) || ext.force()[i] != 0)))); #if both sides pulling, or just one side and a fixed or forced voxel...
end
if (numBondAxis3>1.0)
intStrRet3=intStrRet3 /numBondAxis3 ###average
end
if (poissonStrain)
tension3 = ((numBondAxis3==2.0) || (fixed&&numBondAxis3==1.0))
#(ext && (numBondAxis[i]==1 && (ext.isFixed((dofComponent)(1<<i)) || ext.force()[i] != 0)))); #if both sides pulling, or just one side and a fixed or forced voxel...
end
# end
# if(i==32)
# @cuprintln("intStrRet 1 x $(intStrRet1) , y $(intStrRet2) , z $(intStrRet3)")
# @cuprintln("numBondAxis x $(numBondAxis1) , y $(numBondAxis2) , z $(numBondAxis3) ")
# end
if (poissonStrain)
if (!(tension1 && tension2 && tension3 )) ###if at least one isn't in tension
add = 0.0;
# for i =1:3
if (tension1)
end
# end
# @cuprintln("add x $(add*1e6)")
# @cuprintln("mat.nu x $(mat.nu)")
# value = pow((1.0 + add),(-mat.nu))-1.0 #((1.0 + add)^(-mat.nu)) - 1.0;
value = CUDA.pow( 1.0 + add, -mat.nu) - 1.0;
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# if(i==32)
# @cuprintln("value x $(value)")
# @cuprintln("mat.nu x $(mat.nu)")
# @cuprintln("add x $(add)")
# end
# value =((1.0 + add)^(-roundd(mat.nu,10e5))) - 1.0;
# @cuprintln("value x $(value*1e6)")
# value=0.0
# for i =1:3
if (!tension1)
intStrRet1=value;
end
if (!tension2)
intStrRet2=value;
end
if (!tension3)
intStrRet3=value;
end
# end
end
end
# if(i==32)
# @cuprintln("intStrRet 2 x $(intStrRet1*1e6) *1e-6, y $(intStrRet2*1e6) *1e-6, z $(intStrRet3*1e6) *1e-6")
# end
intStrRet= Vector3(intStrRet1,intStrRet2,intStrRet3); ###intermediate strain return value. axes according to linkAxis enum
# @cuprintln("intStrRet x $(intStrRet1*1e6) *1e-6, y $(intStrRet2*1e6) *1e-6, z $(intStrRet3*1e6) *1e-6")
# @cuprintln("numBondAxis x $(numBondAxis1) , y $(numBondAxis2) , z $(numBondAxis3) ")
# if tension1
# tension1=1.0
# else
# tension1=0.0
# end
# if tension2
# tension2=1.0
# else
# tension2=0.0
# end
# if tension3
# tension3=1.0
# else
# tension3=0.0
# end
# @cuprintln("tension x $(tension1) , y $(tension2) , z $(tension3) ")
return intStrRet
end
function axialStrain( positiveEnd,strain,mat)
#strainRatio = pVPos->material()->E/pVNeg->material()->E;
strainRatio=convert(Float64,mat.strainRatio)
# positiveEnd=true
return positiveEnd ? 2.0 *strain*strainRatio/(1.0+strainRatio) : 2.0*strain/(1.0+strainRatio)
end