Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020
# Topology Optimization Implementation in Julia from various sources
# based on https://paulino.ce.gatech.edu/conferences/papers/11pereira_anefficientandcompact.pdf and http://www.topopt.mek.dtu.dk/apps-and-software and https://github.com/blademwang11/Topopt/blob/master/top.jl
#######################################2d##################################################################
function topologyOptimization(nelx,nely,volfrac,rmin,penal)
anim=Animation()
display("Minimum compliance problem with OC")
display("ndes: $nelx x $nely")
display("volfrac: $volfrac rmin: $rmin penal: $penal")
# Max and min stiffness
Emin=1e-9
Emax=1.0
# dofs:
ndof = 2*(nelx+1)*(nely+1)
# Allocate design variables (as array), initialize and allocate sens.
x=volfrac * ones(Float64,nely,nelx)
xold=copy(x)
xPhys=copy(x)
g=0 # must be initialized to use the NGuyen/Paulino OC approach
dc=zeros(Float64,(nely,nelx))
# FE: Build the index vectors for the for coo matrix format.
KE=lk()
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx)
edofVec = reshape(2*nodenrs[1:end-1,1:end-1].+1,nelx*nely,1)
edofMat = repeat(edofVec,1,8).+repeat([0 1 2*nely.+[2 3 0 1] -2 -1],nelx*nely,1)
iK = convert(Array{Int},reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1))
jK = convert(Array{Int},reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1))
# DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F = sparse([2],[1],[-1.0],2*(nely+1)*(nelx+1),1)
U = zeros(2*(nely+1)*(nelx+1),1)
fixeddofs = union(1:2:2*(nely+1),2*(nelx+1)*(nely+1))
alldofs = 1:(2*(nely+1)*(nelx+1))
freedofs = setdiff(alldofs,fixeddofs)
# Prepare filter
iH = ones(convert(Int,nelx*nely*(2*(ceil(rmin)-1)+1)^2),1)
jH = ones(Int,size(iH))
sH = zeros(size(iH))
k = 0;
for i1 = 1:nelx
for j1 = 1:nely
e1 = (i1-1)*nely+j1
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (i2-1)*nely+j2
k = k+1
iH[k] = e1
jH[k] = e2
sH[k] = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2))
end
end
end
end
H = sparse(vec(iH),vec(jH),vec(sH))
Hs = sum(H,dims=2)
###################################################
loop = 0
change = 1
maxIter=1000
# Start iteration
for i =1:maxIter
if (change > 0.01)
# Start iteration
loop += 1
# FE-ANALYSIS
sK = reshape(KE[:]*(Emin.+xPhys[:]'.^penal*(Emax-Emin)),64*nelx*nely,1)
K = sparse(vec(iK),vec(jK),vec(sK)); K = (K+K')/2
@timed U[freedofs] = K[freedofs,freedofs] \ Array(F[freedofs])
# Objective function and sensitivity analysis
ce = reshape(sum((U[edofMat]*KE).*U[edofMat],dims=2),nely,nelx)
c = sum(sum((Emin.+xPhys.^penal*(Emax-Emin)).*ce))
dc = -penal*(Emax-Emin)*xPhys.^(penal-1).*ce
dv = ones(nely,nelx)
dc[:] = H*(dc[:]./Hs)
dv[:] = H*(dv[:]./Hs)
# OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
l1 = 0; l2 = 1e9; move = 0.2; xnew = 0
while (l2-l1)/(l1+l2) > 1e-3
lmid = 0.5*(l2+l1)
xnew = max.(0,max.(x.-move,min.(1,min.(x.+move,x.*sqrt.((0.0.-dc)./dv./lmid)))))
xPhys[:] = (H*xnew[:])./Hs
if sum(xPhys[:]) > volfrac*nelx*nely
l1 = lmid
else
l2 = lmid
end
end
change = maximum(abs.(xnew[:].-x[:]))
x = xnew
m=mean(xPhys[:])
display(" It:$loop Obj:$c Vol:$m ch:$change ")
if loop<20||mod(loop,10)==0
xxx=1 .- clamp.(xPhys,0,1)
display(heatmap(xxx,xaxis=nothing,yaxis=nothing,legend=nothing,fc=:grays,clims=(0.0, 1.0),aspect_ratio=:equal))
heatmap(xxx,xaxis=nothing,yaxis=nothing,legend=nothing,fc=:grays,clims=(0.0, 1.0),aspect_ratio=:equal)
frame(anim)
end
xPhys = copy(x)
end
end
return xPhys,anim
end
#########################################################################################################
function CompliantTopologyOptimization(nelx,nely,volfrac,rmin,penal,maxIter,Load,Support,Spring,DOut)
anim=Animation()
display("Minimum compliance problem with OC")
display("ndes: $nelx x $nely")
display("volfrac: $volfrac rmin: $rmin penal: $penal")
# Max and min stiffness
Emin=1e-9
Emax=1.0
change = 1
# dofs:
ndof = 2*(nelx+1)*(nely+1)
# Allocate design variables (as array), initialize and allocate sens.
x=volfrac * ones(Float64,nely,nelx)
xold=copy(x)
xPhys=copy(x)
g=0 # must be initialized to use the NGuyen/Paulino OC approach
dc=zeros(Float64,(nely,nelx))
# FE: Build the index vectors for the for coo matrix format.
KE=lk()
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx)
edofVec = reshape(2*nodenrs[1:end-1,1:end-1].+1,nelx*nely,1)
edofMat = repeat(edofVec,1,8).+repeat([0 1 2*nely.+[2 3 0 1] -2 -1],nelx*nely,1)
iK = convert(Array{Int},reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1))
jK = convert(Array{Int},reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1))
# DEFINE LOADS AND SUPPORTS
F = sparse(2 .*Load[:,1] .-2 .+ Load[:,2],ones(size(Load,1)),Load[:,3],2*(nely+1)*(nelx+1),2)
DofDOut = 2 * DOut[1] - 2 +DOut[2]; #only one
F=Array(F)
F[DofDOut,2]=-1
fixeddofs = 2 .*Support[:,1] .-2 .+ Support[:,2]
NSpring = size(Spring,1);
s = sparse(2 .*Spring[:,1] .-2 .+ Spring[:,2],ones(size(Spring,1)),Spring[:,3],2*(nely+1)*(nelx+1),2)
m=Array(s)[:,1]
S= sparse(diagm(m))
U = zeros(2*(nely+1)*(nelx+1),2)
alldofs = 1:(2*(nely+1)*(nelx+1))
freedofs = setdiff(alldofs,fixeddofs)
# Prepare filter
iH = ones(convert(Int,nelx*nely*(2*(ceil(rmin)-1)+1)^2),1)
jH = ones(Int,size(iH))
sH = zeros(size(iH))
k = 0;
for i1 = 1:nelx
for j1 = 1:nely
e1 = (i1-1)*nely+j1
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (i2-1)*nely+j2
k = k+1
iH[k] = e1
jH[k] = e2
sH[k] = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2))
end
end
end
end
H = sparse(vec(iH),vec(jH),vec(sH))
Hs = sum(H,dims=2)
change= 1
loop = 0
changeStable=0
# Start iteration
for penal in 1.0:0.5:4
display(" Penalty: $penal")
loop = 0
for i =1:maxIter
if (change < 0.01)
changeStable+=1
display(" Change Stable for $changeStable iterations")
else
changeStable=0
end
if (changeStable<10)
# Start iteration
loop += 1
# FE-ANALYSIS
sK = reshape(KE[:]*(Emin.+xPhys[:]'.^penal*(Emax-Emin)),64*nelx*nely,1)
K = sparse(vec(iK),vec(jK),vec(sK))+S;K = (K+K')/2
@timed U[freedofs,:] = K[freedofs,freedofs] \ Array(F[freedofs,:])
U1=U[:,1]
U2=U[:,2]
# Objective function and sensitivity analysis
Loading
Loading full blame...