Newer
Older
Amira Abdel-Rahman
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020
#############################################multimaterial############################################################
#Based on: https://link.springer.com/article/10.1007/s00158-013-0999-1
function multitop(nx,ny,tol_out,tol_f,iter_max_in,iter_max_out,p,q,e,v,rf)
anim=Animation()
alpha = zeros(Float64,nx*ny,p)
for i = 1:p
alpha[:,i] .= v[i]
end
# MAKE FILTER
H,Hs = make_filter(nx,ny,rf)
obj=0
change_out = 2*tol_out; iter_out = 0;
while (iter_out < iter_max_out) && (change_out > tol_out)
alpha_old = copy(alpha)
for a = 1:p
for b = a+1:p
obj,alpha = bi_top(a,b,nx,ny,p,v,e,q,alpha,H,Hs,iter_max_in);
end
end
iter_out = iter_out + 1;
change_out = norm(alpha[:].-alpha_old[:],Inf);
display("Iter:$iter_out Obj.:$obj change:$change_out");
# UPDATE FILTER
if (change_out < tol_f) && (rf>3)
tol_f = 0.99*tol_f; rf = 0.99*rf;
H,Hs = make_filter(nx,ny,rf);
end
# SCREEN OUT TEMPORAL TOPOLOGY EVERY 5 ITERATIONS
if mod(iter_out,5)==0
I = make_bitmap(p,nx,ny,alpha);
display(RGB.(I[:,:,1],I[:,:,2],I[:,:,3]))
I = permutedims(I, [3, 1, 2])
img = colorview(RGB, I)
heatmap(img,xaxis=nothing,yaxis=nothing,aspect_ratio=:equal)
frame(anim)
end
end
return anim,alpha
end
function bi_top(a,b,nx,ny,p,v,e,q,alpha_old,H,Hs,maxIter)
alpha = copy(alpha_old)
nu = 0.3;
# PREPARE FINITE ELEMENT ANALYSIS
A11 = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];
A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];
B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];
B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];
KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
nelx=nx
nely=ny
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx)
edofVec = reshape(2*nodenrs[1:end-1,1:end-1].+1,nelx*nely,1)
edofMat = repeat(edofVec,1,8).+repeat([0 1 2*nely.+[2 3 0 1] -2 -1],nelx*nely,1)
iK = convert(Array{Int},reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1))
jK = convert(Array{Int},reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1))
# DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F = sparse([2],[1],[-1.0],2*(nely+1)*(nelx+1),1)
U = zeros(2*(nely+1)*(nelx+1),1)
fixeddofs = union(1:2:2*(nely+1),2*(nelx+1)*(nely+1))
alldofs = 1:(2*(nely+1)*(nelx+1))
freedofs = setdiff(alldofs,fixeddofs)
o=0;alpha_a=0
# inner iteration
for i =0: (maxIter-1)
# FE-ANALYSIS
E = e[1]*alpha[:,1].^q
for phase = 2:p
E = E + e[phase]*alpha[:,phase].^q;
end
sK = reshape(KE[:]*E[:]',64*nelx*nely,1)
K = sparse(vec(iK),vec(jK),vec(sK)); K = (K+K')/2
@timed U[freedofs] = K[freedofs,freedofs] \ Array(F[freedofs])
# Objective function and sensitivity analysis
ce = sum((U[edofMat]*KE).*U[edofMat],dims=2)
o = sum(sum(E.*ce))
# FILTERING OF SENSITIVITIES
dc = 0.0 .-(q .*(e[a].-e[b]).*alpha[:,a].^(q-1)).*ce;
dc = H*(alpha[:,a].*dc)./Hs./max.(1e-3,alpha[:,a])
dc = min.(dc,0.0)
# UPDATE LOWER AND UPPER BOUNDS OF DESIGN VARIABLES
move = 0.2;
r = ones(nx*ny,1)
for k = 1:p
#if (k ~= a) && (k ~= b)
if (k != a) && (k != b)
# display("k $k a $a b $b")
r = r .- alpha[:,k]
end
end
l = max.(0,alpha[:,a] .-move)
u = min.(r,alpha[:,a] .+move)
# OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES
l1 = 0; l2 = 1e9
while (l2-l1)/(l1+l2) > 1e-3
lmid = 0.5*(l2+l1)
alpha_a = max.(l,min.(u,alpha[:,a].*sqrt.(-dc./lmid)));
if sum(alpha_a) > nx*ny*v[a]
l1 = lmid
else
l2 = lmid
end
end
alpha[:,a] = alpha_a
alpha[:,b] = r .-alpha_a
end
return o,alpha
end
########
function multitop_compliant(nx,ny,tol_out,tol_f,iter_max_in,iter_max_out,p,q,e,v,rf,Load,Support,Spring,DOut)
anim=Animation()
alpha = zeros(Float64,nx*ny,p)
for i = 1:p
alpha[:,i] .= v[i]
end
# MAKE FILTER
H,Hs = make_filter(nx,ny,rf)
obj=0
change_out = 2*tol_out; iter_out = 0;
while (iter_out < iter_max_out) && (change_out > tol_out)
alpha_old = copy(alpha)
for a = 1:p
for b = a+1:p
obj,alpha = bi_top_compliant(a,b,nx,ny,p,v,e,q,alpha,H,Hs,iter_max_in);
end
end
iter_out = iter_out + 1;
change_out = norm(alpha[:].-alpha_old[:],Inf);
display("Iter:$iter_out Obj.:$obj change:$change_out");
# UPDATE FILTER
if (change_out < tol_f) && (rf>3)
tol_f = 0.99*tol_f; rf = 0.99*rf;
H,Hs = make_filter(nx,ny,rf);
end
# SCREEN OUT TEMPORAL TOPOLOGY EVERY 5 ITERATIONS
if mod(iter_out,5)==0
I = make_bitmap_compliant(p,nx,ny,alpha);
display(RGB.(I[:,:,1],I[:,:,2],I[:,:,3]))
I = permutedims(I, [3, 1, 2])
img = colorview(RGB, I)
heatmap(img,xaxis=nothing,yaxis=nothing,aspect_ratio=:equal)
frame(anim)
end
end
return anim,alpha
end
function bi_top_compliant(a,b,nx,ny,p,v,e,q,alpha_old,H,Hs,maxIter,Load,Support,Spring,DOut)
alpha = copy(alpha_old)
nu = 0.3;
# PREPARE FINITE ELEMENT ANALYSIS
A11 = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];
A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];
B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];
B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];
KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
nelx=nx
nely=ny
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx)
edofVec = reshape(2*nodenrs[1:end-1,1:end-1].+1,nelx*nely,1)
edofMat = repeat(edofVec,1,8).+repeat([0 1 2*nely.+[2 3 0 1] -2 -1],nelx*nely,1)
iK = convert(Array{Int},reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1))
jK = convert(Array{Int},reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1))
# # DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
# F = sparse([2],[1],[-1.0],2*(nely+1)*(nelx+1),1)
# U = zeros(2*(nely+1)*(nelx+1),1)
# fixeddofs = union(1:2:2*(nely+1),2*(nelx+1)*(nely+1))
# alldofs = 1:(2*(nely+1)*(nelx+1))
# freedofs = setdiff(alldofs,fixeddofs)
# DEFINE LOADS AND SUPPORTS
F = sparse(2 .*Load[:,1] .-2 .+ Load[:,2],ones(size(Load,1)),Load[:,3],2*(nely+1)*(nelx+1),2)
DofDOut = 2 * DOut[1] - 2 +DOut[2]; #only one
Loading
Loading full blame...