Skip to content
Snippets Groups Projects
multiscale.jl 16.1 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
################################################################################
# A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, OCTOBER 1999
# MODIFIED FOR 3D MULTISCALE DESIGN VIA SURROGATE MODEL, LLNL, JULY 2018
#
# This work was produced under the auspices of the U.S. Department of Energy by
# Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
#
# This work was prepared as an account of work sponsored by an agency of the
# United States Government. Neither the United States Government nor Lawrence
# Livermore National Security, LLC, nor any of their employees makes any warranty,
# expressed or implied, or assumes any legal liability or responsibility for the
# accuracy, completeness, or usefulness of any information, apparatus, product, or
# process disclosed, or represents that its use would not infringe privately owned
# rights. Reference herein to any specific commercial product, process, or service
# by trade name, trademark, manufacturer, or otherwise does not necessarily
# constitute or imply its endorsement, recommendation, or favoring by the United
# States Government or Lawrence Livermore National Security, LLC. The views and
# opinions of authors expressed herein do not necessarily state or reflect those
# of the United States Government or Lawrence Livermore National Security, LLC,
# and shall not be used for advertising or product endorsement purposes.
#
# LLNL-CODE-757968
################################################################################

function multiscale(nelx, nely, nelz, volfrac, rmin, truss, Es, vs, minVF, maxVF, maxit)
    anim=Animation()

    # INITIALIZE
    x=zeros(nelx,nely,nelz)
    x[1:nelx, 1:nely, 1:nelz] .= volfrac;
    Gs = Es / (2*(1+vs));
    loop = 0; change = 1.0;
    nnx = nelx+1; nny = nely+1; nnz = nelz+1;
    # colormap(gray); caxis([0.0, 1.0]);
    # maxit=1
    # START ITERATION
    while change > 0.01 && loop < maxit
        loop = loop + 1;
        xold = x;
        # FE-ANALYSIS
        U = FE(nelx, nely, nelz, nnx, nny, nnz, x, truss, Es, vs, Gs);
        # display(U)
        # OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
        c = 0.0; 
        dc = zeros(nelx, nely, nelz);
        for elz = 1:nelz; 
            for ely = 1:nely 
                for elx = 1:nelx
                    KE   = get_KE(truss, x, Es, vs, Gs, elx, ely, elz, false);
                    DKE  = get_KE(truss, x, Es, vs, Gs, elx, ely, elz, true);
                    dofs = get_elem_dofs(nnx, nny, nnz, elx, ely, elz);
                    Ue = U[dofs];
                    c = c + Ue'*KE*Ue;
                    dc[elx,ely,elz] = -Ue'*DKE*Ue;
                end
            end
        end
        # FILTERING OF SENSITIVITIES
        dc   = check(nelx, nely, nelz, rmin, x, dc);
        # DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD
        x    = OC(nelx, nely, nelz, x, volfrac, dc, minVF, maxVF);
        # PRINT RESULTS
        change = maximum((abs.(x-xold)));
        println(" It:$loop Obj:$c Vol:$(mean(x)) ch:$change ")
        
        if mod(loop,5)==0
            display(topplot3d(x,nelx, nely, nelz))
            topplot3d(x,nelx, nely, nelz)
            frame(anim)
        end

        # disp([" It.: " sprintf("#4i",loop) " Obj.: " sprintf("#10.4f",c)  " Vol.: " sprintf("#6.3f",sum(sum(sum(x)))/(nelx*nely*nelz)) " ch.: " sprintf("#6.3f",change )])
        # PLOT DENSITIES
        # viz3d(nelx, nely, nelz, x, volfrac, nelx==1);
        # SAVE PARAMETER VALUES (ELEMENT DENSITIES AND ROD DIAMETERS)
        # xOut = x[:]
        # # reshape(x,[],1);             
        # # save("-ascii","elVolFrac.txt", "xOut");
        # dOut = get_d(truss,x)[:]
        # # reshape(get_d(truss,x),[],1); 
        # # save("-ascii","elRodDiam.txt","dOut");
    end
    return x,anim
end

######### OPTIMALITY CRITERIA UPDATE ###########################################
function OC(nelx, nely, nelz, x, volfrac, dc, minVF, maxVF)
    l1 = 0; l2 = 100000; move = 0.2;
    xnew=zeros(size(x))
    while (l2-l1 > 1e-4)
        lmid = 0.5*(l2 + l1);
        xnew = max.(minVF, max.(x .- move, min.(maxVF, min.(x .+move,x.*sqrt.(abs.(0.0 .-dc./lmid))))));
        # xnew = max.(0,max.(x.-move,min.(1,min.(x.+move,x.*sqrt.((0.0.-dc)./dv./lmid)))))

        if sum(sum(sum(xnew))) - volfrac*nelx*nely*nelz > 0;
            l1 = lmid;
        else
            l2 = lmid;
        end
    end
    return xnew
end

######### MESH-INDEPENDENCY FILTER #############################################
function check(nelx, nely, nelz, rmin, x, dc)
    dcn=zeros(size(dc));
    for elz = 1:nelz; 
        for ely = 1:nely; 
            for elx = 1:nelx
                sum = 0.0;
                for k = max(elz-round(rmin),1):min(elz+round(rmin),nelz)
                    for j = max(ely-round(rmin),1):min(ely+round(rmin),nely)
                        for i = max(elx-round(rmin),1):min(elx+round(rmin),nelx)
                            fac = rmin - sqrt((elx-i)^2+(ely-j)^2+(elz-k)^2);
                            sum = sum + max(0,fac);
                            dcn[elx,ely,elz] = dcn[elx,ely,elz] + max(0,fac)*x[Int(i),Int(j),Int(k)]*dc[Int(i),Int(j),Int(k)];
                        end
                    end
                end
                dcn[elx,ely,elz] = dcn[elx,ely,elz] / (x[elx,ely,elz]*sum);
            end; 
        end; 
    end
    return dcn
end

######### FE-ANALYSIS ##########################################################
function FE(nelx, nely, nelz, nnx, nny, nnz, x, truss, Es, vs, Gs)
    K = spzeros(3*nnx*nny*nnz, 3*nnx*nny*nnz);
    F = spzeros(3*nnx*nny*nnz);
    U = spzeros(3*nnx*nny*nnz);
    for elz = 1:nelz; 
        for ely = 1:nely; 
            for elx = 1:nelx
                KE   = get_KE(truss, x, Es, vs, Gs, elx, ely, elz, false);
                dofs = get_elem_dofs(nnx, nny, nnz, elx, ely, elz);
                # display(size(KE))
                # display(size(dofs))
                # display(size(K[dofs,dofs]))
                K[dofs,dofs] .= K[dofs,dofs] .+ KE;
            end; 
        end; 
    end
    # DEFINE LOADS AND SUPPORTS(HALF MBB-BEAM)
    coords = zeros(nnx*nny*nnz,3);
    n = 0;
    for k = 1:nnz; 
        for j = 1:nny; 
            for i = 1:nnx
                n = n+1; 
                coords[n,1] = i-1; 
                coords[n,2] = j-1; 
                coords[n,3] = k-1;
            end
        end 
    end
    midplane_nodes = findall(x->x==0, coords[:,2]);
    loaded_nodes   = intersect(findall(x->x==nelz, coords[:,3]), findall(x->x==0, coords[:,2]));
    fixed_nodes    = intersect(findall(x->x==0, coords[:,3]), findall(x->x==nely, coords[:,2]));
    fixeddofs      = zeros(Int,size(midplane_nodes,1) + 2*size(fixed_nodes,1));
    for i = loaded_nodes'
        F[3*(i-1)+3] = -1.0/nnx; 
    end
    n = 1;
    for i = midplane_nodes'
        for j=[2]
            fixeddofs[n] = 3*(i-1)+j; 
            n =n+1; 
        end 
    end
    for i = fixed_nodes' 
        for j=[1,3] 
            fixeddofs[n] = 3*(i-1)+j; 
            n =n+1; 
        end
    end
    alldofs   = 1:3*nnx*nny*nnz;
    freedofs  = setdiff(alldofs,fixeddofs);
    # display(K)

    # SOLVING
    U[freedofs]  .= K[freedofs,freedofs] \ Array(F[freedofs]);
    U[fixeddofs] .= 0;
    return U
end

######### ELEMENT AND NODE NUMBERING IN 3D MESH ################################
function get_num(nx, ny, nz, i, j, k)
    num = (nx*ny)*(k-1) + nx*(j-1) + i;
    return num
end

######### GLOBAL DOFS FOR A GIVEN ELEMENT ######################################
function  get_elem_dofs(nnx, nny, nnz, elx, ely, elz)
    n = get_num(nnx, nny, nnz, elx, ely, elz);
    N = [n; n+1; n+nnx+1; n+nnx; n+nnx*nny; n+nnx*nny+1; n+nnx*nny+nnx+1; n+nnx*nny+nnx];
    dofs = zeros(Int,24); 
    for j = 1:8; 
        for i = 1:3; 
            dofs[3*(j-1)+i] = Int(3*(N[j]-1)+i); 
        end
    end
    return dofs
end

######### INTEGRATE ELASTICITY TENSOR CE TO GET KE #############################
function get_KE(truss, x, Es, vs, Gs, i, j, k, deriv)
    KE = zeros(24,24);
    CE = get_CE(truss, x, Es, vs, Gs, i, j, k, deriv);
    
    for l = 1:8
        r = (sqrt(3)/3) * (-1 + 2*(sum([2,3,6,7].==l)>0)); rp = (1+r); rm = (1-r);
        s = (sqrt(3)/3) * (-1 + 2*(sum([3,4,7,8].==l)>0)); sp = (1+s); sm = (1-s);
        t = (sqrt(3)/3) * (-1 + 2*(sum([5,6,7,8].==l)>0)); tp = (1+t); tm = (1-t);
        DN = [ -sm*tm -rm*tm -rm*sm;
                sm*tm -rp*tm -rp*sm;
                sp*tm  rp*tm -rp*sp;
                -sp*tm  rm*tm -rm*sp;
                -sm*tp -rm*tp  rm*sm;
                sm*tp -rp*tp  rp*sm;
                sp*tp  rp*tp  rp*sp;
                -sp*tp rm*tp  rm*sp] ./ 8;
        B = DN * 2*Matrix(1.0I, 3, 3); 
        G = kron(B', Matrix(1.0I, 3, 3)); 
        KE = KE + G' * CE * G / 8;
    end
    # display(KE)
    return KE
end

######### DEFINE ELASTICITY TENSOR FOR DIFFERENT TRUSSES #######################
function get_CE(truss, x, Es, vs, Gs, i, j, k, D)
    p = x[i, j, k];
    if truss== "iso"       
        TM = iso_moduli
    elseif truss== "octet"  
        TM = octet_moduli
    elseif truss== "orc"  
        TM = orc_moduli
    elseif truss== "bound"  
        TM = bound_moduli
    else                          
        TM = simp_moduli
    end

    E, v, G = TM(p,Es,vs,Gs,false);  
    if D
        DE, Dv, DG = TM(p,Es,vs,Gs,true); 
    end
    if D == 0
        C1111 = E * (1.0 - v) / (1.0 - v - 2*v^2);
        C1122 = (E * v) / (1.0 - v - 2*v^2);
        C1212 = G;
    else # return the deriviatives instead
        C1111 = ((DE*(1-v)-E*Dv)*(1-v-2*v^2)-E*(1-v)*(-Dv-4*v*Dv)) / (1-v-2*v^2)^2;
        C1122 = ((DE*v+E*Dv)*(1-v-2*v^2)-E*v*(-Dv-4*v*Dv)) / (1-v-2*v^2)^2;
        C1212 = DG;
    end
    CE = [C1111   0     0     0   C1122   0     0     0   C1122;
            0   C1212   0   C1212   0     0     0     0     0  ;
            0     0   C1212   0     0     0   C1212   0     0  ;
            0   C1212   0   C1212   0     0     0     0     0  ;
        C1122   0     0     0   C1111   0     0     0   C1122;
            0     0     0     0     0   C1212   0   C1212   0  ;
            0     0   C1212   0     0     0   C1212   0     0  ;
            0     0     0     0     0   C1212   0   C1212   0  ;
        C1122   0     0     0   C1122   0     0     0   C1111];
    return CE
end

######### TRUSS-SPECIFIC MECHANICS MODELS ######################################
function iso_moduli(p, Es, vs, Gs, deriv)
    E = Es * (( 2.05292e-01 - 3.30265e-02*vs) * (p^(1-deriv)) * (1+0*deriv) + 
            ( 8.12145e-02 + 2.72431e-01*vs) * (p^(2-deriv)) * (1+1*deriv) + 
            ( 6.49737e-01 - 2.42374e-01*vs) * (p^(3-deriv)) * (1+2*deriv));
    v =      ( 2.47760e-01 + 1.69804e-02*vs) * (1-deriv) +  
        (-1.59293e-01 + 7.38598e-01*vs) * (p^(1-deriv)) * (1+0*deriv) + 
        (-1.86279e-01 - 4.83229e-01*vs) * (p^(2-deriv)) * (1+1*deriv) + 
        ( 9.77457e-02 + 7.26595e-01*vs) * (p^(3-deriv)) * (1+2*deriv);
    G = Gs * (( 1.63200e-01 + 1.27910e-01*vs) * (p^(1-deriv)) * (1+0*deriv) + 
            ( 6.00810e-03 + 4.13331e-01*vs) * (p^(2-deriv)) * (1+1*deriv) + 
                ( 7.22847e-01 - 3.56032e-01*vs) * (p^(3-deriv)) * (1+2*deriv));
    return E,v,G
end

function octet_moduli(p, Es, vs, Gs, deriv)
    E = Es * (( 1.36265e-01 - 1.22204e-02*vs) * (p^(1-deriv)) * (1+0*deriv) + 
        ( 8.57991e-02 + 6.63677e-02*vs) * (p^(2-deriv)) * (1+1*deriv) + 
            ( 7.39887e-01 - 6.26129e-02*vs) * (p^(3-deriv)) * (1+2*deriv));
    v = ( 3.29529e-01 + 1.86038e-02*vs) * (1-deriv) +  
        (-1.42155e-01 + 4.57806e-01*vs) * (p^(1-deriv)) * (1+0*deriv) +  
        (-3.29837e-01 + 5.59823e-02*vs) * (p^(2-deriv)) * (1+1*deriv) +  
        ( 1.41233e-01 + 4.72695e-01*vs) * (p^(3-deriv)) * (1+2*deriv);
    G = Gs * (( 2.17676e-01 + 7.22515e-02*vs) * (p^(1-deriv)) * (1+0*deriv) + 
        (-7.63847e-02 + 1.31601e+00*vs) * (p^(2-deriv)) * (1+1*deriv) + 
            ( 9.11800e-01 - 1.55261e+00*vs) * (p^(3-deriv)) * (1+2*deriv));
    return E,v,G
end

function orc_moduli(p, Es, vs, Gs, deriv)
    E = Es * (( 1.34332e-01 - 7.06384e-02*vs) * (p^(1-deriv)) * (1+0*deriv) + 
        ( 2.59957e-01 + 8.51515e-01*vs) * (p^(2-deriv)) * (1+1*deriv) + 
            ( 6.53902e-01 - 7.29803e-01*vs) * (p^(3-deriv)) * (1+2*deriv));
    v =      ( 3.38525e-01 + 7.04361e-03*vs) * (1-deriv) + 
            (-4.25721e-01 + 4.14882e-01*vs) * (p^(1-deriv)) * (1+0*deriv) + 
            (-7.68215e-02 + 5.58948e-01*vs) * (p^(2-deriv)) * (1+1*deriv) +  
            ( 1.64073e-01 + 3.98374e-02*vs) * (p^(3-deriv)) * (1+2*deriv);
    G = Gs * (( 1.96762e-01 + 1.66705e-01*vs) * (p^(1-deriv)) * (1+0*deriv) + 
            ( 1.30938e-01 + 1.72565e-01*vs) * (p^(2-deriv)) * (1+1*deriv) + 
            ( 6.45455e-01 - 2.87424e-01*vs) * (p^(3-deriv)) * (1+2*deriv));
    return E,v,G
end

function bound_moduli(p, Es, vs, Gs, deriv)
    Ks = 1.0 / (3*(1-2*vs));
    K = Ks + (1-p) / ( -1.0/Ks + p/(Ks + (4.0*Gs)/3.0) );
    G = Gs + (1-p) / ( -1.0/Gs + (2.0*p*(Ks+2.0*Gs)) / (5.0*Gs*(Ks+(4.0*Gs)/3.0)) );
    E = 9*K*G/(3*K+G);
    v = (3*K-2*G) / (2*(3*K+G));
    if deriv
        DK = (p - 1)/(((4*Gs)/3 + Ks)*(p/((4*Gs)/3 + Ks) - 1/Ks)^2) - 
            1/(p/((4*Gs)/3 + Ks) - 1/Ks);
        DG = 1/(1/Gs - (2*p*(2*Gs + Ks))/(5*Gs*((4*Gs)/3 + Ks))) + 
            (2*(2*Gs + Ks)*(p - 1))/(5*Gs*((4*Gs)/3 + Ks)*(1/Gs - 
            (2*p*(2*Gs + Ks))/(5*Gs*((4*Gs)/3 + Ks)))^2);
        DE = ( 9*(3*K+G)*(DK*G+K*DG) - 9*K*G*(3*DK+DG) ) / (3*K+G)^2;
        Dv = ( 2*(3*K+G)*(3*DK-2*DG) - 2*(3*K-2*G)*(3*DK+DG) ) / (2*(3*K+G))^2;
        G = DG;
        E = DE;
        v = Dv;
    end
    return E,v,G
end

function simp_moduli(p, Es, vs, Gs, deriv)
    E = Es * p^(3-deriv) * (1+2*deriv);
    v = vs * (1-deriv);
    G = Gs * p^(3-deriv) * (1+2*deriv);
    return E,v,G
end

######### TRUSS-SPECIFIC ROD DIAMETERS #########################################
function get_d(truss, p)
    if truss=="iso"
        d = 2.04920e-02 + 1.05076e+00*p - 1.59468e+00*(p.^2) + 1.09799e+00*(p.^3);
    elseif truss=="octet"
        d = 1.64505e-02 + 9.23773e-01*p - 1.61345e+00*(p.^2) + 1.23729e+00*(p.^3);
    elseif truss=="orc"
        d = 2.32950e-02 + 1.31602e+00*p - 2.28842e+00*(p.^2) + 1.90225e+00*(p.^3);
    else
        d = -1*ones(size(p));
    end
    return d
end
    
function topplot3d(xPhys,nelx, nely, nelz)
    ix=[]
    iy=[]
    iz=[]
    for j in 1:nely
        for i in 1:nelx
            for k in 1:nelz
                if (xPhys[i,j,k]> 0.5)
                    append!(ix,i)
                    append!(iy,j)
                    append!(iz,k)
                end
            end
        end
    end
    # r = 4.0
    # lim = FRect3D((-4,-4,-4*r),(8,8,8*r))
    return scatter(ix,iy,iz,color="black",label="",markersize =4, aspect_ratio=:equal,markerstrokealpha = 0.2,markeralpha = 0.6,markershape = :square,camera = (30, 60))#,markershape = :square
end

######### 3D VISUALIZATION #####################################################
# function viz3d(nelx, nely, nelz, x, volfrac, is2D)
#     y = zeros(nelx+2, nely+2, nelz+2); y(2:nelx+1, 2:nely+1, 2:nelz+1) = x;
#     if is2D; 
#         T=0; 
#         A=90; 
#         E=0; 
#     else; 
#         T=volfrac; 
#         A=142.5; 
#         E=30; 
#     end;
#     nf = nelx*nely*(nelz+1) + nelx*(nely+1)*nelz + (nelx+1)*nely*nelz; n = 0;
#     X = zeros(4,nf); Y = zeros(4,nf); Z = zeros(4,nf); C = zeros(1,nf);
#     for k = 1:nelz+1; 
#         for j = 1:nely+1; 
#             for i = 1:nelx+1;
#                 I = i-1; J = j-1; K = k-1; L = i+1; M = j+1; N = k+1;
#                 cz = max(y(L,M,k:N)); cy = max(y(L,j:M,N)); cx = max(y(i:L,M,N));
#                 dz = min(y(L,M,k:N)); dy = min(y(L,j:M,N)); dx = min(y(i:L,M,N));
#                 if cz > T && dz < T+is2D; n = n+1; C(1,n) = 1-cz; 
#                     X(:,n) = [I,i,i,I]'; Y(:,n) = [J,J,j,j]'; Z(:,n) = [K,K,K,K]';
#                 end
#                 if cy > T && dy < T+is2D; n = n+1; C(1,n) = 1-cy;
#                     X(:,n) = [I,i,i,I]'; Y(:,n) = [J,J,J,J]'; Z(:,n) = [K,K,k,k]';
#                 end
#                 if cx > T && dx < T+is2D; n = n+1; C(1,n) = 1-cx;
#                     X(:,n) = [I,I,I,I]'; Y(:,n) = [J,j,j,J]'; Z(:,n) = [K,K,k,k]';
#                 end
#             end; 
#         end; 
#     end
#     patch(X(:,1:n), Y(:,1:n), Z(:,1:n), C(1,1:n), 'EdgeColor', 'none');
#     view(A,E); 
#     axis equal; 
#     axis tight; 
#     axis off;
#      pause(1e-3);  
# end