Newer
Older
Amira Abdel-Rahman
committed
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
function ConTop2D(Macro_struct, Micro_struct, penal, rmin)
## USER-DEFINED LOOP PARAMETERS
maxloop = 200; E0 = 1; Emin = 1e-9; nu = 0.3;
Macro_length = Macro_struct[1]; Macro_width = Macro_struct[2];
Micro_length = Micro_struct[1]; Micro_width = Micro_struct[2];
Macro_nelx = Macro_struct[3]; Macro_nely = Macro_struct[4];
Micro_nelx = Micro_struct[3]; Micro_nely = Micro_struct[4];
Macro_Vol = Macro_struct[5]; Micro_Vol = Micro_struct[5];
Macro_Elex = Macro_length/Macro_nelx; Macro_Eley = Macro_width/Macro_nely;
Macro_nele = Macro_nelx*Macro_nely; Micro_nele = Micro_nelx*Micro_nely;
Macro_ndof = 2*(Macro_nelx+1)*(Macro_nely+1);
# PREPARE FINITE ELEMENT ANALYSIS
[load_x, load_y] = meshgrid(Macro_nelx, Macro_nely/2);
loadnid = load_x*(Macro_nely+1)+(Macro_nely+1-load_y);
F = sparse(2*loadnid[:], 1, -1, 2*(Macro_nelx+1)*(Macro_nely+1),1);
U = zeros(Macro_ndof,1);
[fixed_x, fixed_y] = meshgrid(0, 0:Macro_nely);
fixednid = fixed_x*(Macro_nely+1)+(Macro_nely+1-fixed_y);
fixeddofs = [2*fixednid[:]; 2*fixednid[:]-1];
freedofs = setdiff(1:Macro_ndof,fixeddofs);
nodenrs = reshape(1:(Macro_nely+1)*(Macro_nelx+1),1+Macro_nely,1+Macro_nelx);
edofVec = reshape(2*nodenrs( [1:end-1,1:end-1] )+1,Macro_nele,1);
edofMat = repmat(edofVec,1,8)+repmat( [0 1 2*Macro_nely+[2 3 0 1] -2 -1],Macro_nele,1);
iK = reshape(kron(edofMat,ones(8,1))',64*Macro_nele,1);
jK = reshape(kron(edofMat,ones(1,8))',64*Macro_nele,1);
# PREPARE FILTER
Macro_H,Macro_Hs = filtering2d(Macro_nelx, Macro_nely, Macro_nele, rmin);
Micro_H,Micro_Hs = filtering2d(Micro_nelx, Micro_nely, Micro_nele, rmin);
# INITIALIZE ITERATION
Macro_x = repmat(Macro_Vol,Macro_nely,Macro_nelx);
Micro_x = ones(Micro_nely,Micro_nelx);
for i = 1:Micro_nelx
for j = 1:Micro_nely
if sqrt((i-Micro_nelx/2-0.5)^2+(j-Micro_nely/2-0.5)^2) < min(Micro_nelx,Micro_nely)/3
Micro_x(j,i) = 0;
end
end
end
beta = 1;
Macro_xTilde = Macro_x; Micro_xTilde = Micro_x;
Macro_xPhys = 1-exp(-beta*Macro_xTilde)+Macro_xTilde*exp(-beta);
Micro_xPhys = 1-exp(-beta*Micro_xTilde)+Micro_xTilde*exp(-beta);
loopbeta = 0; loop = 0; Macro_change = 1; Micro_change = 1;
while loop < maxloop || Macro_change > 0.01 || Micro_change > 0.01
loop = loop+1; loopbeta = loopbeta+1;
# FE-ANALYSIS AT TWO SCALES
DH, dDH = EBHM2D(Micro_xPhys, Micro_length, Micro_width, E0, Emin, nu, penal);
Ke = elementMatVec2D(Macro_Elex/2, Macro_Eley/2, DH);
sK = reshape(Ke[:]*(Emin+Macro_xPhys[:]'.^penal*(1-Emin)),64*Macro_nele,1);
K = sparse(iK,jK,sK); K = (K+K')/2;
U[freedofs,:] = K(freedofs,freedofs)\F(freedofs,:);
# OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
ce = reshape(sum((U[edofMat]*Ke).*U[edofMat],2),Macro_nely,Macro_nelx);
c = sum(sum((Emin+Macro_xPhys.^penal*(1-Emin)).*ce));
Macro_dc = -penal*(1-Emin)*Macro_xPhys.^(penal-1).*ce;
Macro_dv = ones(Macro_nely, Macro_nelx);
Micro_dc = zeros(Micro_nely, Micro_nelx);
for i = 1:Micro_nele
dDHe = [dDH[1,1][i] dDH[1,2][i] dDH[1,3][i];
dDH[2,1][i] dDH[2,2][i] dDH[2,3][i];
dDH[3,1][i] dDH[3,2][i] dDH[3,3][i]];
dKE = elementMatVec2D(Macro_Elex, Macro_Eley, dDHe);
dce = reshape(sum((U[edofMat]*dKE).*U[edofMat],2),Macro_nely,Macro_nelx);
Micro_dc[i] = -sum(sum((Emin+Macro_xPhys.^penal*(1-Emin)).*dce));
end
Micro_dv = ones(Micro_nely, Micro_nelx);
# FILTERING AND MODIFICATION OF SENSITIVITIES
Macro_dx = beta*exp(-beta*Macro_xTilde)+exp(-beta);
Micro_dx = beta*exp(-beta*Micro_xTilde)+exp(-beta);
Macro_dc[:] = Macro_H*(Macro_dc[:].*Macro_dx[:]./Macro_Hs);
Macro_dv[:] = Macro_H*(Macro_dv[:].*Macro_dx[:]./Macro_Hs);
Micro_dc[:] = Micro_H*(Micro_dc[:].*Micro_dx[:]./Micro_Hs);
Micro_dv[:] = Micro_H*(Micro_dv[:].*Micro_dx[:]./Micro_Hs);
# OPTIMALITY CRITERIA UPDATE MACRO AND MICRO ELELMENT DENSITIES
Macro_x, Macro_xPhys, Macro_change = OC(Macro_x, Macro_dc, Macro_dv, Macro_H, Macro_Hs, Macro_Vol, Macro_nele, 0.2, beta);
Micro_x, Micro_xPhys, Micro_change = OC(Micro_x, Micro_dc, Micro_dv, Micro_H, Micro_Hs, Micro_Vol, Micro_nele, 0.2, beta);
Macro_xPhys = reshape(Macro_xPhys, Macro_nely, Macro_nelx);
Micro_xPhys = reshape(Micro_xPhys, Micro_nely, Micro_nelx);
# PRINT RESULTS
# display(" It.:#5i Obj.:#11.4f Macro_Vol.:#7.3f Micro_Vol.:#7.3f Macro_ch.:#7.3f Micro_ch.:#7.3f\n", loop,c,mean(Macro_xPhys[:] ),mean(Micro_xPhys[:] ), Macro_change, Micro_change);
# colormap(gray); imagesc(1-Macro_xPhys); caxis( [0 1] ); axis equal; axis off; drawnow;
# colormap(gray); imagesc(1-Micro_xPhys); caxis( [0 1] ); axis equal; axis off; drawnow;
## UPDATE HEAVISIDE REGULARIZATION PARAMETER
if beta < 512 && (loopbeta >= 50 || Macro_change <= 0.01 || Micro_change <= 0.01)
beta = 2*beta; loopbeta = 0; Macro_change = 1; Micro_change = 1;
display("Parameter beta increased to $beta.");
end
end
end
## SUB FUNCTION:filtering2D
function filtering2d(nelx, nely, nele, rmin)
iH = ones(nele*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for i1 = 1:nelx
for j1 = 1:nely
e1 = (i1-1)*nely+j1;
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (i2-1)*nely+j2;
k = k+1;
iH[k] = e1;
jH[k] = e2;
sH[k] = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));
end
end
end
end
H = sparse(iH,jH,sH); Hs = sum(H,2);
return H,Hs
end
## SUB FUNCTION: EBHM2D
function EBHM2D(den, lx, ly, E0, Emin, nu, penal)
# the initial definitions of the PUC
D0=E0/(1-nu^2)*[1 nu 0; nu 1 0; 0 0 (1-nu)/2]; # the elastic tensor
nely, nelx = size(den);
nele = nelx*nely;
dx = lx/nelx; dy = ly/nely;
Ke = elementMatVec2D(dx/2, dy/2, D0);
Num_node = (1+nely)*(1+nelx);
nodenrs = reshape(1:Num_node,1+nely,1+nelx);
edofVec = reshape(2*nodenrs[1:end-1,1:end-1]+1,nele,1);
edofMat = repmat(edofVec,1,8)+repmat( [0 1 2*nely+[2 3 0 1] -2 -1],nele,1);
# 3D periodic boundary formulation
alldofs = (1:2*(nely+1)*(nelx+1));
n1 = [nodenrs[end,[1,end]],nodenrs[1,[end,1]]];
d1 = reshape( [(2*n1-1);2*n1],1,8);
n3 = [nodenrs[2:end-1,1]',nodenrs[end,2:end-1]];
d3 = reshape( [(2*n3-1);2*n3],1,2*(nelx+nely-2));
n4 = [nodenrs[2:end-1,end]',nodenrs[1,2:end-1]];
d4 = reshape( [(2*n4-1);2*n4],1,2*(nelx+nely-2));
d2 = setdiff(alldofs,[d1,d3,d4] );
e0 = Matrix(1.0I, 3, 3);
ufixed = zeros(8,3);
for j = 1:3
ufixed[3:4,j] = [e0[1,j],e0[3,j]/2;e0[3,j]/2,e0[2,j]]*[lx;0];
ufixed[7:8,j] = [e0[1,j],e0[3,j]/2;e0[3,j]/2,e0[2,j]]*[0;ly];
ufixed[5:6,j] = ufixed[3:4,j]+ufixed[7:8,j];
end
wfixed = [repmat(ufixed[3:4,:],nely-1,1);repmat(ufixed[7:8,:],nelx-1,1)];
# the reduced elastic equilibrium equation to compute the induced displacement field
iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
sK = reshape(Ke[:]*(Emin+den[:]'.^penal*(1-Emin)),64*nelx*nely,1);
K = sparse(iK,jK,sK); K = (K + K')/2;
Kr = [K[d2,d2],K[d2,d3]+K[d2,d4];K[d3,d2]+K[d4,d2],K[d3,d3]+K[d4,d3]+K[d3,d4]+K[d4,d4]];
U[d1,:]= ufixed;
U[[d2,d3],:] = Kr\(-[K[d2,d1];K[d3,d1]+K[d4,d1]]*ufixed-[K[d2,d4];K[d3,d4]+K[d4,d4]]*wfixed);
U[d4,:] = U[d3,:] + wfixed;
# homogenization to evaluate macroscopic effective properties
DH = zeros(3);
qe = Array{Any,2}(undef, 3, 3);
dDH = Array{Any,2}(undef, 3, 3);
cellVolume = lx*ly;
for i = 1:3
for j = 1:3
U1 = U[:,i]; U2 = U[:,j];
qe[i,j] = reshape(sum((U1[edofMat]*Ke).*U2[edofMat],dims=2),nely,nelx)/cellVolume;
DH[i,j] = sum(sum((Emin+den.^penal*(1-Emin)).*qe[i,j] ));
dDH[i,j] = penal*(1-Emin)*den.^(penal-1).*qe[i,j];
end
end
# disp("--- Homogenized elasticity tensor ---"); disp(DH)
return DH, dDH
end
## SUB FUNCTION: elementMatVec2D
function elementMatVec2D(a, b, DH)
GaussNodes = [-1/sqrt(3); 1/sqrt(3)];
GaussWeigh = [1 1];
L = [1 0 0 0; 0 0 0 1; 0 1 1 0];
Ke = zeros(8,8);
for i = 1:2
for j = 1:2
GN_x = GaussNodes[i];
GN_y = GaussNodes[j];
dN_x = 1/4*[-(1-GN_x) (1-GN_x) (1+GN_x) -(1+GN_x)];
dN_y = 1/4*[-(1-GN_y) -(1+GN_y) (1+GN_y) (1-GN_y)];
J = [dN_x; dN_y]*[ -a a a -a; -b -b b b]';
G = [inv(J) zeros(size(J)); zeros(size(J)) inv(J)];
dN[1,1:2:8] = dN_x;
dN[2,1:2:8] = dN_y;
dN[3,2:2:8] = dN_x;
dN[4,2:2:8] = dN_y;
Be = L*G*dN;
Ke = Ke + GaussWeigh[i]*GaussWeigh[j]*det(J)*Be'*DH*Be;
end
end
return Ke
end
## SUB FUNCTION: OC
function OC(x, dc, dv, H, Hs, volfrac, nele, move, beta)
l1 = 0; l2 = 1e9;
while (l2-l1)/(l1+l2) > 1e-4
lmid = 0.5*(l2+l1);
xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/lmid)))));
xTilde[:] = (H*xnew[:] )./Hs; xPhys = 1-exp(-beta*xTilde)+xTilde*exp(-beta);
if sum(xPhys[:] ) > volfrac*nele
l1 = lmid;
else
l2 = lmid;
end
end
change = max(abs(xnew[:]-x[:] )); x = xnew;
return x, xPhys, change
end
#======================================================================================================================#
# Function ConTop2D: #
# A compact and efficient MATLAB code for Concurrent topology optimization of multiscale composite structures #
# in Matlab. #
# #
# Developed by: Jie Gao, Zhen Luo, Liang Xia and Liang Gao* #
# Email: gaoliang@mail.hust.edu.cn (GabrielJie_Tian@163.com) #
# #
# Main references: #
# #
# (1) Jie Gao, Zhen Luo, Liang Xia, Liang Gao. Concurrent topology optimization of multiscale composite structures #
# in Matlab. Accepted in Structural and multidisciplinary optimization. #
# #
# (2) Xia L, Breitkopf P. Design of materials using topology optimization and energy-based homogenization approach in #
# Matlab. # Structural and multidisciplinary optimization, 2015, 52(6): 1229-1241. #
# #
# ********************************************* Disclaimer ******************************************************* #
# The authors reserve all rights for the programs. The programs may be distributed and used for academic and #
# educational purposes. The authors do not guarantee that the code is free from errors,and they shall not be liable #
# in any event caused by the use of the program. #
#======================================================================================================================#