Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
################################################################################
# A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, OCTOBER 1999
# MODIFIED FOR 3D MULTISCALE DESIGN VIA SURROGATE MODEL, LLNL, JULY 2018
#
# This work was produced under the auspices of the U.S. Department of Energy by
# Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
#
# This work was prepared as an account of work sponsored by an agency of the
# United States Government. Neither the United States Government nor Lawrence
# Livermore National Security, LLC, nor any of their employees makes any warranty,
# expressed or implied, or assumes any legal liability or responsibility for the
# accuracy, completeness, or usefulness of any information, apparatus, product, or
# process disclosed, or represents that its use would not infringe privately owned
# rights. Reference herein to any specific commercial product, process, or service
# by trade name, trademark, manufacturer, or otherwise does not necessarily
# constitute or imply its endorsement, recommendation, or favoring by the United
# States Government or Lawrence Livermore National Security, LLC. The views and
# opinions of authors expressed herein do not necessarily state or reflect those
# of the United States Government or Lawrence Livermore National Security, LLC,
# and shall not be used for advertising or product endorsement purposes.
#
# LLNL-CODE-757968
################################################################################
function multiscale(nelx, nely, nelz, volfrac, rmin, truss, Es, vs, minVF, maxVF, maxit)
anim=Animation()
# INITIALIZE
x=zeros(nelx,nely,nelz)
x[1:nelx, 1:nely, 1:nelz] .= volfrac;
Gs = Es / (2*(1+vs));
loop = 0; change = 1.0;
nnx = nelx+1; nny = nely+1; nnz = nelz+1;
# colormap(gray); caxis([0.0, 1.0]);
# maxit=1
# START ITERATION
while change > 0.01 && loop < maxit
loop = loop + 1;
xold = x;
# FE-ANALYSIS
U = FE(nelx, nely, nelz, nnx, nny, nnz, x, truss, Es, vs, Gs);
# display(U)
# OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
c = 0.0;
dc = zeros(nelx, nely, nelz);
for elz = 1:nelz;
for ely = 1:nely
for elx = 1:nelx
KE = get_KE(truss, x, Es, vs, Gs, elx, ely, elz, false);
DKE = get_KE(truss, x, Es, vs, Gs, elx, ely, elz, true);
dofs = get_elem_dofs(nnx, nny, nnz, elx, ely, elz);
Ue = U[dofs];
c = c + Ue'*KE*Ue;
dc[elx,ely,elz] = -Ue'*DKE*Ue;
end
end
end
# FILTERING OF SENSITIVITIES
dc = check(nelx, nely, nelz, rmin, x, dc);
# DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD
x = OC(nelx, nely, nelz, x, volfrac, dc, minVF, maxVF);
# PRINT RESULTS
change = maximum((abs.(x-xold)));
println(" It:$loop Obj:$c Vol:$(mean(x)) ch:$change ")
if mod(loop,5)==0
display(topplot3d(x,nelx, nely, nelz))
topplot3d(x,nelx, nely, nelz)
frame(anim)
end
# disp([" It.: " sprintf("#4i",loop) " Obj.: " sprintf("#10.4f",c) " Vol.: " sprintf("#6.3f",sum(sum(sum(x)))/(nelx*nely*nelz)) " ch.: " sprintf("#6.3f",change )])
# PLOT DENSITIES
# viz3d(nelx, nely, nelz, x, volfrac, nelx==1);
# SAVE PARAMETER VALUES (ELEMENT DENSITIES AND ROD DIAMETERS)
# xOut = x[:]
# # reshape(x,[],1);
# # save("-ascii","elVolFrac.txt", "xOut");
# dOut = get_d(truss,x)[:]
# # reshape(get_d(truss,x),[],1);
# # save("-ascii","elRodDiam.txt","dOut");
end
return x,anim
end
######### OPTIMALITY CRITERIA UPDATE ###########################################
function OC(nelx, nely, nelz, x, volfrac, dc, minVF, maxVF)
l1 = 0; l2 = 100000; move = 0.2;
xnew=zeros(size(x))
while (l2-l1 > 1e-4)
lmid = 0.5*(l2 + l1);
xnew = max.(minVF, max.(x .- move, min.(maxVF, min.(x .+move,x.*sqrt.(abs.(0.0 .-dc./lmid))))));
# xnew = max.(0,max.(x.-move,min.(1,min.(x.+move,x.*sqrt.((0.0.-dc)./dv./lmid)))))
if sum(sum(sum(xnew))) - volfrac*nelx*nely*nelz > 0;
l1 = lmid;
else
l2 = lmid;
end
end
return xnew
end
######### MESH-INDEPENDENCY FILTER #############################################
function check(nelx, nely, nelz, rmin, x, dc)
dcn=zeros(size(dc));
for elz = 1:nelz;
for ely = 1:nely;
for elx = 1:nelx
sum = 0.0;
for k = max(elz-round(rmin),1):min(elz+round(rmin),nelz)
for j = max(ely-round(rmin),1):min(ely+round(rmin),nely)
for i = max(elx-round(rmin),1):min(elx+round(rmin),nelx)
fac = rmin - sqrt((elx-i)^2+(ely-j)^2+(elz-k)^2);
sum = sum + max(0,fac);
dcn[elx,ely,elz] = dcn[elx,ely,elz] + max(0,fac)*x[Int(i),Int(j),Int(k)]*dc[Int(i),Int(j),Int(k)];
end
end
end
dcn[elx,ely,elz] = dcn[elx,ely,elz] / (x[elx,ely,elz]*sum);
end;
end;
end
return dcn
end
######### FE-ANALYSIS ##########################################################
function FE(nelx, nely, nelz, nnx, nny, nnz, x, truss, Es, vs, Gs)
K = spzeros(3*nnx*nny*nnz, 3*nnx*nny*nnz);
F = spzeros(3*nnx*nny*nnz);
U = spzeros(3*nnx*nny*nnz);
for elz = 1:nelz;
for ely = 1:nely;
for elx = 1:nelx
KE = get_KE(truss, x, Es, vs, Gs, elx, ely, elz, false);
dofs = get_elem_dofs(nnx, nny, nnz, elx, ely, elz);
# display(size(KE))
# display(size(dofs))
# display(size(K[dofs,dofs]))
K[dofs,dofs] .= K[dofs,dofs] .+ KE;
end;
end;
end
# DEFINE LOADS AND SUPPORTS(HALF MBB-BEAM)
coords = zeros(nnx*nny*nnz,3);
n = 0;
for k = 1:nnz;
for j = 1:nny;
for i = 1:nnx
n = n+1;
coords[n,1] = i-1;
coords[n,2] = j-1;
coords[n,3] = k-1;
end
end
end
midplane_nodes = findall(x->x==0, coords[:,2]);
loaded_nodes = intersect(findall(x->x==nelz, coords[:,3]), findall(x->x==0, coords[:,2]));
fixed_nodes = intersect(findall(x->x==0, coords[:,3]), findall(x->x==nely, coords[:,2]));
fixeddofs = zeros(Int,size(midplane_nodes,1) + 2*size(fixed_nodes,1));
for i = loaded_nodes'
F[3*(i-1)+3] = -1.0/nnx;
end
n = 1;
for i = midplane_nodes'
for j=[2]
fixeddofs[n] = 3*(i-1)+j;
n =n+1;
end
end
for i = fixed_nodes'
for j=[1,3]
fixeddofs[n] = 3*(i-1)+j;
n =n+1;
end
end
alldofs = 1:3*nnx*nny*nnz;
freedofs = setdiff(alldofs,fixeddofs);
# display(K)
# SOLVING
U[freedofs] .= K[freedofs,freedofs] \ Array(F[freedofs]);
U[fixeddofs] .= 0;
return U
end
######### ELEMENT AND NODE NUMBERING IN 3D MESH ################################
function get_num(nx, ny, nz, i, j, k)
num = (nx*ny)*(k-1) + nx*(j-1) + i;
return num
end
######### GLOBAL DOFS FOR A GIVEN ELEMENT ######################################
function get_elem_dofs(nnx, nny, nnz, elx, ely, elz)
n = get_num(nnx, nny, nnz, elx, ely, elz);
N = [n; n+1; n+nnx+1; n+nnx; n+nnx*nny; n+nnx*nny+1; n+nnx*nny+nnx+1; n+nnx*nny+nnx];
dofs = zeros(Int,24);
for j = 1:8;
for i = 1:3;
dofs[3*(j-1)+i] = Int(3*(N[j]-1)+i);
end
end
return dofs
end
######### INTEGRATE ELASTICITY TENSOR CE TO GET KE #############################
function get_KE(truss, x, Es, vs, Gs, i, j, k, deriv)
KE = zeros(24,24);
CE = get_CE(truss, x, Es, vs, Gs, i, j, k, deriv);
for l = 1:8
r = (sqrt(3)/3) * (-1 + 2*(sum([2,3,6,7].==l)>0)); rp = (1+r); rm = (1-r);
s = (sqrt(3)/3) * (-1 + 2*(sum([3,4,7,8].==l)>0)); sp = (1+s); sm = (1-s);
t = (sqrt(3)/3) * (-1 + 2*(sum([5,6,7,8].==l)>0)); tp = (1+t); tm = (1-t);
DN = [ -sm*tm -rm*tm -rm*sm;
sm*tm -rp*tm -rp*sm;
sp*tm rp*tm -rp*sp;
-sp*tm rm*tm -rm*sp;
-sm*tp -rm*tp rm*sm;
sm*tp -rp*tp rp*sm;
sp*tp rp*tp rp*sp;
-sp*tp rm*tp rm*sp] ./ 8;
B = DN * 2*Matrix(1.0I, 3, 3);
G = kron(B', Matrix(1.0I, 3, 3));
KE = KE + G' * CE * G / 8;
end
# display(KE)
return KE
end
######### DEFINE ELASTICITY TENSOR FOR DIFFERENT TRUSSES #######################
function get_CE(truss, x, Es, vs, Gs, i, j, k, D)
p = x[i, j, k];
if truss== "iso"
TM = iso_moduli
elseif truss== "octet"
TM = octet_moduli
elseif truss== "orc"
TM = orc_moduli
elseif truss== "bound"
TM = bound_moduli
else
TM = simp_moduli
end
E, v, G = TM(p,Es,vs,Gs,false);
if D
DE, Dv, DG = TM(p,Es,vs,Gs,true);
end
if D == 0
C1111 = E * (1.0 - v) / (1.0 - v - 2*v^2);
C1122 = (E * v) / (1.0 - v - 2*v^2);
C1212 = G;
else # return the deriviatives instead
C1111 = ((DE*(1-v)-E*Dv)*(1-v-2*v^2)-E*(1-v)*(-Dv-4*v*Dv)) / (1-v-2*v^2)^2;
C1122 = ((DE*v+E*Dv)*(1-v-2*v^2)-E*v*(-Dv-4*v*Dv)) / (1-v-2*v^2)^2;
C1212 = DG;
end
CE = [C1111 0 0 0 C1122 0 0 0 C1122;
0 C1212 0 C1212 0 0 0 0 0 ;
0 0 C1212 0 0 0 C1212 0 0 ;
0 C1212 0 C1212 0 0 0 0 0 ;
C1122 0 0 0 C1111 0 0 0 C1122;
0 0 0 0 0 C1212 0 C1212 0 ;
0 0 C1212 0 0 0 C1212 0 0 ;
0 0 0 0 0 C1212 0 C1212 0 ;
C1122 0 0 0 C1122 0 0 0 C1111];
return CE
end
######### TRUSS-SPECIFIC MECHANICS MODELS ######################################
function iso_moduli(p, Es, vs, Gs, deriv)
E = Es * (( 2.05292e-01 - 3.30265e-02*vs) * (p^(1-deriv)) * (1+0*deriv) +
( 8.12145e-02 + 2.72431e-01*vs) * (p^(2-deriv)) * (1+1*deriv) +
( 6.49737e-01 - 2.42374e-01*vs) * (p^(3-deriv)) * (1+2*deriv));
v = ( 2.47760e-01 + 1.69804e-02*vs) * (1-deriv) +
(-1.59293e-01 + 7.38598e-01*vs) * (p^(1-deriv)) * (1+0*deriv) +
(-1.86279e-01 - 4.83229e-01*vs) * (p^(2-deriv)) * (1+1*deriv) +
( 9.77457e-02 + 7.26595e-01*vs) * (p^(3-deriv)) * (1+2*deriv);
G = Gs * (( 1.63200e-01 + 1.27910e-01*vs) * (p^(1-deriv)) * (1+0*deriv) +
( 6.00810e-03 + 4.13331e-01*vs) * (p^(2-deriv)) * (1+1*deriv) +
( 7.22847e-01 - 3.56032e-01*vs) * (p^(3-deriv)) * (1+2*deriv));
return E,v,G
end
function octet_moduli(p, Es, vs, Gs, deriv)
E = Es * (( 1.36265e-01 - 1.22204e-02*vs) * (p^(1-deriv)) * (1+0*deriv) +
( 8.57991e-02 + 6.63677e-02*vs) * (p^(2-deriv)) * (1+1*deriv) +
( 7.39887e-01 - 6.26129e-02*vs) * (p^(3-deriv)) * (1+2*deriv));
v = ( 3.29529e-01 + 1.86038e-02*vs) * (1-deriv) +
(-1.42155e-01 + 4.57806e-01*vs) * (p^(1-deriv)) * (1+0*deriv) +
(-3.29837e-01 + 5.59823e-02*vs) * (p^(2-deriv)) * (1+1*deriv) +
( 1.41233e-01 + 4.72695e-01*vs) * (p^(3-deriv)) * (1+2*deriv);
G = Gs * (( 2.17676e-01 + 7.22515e-02*vs) * (p^(1-deriv)) * (1+0*deriv) +
(-7.63847e-02 + 1.31601e+00*vs) * (p^(2-deriv)) * (1+1*deriv) +
( 9.11800e-01 - 1.55261e+00*vs) * (p^(3-deriv)) * (1+2*deriv));
return E,v,G
end
function orc_moduli(p, Es, vs, Gs, deriv)
E = Es * (( 1.34332e-01 - 7.06384e-02*vs) * (p^(1-deriv)) * (1+0*deriv) +
( 2.59957e-01 + 8.51515e-01*vs) * (p^(2-deriv)) * (1+1*deriv) +
( 6.53902e-01 - 7.29803e-01*vs) * (p^(3-deriv)) * (1+2*deriv));
v = ( 3.38525e-01 + 7.04361e-03*vs) * (1-deriv) +
(-4.25721e-01 + 4.14882e-01*vs) * (p^(1-deriv)) * (1+0*deriv) +
(-7.68215e-02 + 5.58948e-01*vs) * (p^(2-deriv)) * (1+1*deriv) +
( 1.64073e-01 + 3.98374e-02*vs) * (p^(3-deriv)) * (1+2*deriv);
G = Gs * (( 1.96762e-01 + 1.66705e-01*vs) * (p^(1-deriv)) * (1+0*deriv) +
( 1.30938e-01 + 1.72565e-01*vs) * (p^(2-deriv)) * (1+1*deriv) +
( 6.45455e-01 - 2.87424e-01*vs) * (p^(3-deriv)) * (1+2*deriv));
return E,v,G
end
function bound_moduli(p, Es, vs, Gs, deriv)
Ks = 1.0 / (3*(1-2*vs));
K = Ks + (1-p) / ( -1.0/Ks + p/(Ks + (4.0*Gs)/3.0) );
G = Gs + (1-p) / ( -1.0/Gs + (2.0*p*(Ks+2.0*Gs)) / (5.0*Gs*(Ks+(4.0*Gs)/3.0)) );
E = 9*K*G/(3*K+G);
v = (3*K-2*G) / (2*(3*K+G));
if deriv
DK = (p - 1)/(((4*Gs)/3 + Ks)*(p/((4*Gs)/3 + Ks) - 1/Ks)^2) -
1/(p/((4*Gs)/3 + Ks) - 1/Ks);
DG = 1/(1/Gs - (2*p*(2*Gs + Ks))/(5*Gs*((4*Gs)/3 + Ks))) +
(2*(2*Gs + Ks)*(p - 1))/(5*Gs*((4*Gs)/3 + Ks)*(1/Gs -
(2*p*(2*Gs + Ks))/(5*Gs*((4*Gs)/3 + Ks)))^2);
DE = ( 9*(3*K+G)*(DK*G+K*DG) - 9*K*G*(3*DK+DG) ) / (3*K+G)^2;
Dv = ( 2*(3*K+G)*(3*DK-2*DG) - 2*(3*K-2*G)*(3*DK+DG) ) / (2*(3*K+G))^2;
G = DG;
E = DE;
v = Dv;
end
return E,v,G
end
function simp_moduli(p, Es, vs, Gs, deriv)
E = Es * p^(3-deriv) * (1+2*deriv);
v = vs * (1-deriv);
G = Gs * p^(3-deriv) * (1+2*deriv);
return E,v,G
end
######### TRUSS-SPECIFIC ROD DIAMETERS #########################################
function get_d(truss, p)
if truss=="iso"
d = 2.04920e-02 + 1.05076e+00*p - 1.59468e+00*(p.^2) + 1.09799e+00*(p.^3);
elseif truss=="octet"
d = 1.64505e-02 + 9.23773e-01*p - 1.61345e+00*(p.^2) + 1.23729e+00*(p.^3);
elseif truss=="orc"
d = 2.32950e-02 + 1.31602e+00*p - 2.28842e+00*(p.^2) + 1.90225e+00*(p.^3);
else
d = -1*ones(size(p));
end
return d
end
function topplot3d(xPhys,nelx, nely, nelz)
ix=[]
iy=[]
iz=[]
for j in 1:nely
for i in 1:nelx
for k in 1:nelz
if (xPhys[i,j,k]> 0.5)
append!(ix,i)
append!(iy,j)
append!(iz,k)
end
end
end
end
# r = 4.0
# lim = FRect3D((-4,-4,-4*r),(8,8,8*r))
return scatter(ix,iy,iz,color="black",label="",markersize =4, aspect_ratio=:equal,markerstrokealpha = 0.2,markeralpha = 0.6,markershape = :square,camera = (30, 60))#,markershape = :square
end
######### 3D VISUALIZATION #####################################################
# function viz3d(nelx, nely, nelz, x, volfrac, is2D)
# y = zeros(nelx+2, nely+2, nelz+2); y(2:nelx+1, 2:nely+1, 2:nelz+1) = x;
# if is2D;
# T=0;
# A=90;
# E=0;
# else;
# T=volfrac;
# A=142.5;
# E=30;
# end;
# nf = nelx*nely*(nelz+1) + nelx*(nely+1)*nelz + (nelx+1)*nely*nelz; n = 0;
# X = zeros(4,nf); Y = zeros(4,nf); Z = zeros(4,nf); C = zeros(1,nf);
# for k = 1:nelz+1;
# for j = 1:nely+1;
# for i = 1:nelx+1;
# I = i-1; J = j-1; K = k-1; L = i+1; M = j+1; N = k+1;
# cz = max(y(L,M,k:N)); cy = max(y(L,j:M,N)); cx = max(y(i:L,M,N));
# dz = min(y(L,M,k:N)); dy = min(y(L,j:M,N)); dx = min(y(i:L,M,N));
# if cz > T && dz < T+is2D; n = n+1; C(1,n) = 1-cz;
# X(:,n) = [I,i,i,I]'; Y(:,n) = [J,J,j,j]'; Z(:,n) = [K,K,K,K]';
# end
# if cy > T && dy < T+is2D; n = n+1; C(1,n) = 1-cy;
# X(:,n) = [I,i,i,I]'; Y(:,n) = [J,J,J,J]'; Z(:,n) = [K,K,k,k]';
# end
# if cx > T && dx < T+is2D; n = n+1; C(1,n) = 1-cx;
# X(:,n) = [I,I,I,I]'; Y(:,n) = [J,j,j,J]'; Z(:,n) = [K,K,k,k]';
# end
# end;
# end;
# end
# patch(X(:,1:n), Y(:,1:n), Z(:,1:n), C(1,1:n), 'EdgeColor', 'none');
# view(A,E);
# axis equal;
# axis tight;
# axis off;
# pause(1e-3);
# end