Newer
Older
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
E::Float64
mass::Float64
nu::Float64
rho::Float64
b::Float64
h::Float64
L::Float64
area::Float64
I::Float64
J::Float64
G::Float64
a1::Float64
a2::Float64
b1::Float64
b2::Float64
b3::Float64
massInverse::Float64
momentInertiaInverse::Float64
inertia::Float64
zeta::Float64
zetaCollision::Float64
muStatic::Float64
muKinetic::Float64
nomSize::Float64
sqA1::Float64
sqA2xIp::Float64
sqB1::Float64
sqB2xFMp::Float64
sqB3xIp::Float64
_2xSqMxExS::Float64
function material()
E=2000
mass=10
nu=0.35
rho=7.85e-9
b=2.38
h=2.38
L=75
area=b*h
I=b*h^3/12
J=b*h*(b*b+h*h)/12
G = E * 1 / 3
a1=E*b*h/L
a2=G*J/L
b1=12*E*I/(L^3)
b2=6*E*I/(L^2)
b3=2*E*I/(L)
massInverse=1.0/mass
momentInertiaInverse=1.92e-6
inertia=1/momentInertiaInverse
zeta=1.0
zetaCollision=0.0
muStatic= 2.0
muKinetic= 0.1
nomSize=1.0
sqA1=sqrt(a1)
sqA2xIp=sqrt(a2*L*L/6.0)
sqB1=sqrt(b1)
sqB2xFMp=sqrt(b2*L/2)
sqB3xIp=sqrt(b3*L*L/6.0)
_2xSqMxExS = (2.0*sqrt(mass*E*nomSize))
new(E,mass,nu,rho,b,h,L,area,I,J,G,a1,a2,b1,b2,b3,massInverse,momentInertiaInverse,inertia,zeta,zetaCollision,muStatic,muKinetic,nomSize,sqA1,sqA2xIp,sqB1,sqB2xFMp,sqB3xIp,_2xSqMxExS)
end
function material(E,mass,nu,rho,b,h,L,momentInertiaInverse,zeta,zetaCollision,muStatic,muKinetic,nomSize)
area=b*h
I=b*h^3/12
J=b*h*(b*b+h*h)/12
G = E * 1 / 3
a1=E*b*h/L
a2=G*J/L
b1=12*E*I/(L^3)
b2=6*E*I/(L^2)
b3=2*E*I/(L)
massInverse=1.0/mass
inertia=1/momentInertiaInverse
sqA1=sqrt(a1)
sqA2xIp=sqrt(a2*L*L/6.0)
sqB1=sqrt(b1)
sqB2xFMp=sqrt(b2*L/2)
sqB3xIp=sqrt(b3*L*L/6.0)
_2xSqMxExS = (2.0*sqrt(mass*E*nomSize))
new(E,mass,nu,rho,b,h,L,area,I,J,G,a1,a2,b1,b2,b3,massInverse,momentInertiaInverse,inertia,zeta,zetaCollision,muStatic,muKinetic,nomSize,sqA1,sqA2xIp,sqB1,sqB2xFMp,sqB3xIp,_2xSqMxExS)
end
end
struct voxelMaterial
E::Float64
mass::Float64
nu::Float64
rho::Float64
massInverse::Float64
momentInertiaInverse::Float64
inertia::Float64
zetaInternal::Float64
zetaGlobal::Float64
zetaCollision::Float64
muStatic::Float64
muKinetic::Float64
nomSize::Float64
_2xSqMxExS::Float64
eHat::Float64
cTE::Float64
linear::Bool
poisson::Bool
function voxelMaterial()
E=2000
mass=10
nu=0.35
rho=7.85e-9
massInverse=1.0/mass
nomSize=1.0
inertia= mass*nomSize*nomSize / 6.0
momentInertiaInverse=1.0/inertia
# momentInertiaInverse=1.92e-6
zetaInternal=1.0
zetaGlobal=0.2
zetaCollision=0.0
muStatic= 2.0
muKinetic= 0.1
_2xSqMxExS = (2.0*sqrt(mass*E*nomSize))
eHat=E/((1.0-2.0*nu)*(1.0+nu));
cTE=0.0
linear=true
poisson=false
scale=0.0 # if 0 then not multiscale
new(E,mass,nu,rho,massInverse,momentInertiaInverse,inertia,zetaInternal,zetaGlobal,zetaCollision,muStatic,muKinetic,nomSize,_2xSqMxExS,eHat,cTE,linear,poisson,scale)
function voxelMaterial(E,mass,nu,rho,zetaInternal,zetaGlobal,zetaCollision,muStatic,muKinetic,nomSize,linear,poisson,cTE,scale)
massInverse=1.0/mass
inertia= mass*nomSize*nomSize / 6.0 #simple 1D approx
momentInertiaInverse= round(1.0/inertia;digits=8)
# momentInertiaInverse=1.92e-6
_2xSqMxExS = (2.0*sqrt(mass*E*nomSize))
eHat=E/((1.0-2.0*nu)*(1.0+nu));
new(E,mass,nu,rho,massInverse,momentInertiaInverse,inertia,zetaInternal,zetaGlobal,zetaCollision,muStatic,muKinetic,nomSize,_2xSqMxExS,eHat,cTE,linear,poisson,scale)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
end
end
struct edgeMaterial
E::Float64
nu::Float64
rho::Float64
b::Float64
h::Float64
L::Float64
area::Float64
I::Float64
J::Float64
G::Float64
a1::Float64
a2::Float64
b1::Float64
b2::Float64
b3::Float64
sqA1::Float64
sqA2xIp::Float64
sqB1::Float64
sqB2xFMp::Float64
sqB3xIp::Float64
dampingM::Float64
loaded::Float64
strainRatio::Float64
eHat::Float64
cTE::Float64
linear::Bool
poisson::Bool
sigmaYield::Float64
sigmaFail::Float64
epsilonYield::Float64
epsilonFail::Float64
strainData::SVector{6, Float64}
stressData::SVector{6, Float64}
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
function edgeMaterial()
E=2000
mass=10.0
nu=0.35
rho=7.85e-9
b=2.38
h=2.38
L=75
area=b*h
I=b*h^3/12
J=b*h*(b*b+h*h)/12
G = E * 1 / 3
a1=E*b*h/L
a2=G*J/L
b1=12*E*I/(L^3)
b2=6*E*I/(L^2)
b3=2*E*I/(L)
sqA1=sqrt(a1)
sqA2xIp=sqrt(a2*L*L/6.0)
sqB1=sqrt(b1)
sqB2xFMp=sqrt(b2*L/2)
sqB3xIp=sqrt(b3*L*L/6.0)
zeta=1.0
dampingM=2.0*sqrt(mass)*zeta
loaded=0.0
strainRatio=1.0
eHat=E/((1.0-2.0*nu)*(1.0+nu));
linear=true
poisson=false
sigmaYield=-1.0
sigmaFail=-1.0
epsilonYield=-1.0
epsilonFail=10000*E
strainData=SVector(0.0, -1.0,-1.0,-1.0,-1.0,-1.0)
stressData=SVector(0.0, -1.0,-1.0,-1.0,-1.0,-1.0)
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
cTE=0.0
new(E,nu,rho,b,h,L,area,I,J,G,a1,a2,b1,b2,b3,sqA1,sqA2xIp,sqB1,sqB2xFMp,sqB3xIp,dampingM,loaded,strainRatio,eHat,cTE,linear,poisson,sigmaYield,sigmaFail,epsilonYield,epsilonFail,strainData,stressData)
end
function edgeMaterial(mat,E,strainData,stressData,sigmaYield ,sigmaFail,epsilonYield,epsilonFail)
linear=false
new(E,mat.nu,mat.rho,mat.b,mat.h,mat.L,mat.area,mat.I,mat.J,mat.G,mat.a1,mat.a2,mat.b1,mat.b2,mat.b3,mat.sqA1,mat.sqA2xIp,mat.sqB1,mat.sqB2xFMp,mat.sqB3xIp,mat.dampingM,mat.loaded,mat.strainRatio,mat.eHat,mat.cTE,
linear,mat.poisson,sigmaYield ,sigmaFail,epsilonYield,epsilonFail,strainData,stressData)
end
function edgeMaterial(E,mass,nu,rho,b,h,L,loaded,strainRatio,linear,poisson,cTE)
area=b*h
I=b*h^3/12
J=b*h*(b*b+h*h)/12
G = E / (2.0*(1.0+nu))
a1=E*b*h/L
a2=G*J/L
b1=12*E*I/(L^3)
b2=6*E*I/(L^2)
b3=2*E*I/(L)
sqA1=sqrt(a1)
sqA2xIp=sqrt(a2*L*L/6.0)
sqB1=sqrt(b1)
sqB2xFMp=sqrt(b2*L/2)
sqB3xIp=sqrt(b3*L*L/6.0)
zeta=1.0
dampingM=2.0*sqrt(mass)*zeta
eHat=E/((1.0-2.0*nu)*(1.0+nu))
sigmaYield=-1.0
sigmaFail=-1.0
epsilonYield=-1.0
strainData=SVector(0.0,-1.0,-1.0,-1.0,-1.0,-1.0)
stressData=SVector(0.0,-1.0,-1.0,-1.0,-1.0,-1.0)
new(E,nu,rho,b,h,L,area,I,J,G,a1,a2,b1,b2,b3,sqA1,sqA2xIp,sqB1,sqB2xFMp,sqB3xIp,dampingM,loaded,strainRatio,eHat,cTE,linear,poisson,sigmaYield,sigmaFail,epsilonYield,epsilonFail,strainData,stressData)
end
end
struct DOF
x::Bool
y::Bool
z::Bool
rx::Bool
ry::Bool
rz::Bool
function DOF()
x=false;
y=false;
z=false;
rx=true;
ry=true;
rz=true;
new(x,y,z,rx,ry,rz)
end
function DOF(x,y,z,rx,ry,rz)
new(x,y,z,rx,ry,rz)
end
end
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
function setModelBilinear(mat, plasticModulus, yieldStress, failureStress=-1.0)
# if (youngsModulus<=0){
# error = "Young's modulus must be positive";
# return false;
# }
# if (plasticModulus<=0 || plasticModulus>=youngsModulus){
# error = "Plastic modulus must be positive but less than Young's modulus";
# return false;
# }
# if (yieldStress<=0){
# error = "Yield stress must be positive";
# return false;
# }
# if (failureStress != -1.0f && failureStress <= yieldStress){
# error = "Failure stress must be positive and greater than the yield stress";
# return false;
# }
youngsModulus=mat.E
yieldStrain = yieldStress / youngsModulus;
tmpfailureStress = failureStress; #create a dummy failure stress if none was provided
if (tmpfailureStress == -1)
tmpfailureStress = 3.0 * yieldStress;
end
tM = plasticModulus;
tB = yieldStress-tM*yieldStrain; #y-mx=b
tmpfailStrain = (tmpfailureStress-tB)/tM; # (y-b)/m = x
# println(yieldStrain)
# println(tmpfailStrain)
strainData=SVector(0.0, yieldStrain, (yieldStrain+tmpfailStrain)/2.0,tmpfailStrain);#add in the zero data point (required always)
stressData=SVector(0.0, yieldStress, (yieldStress+tmpfailureStress)/2.0,tmpfailureStress);
# linear = false;
# E=youngsModulus;
sigmaYield = yieldStress;
sigmaFail = failureStress;
epsilonYield = yieldStrain;
epsilonFail = (failureStress == -1.0) ? -1.0 : tmpfailStrain
# println(epsilonYield)
# println(epsilonFail)
# return updateDerived();
mat=edgeMaterial(mat,mat.E,strainData,stressData,sigmaYield ,sigmaFail,epsilonYield,epsilonFail)
return mat
end
function setYieldFromData(mat,strainData,stressData,percentStrainOffset,E,sigmaFail,epsilonFail)
sigmaYield = -1.0; #assume we fail until we succeed.
epsilonYield = -1.0; #assume we fail until we succeed.
oM = mat.E; #the offset line slope (y=Mx+B)
oB = (-percentStrainOffset/100.0*oM); #offset line intercept (100 factor turns percent into absolute
# assert(strainData.size() == stressData.size());
# assert(strainData.size() > 2); # more than 2 data points (more than bilinear)
# dataPoints = length(strainData)-1;
# for i = 2:dataPoints-1
# x1=strainData[i];
# x2=strainData[i+1];
# y1=stressData[i];
# y2=stressData[i+1];
# tM = (y2-y1)/(x2-x1); #temporary slope
# tB = y1-tM*x1; #temporary intercept
# if (oM!=tM) #if not parallel lines...
# xIntersect = (tB-oB)/(oM-tM);
# if (xIntersect>x1 && xIntersect<x2) #if intersects at this segment...
# percentBetweenPoints = (xIntersect-x1)/(x2-x1);
# sigmaYield = y1+percentBetweenPoints*(y2-y1);
# epsilonYield = xIntersect;
# println("here")
# mat=edgeMaterial(mat,E,strainData,stressData,sigmaYield ,sigmaFail,epsilonYield,epsilonFail)
# return true,mat;
# end
# end
# end
# println("here1")
sigmaYield=stressData[3]
epsilonYield=strainData[3]
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
sigmaYield = sigmaFail
epsilonYield = epsilonFail
mat=edgeMaterial(mat,E,strainData,stressData,sigmaYield ,sigmaFail,epsilonYield,epsilonFail)
return false,mat;
end
function setModel(mat,dataPointCount, strainData, stressData)
#Pre-checks
# if (pStrainValues==0 && pStressValues==0) #if first data point is 0,0, ignore it
# pStrainValues++; #advance the pointers...
# pStressValues++;
# dataPointCount-=1; #decrement the count
# end
# if (dataPointCount<=0)
# error = "Not enough data points";
# return false;
# end
# if (pStrainValues<=0 || pStressValues<=0)
# error = "First stress and strain data points negative or zero";
# return false;
# end
#Copy the data into something more usable (and check for monotonically increasing)
# tmpStrainData=[0]
# tmpStressData=[0]
# tmpStrainData.push_back(0); #add in the zero data point (required always)
# tmpStressData.push_back(0);
# sweepStrain = 0.0
# sweepStress = 0.0;
# for i = 1:dataPointCount
# thisStrain = *(pStrainValues+i); #grab the values
# thisStress = *(pStressValues+i);
# if (thisStrain <= sweepStrain)
# error = "Out of order strain data";
# return false;
# end
# if (thisStress <= sweepStress)
# error = "Stress data is not monotonically increasing";
# end
# if (i>0 && (thisStress-sweepStress)/(thisStrain-sweepStrain) > tmpStressData[0]/tmpStrainData[0])
# error = "Slope of stress/strain curve should never exceed that of the first line segment (youngs modulus)";
# return false;
# end
# sweepStrain = thisStrain;
# sweepStress = thisStress;
# tmpStrainData.push_back(thisStrain); #add to the temporary vector
# tmpStressData.push_back(thisStress);
# end
#at this point, we know we have valid data and will return true
# strainData = tmpStrainData;
# stressData = tmpStressData;
E=stressData[2]/strainData[2]; #youngs modulus is the inital slope
sigmaFail = stressData[dataPointCount]; #failure stress is the highest stress data point
epsilonFail = strainData[dataPointCount]; #failure strain is the highest strain data point
linear = (dataPointCount==1);
if (dataPointCount == 1 || dataPointCount == 2) #linear or bilinear
sigmaYield = stressData[2];
epsilonYield = strainData[2];
else #.2% (0.002) strain offset to find a good yield point...
percentStrainOffset=0.2;
linera,mat=setYieldFromData(mat,strainData,stressData,percentStrainOffset,E,sigmaFail,epsilonFail);
end
return mat
end
function getRelativePosition(index,size) # todo check if more efficient to encode it
if index==0
return Vector3(0,0,0)
elseif index==1
return Vector3(-size,-size,-size)
elseif index==2
return Vector3(-size, -size,size)
elseif index==3
return Vector3(-size, size, -size)
elseif index==4
return Vector3(-size, size, size)
elseif index==5
return Vector3( size,-size,-size)
elseif index==6
return Vector3( size, -size,size)
elseif index==7
return Vector3( size, size, -size)
elseif index==8
return Vector3( size, size, size)
end
return Vector3(0,0,0)