Skip to content
Snippets Groups Projects
updateEdges.jl 22.8 KiB
Newer Older
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020


# BASED ON https://github.com/jonhiller/Voxelyze




function updateEdges!(dt,currentTimeStep,E_source,E_target,E_stress,E_axis,
        E_currentRestLength,E_pos2,E_angle1v,E_angle2v,
        E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,E_damp,E_smallAngle,E_material,
        E_strain,E_maxStrain,E_strainOffset,E_currentTransverseArea,E_currentTransverseStrainSum,
        N_currPosition,N_orient,N_poissonStrain)

    index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
    stride = blockDim().x * gridDim().x
    
    N=length(E_source)
    # @cuprintln("N $N, thread $index, block $stride")
    
    for i = index:stride:N
        @inbounds pVNeg=N_currPosition[E_source[i]]
        @inbounds pVPos=N_currPosition[E_target[i]]
        
        @inbounds oVNeg=N_orient[E_source[i]]
        @inbounds oVPos=N_orient[E_target[i]]
        
        @inbounds oldPos2=     Vector3(E_pos2[i].x,E_pos2[i].y,E_pos2[i].z) #?copy?
        @inbounds oldAngle1v = Vector3(E_angle1v[i].x,E_angle1v[i].y,E_angle1v[i].z)
        @inbounds oldAngle2v = Vector3(E_angle2v[i].x,E_angle2v[i].y,E_angle2v[i].z)# remember the positions/angles from last timestep to calculate velocity


        @inbounds E_currentRestLength[i]=updateTemperature(E_currentRestLength[i],currentTimeStep,E_material[i])

        prec=1e16
        @inbounds l  = roundd(E_currentRestLength[i],prec)
        @inbounds l  = E_currentRestLength[i]

        
        

        # x=E_angle1v[i].x*1e0
        # y=E_angle1v[i].y*1e0
        # z=E_angle1v[i].z*1e0
        # @cuprintln("E_angle1v[i] 1 x $x, y $y, z $z ")


        # x=E_angle2v[i].x*1e0
        # y=E_angle2v[i].y*1e0
        # z=E_angle2v[i].z*1e0
        # @cuprintln("E_angle2v[i] 1 x $x, y $y, z $z ")

        # x=E_pos2[i].x*1e6
        # y=E_pos2[i].y*1e6
        # z=E_pos2[i].z*1e6
        # @cuprintln("pos2 1 x $x 1e-6, y $y 1e-6, z $z 1e-6")

        # if(i==10)
        #     @cuprintln("E_pos2[i].x $(E_pos2[i].x*1e10) *1e-10")
        # end


        @inbounds E_pos2[i],E_angle1v[i],E_angle2v[i],E_angle1[i],E_angle2[i],totalRot,E_smallAngle[i],E_damp[i]= orientLink!(i,l,pVNeg,pVPos,oVNeg,oVPos,E_axis[i],E_smallAngle[i],E_damp[i] )
        
        # x=E_angle1v[i].x*1e0
        # y=E_angle1v[i].y*1e0
        # z=E_angle1v[i].z*1e0
        # @cuprintln("E_angle1v[i] 2 x $x, y $y, z $z ")

        # x=E_angle2v[i].x*1e0
        # y=E_angle2v[i].y*1e0
        # z=E_angle2v[i].z*1e0
        # @cuprintln("E_angle2v[i] 2 x $x, y $y, z $z ")

        @inbounds dPos2   = Vector3(0.5,0.5,0.5) * (E_pos2[i]-oldPos2)  #deltas for local damping. velocity at center is half the total velocity
        @inbounds dAngle1 = Vector3(0.5,0.5,0.5) *(E_angle1v[i]-oldAngle1v)
        @inbounds dAngle2 = Vector3(0.5,0.5,0.5) *(E_angle2v[i]-oldAngle2v)

        # if(i==67)
  
        #     @cuprintln("currentTransverseArea 1 x $(E_currentTransverseArea[i])")
        #     x=N_poissonStrain[E_source[i]].x*1e0
        #     y=N_poissonStrain[E_source[i]].y*1e0
        #     z=N_poissonStrain[E_source[i]].z*1e0
        #     @cuprintln("possonStrainNeg 11 x $x, y $y, z $z i $i")
        #     x=N_poissonStrain[E_target[i]].x*1e0
        #     y=N_poissonStrain[E_target[i]].y*1e0
        #     z=N_poissonStrain[E_target[i]].z*1e0
        #     @cuprintln("possonStrainPos 11 x $x, y $y, z $z i $i")
        #     x=pVPos.x*1e0
        #     y=pVPos.y*1e0
        #     z=pVPos.z*1e0
        #     @cuprintln("pVPos 11 x $x, y $y, z $z i $i")

        # end


        #if volume effects...
        @inbounds if ((E_material[i].poisson && E_material[i].nu != 0.0) || E_currentTransverseStrainSum[i] != 0.0) 
            @inbounds E_currentTransverseArea[i],E_currentTransverseStrainSum[i]=updateTransverseInfo(E_currentTransverseArea[i],E_currentTransverseStrainSum[i],E_material[i],E_axis[i],N_poissonStrain[E_source[i]],N_poissonStrain[E_target[i]]); #currentTransverseStrainSum != 0 catches when we disable poissons mid-simulation
        end

        
        @inbounds strain=(E_pos2[i].x/l)
        @inbounds E_strain[i]=strain

        # x=E_pos2[i].x*1e6
        # y=E_pos2[i].y*1e6
        # z=E_pos2[i].z*1e6
        # @cuprintln("pos2 2 x $x 1e-6, y $y 1e-6, z $z 1e-6")

        
        # if @inbounds E_strain[i]>10.0
        #     diverged=true
        #     # @cuprintln("DIVERGED!!!!!!!!!!")
        #     return 
        # end        
        
        # @cuprintln("strain $strain")
        
        @inbounds nu = convert(Float64,E_material[i].nu)
 
        # Cross Section inputs, must be floats        
        @inbounds E = roundd(E_material[i].E,prec)   # MPa
        @inbounds h = roundd(E_material[i].h,prec)   # mm
        @inbounds b = roundd(E_material[i].b,prec)  # mm
        

        @inbounds a1= roundd(E_material[i].a1,prec)
        @inbounds a2= roundd(E_material[i].a2,prec)
        @inbounds b1= roundd(E_material[i].b1,prec)
        @inbounds b2= roundd(E_material[i].b2,prec)
        @inbounds b3= roundd(E_material[i].b3,prec)
        
        
        
        @inbounds currentTransverseArea= b*h

        

        @inbounds if(E_material[i].poisson)
            @inbounds currentTransverseArea= E_currentTransverseArea[i] #todo check
        end

        @inbounds E_stress[i],E_maxStrain[i],E_strainOffset[i]=updateStrain( strain,E_maxStrain[i],E_strainOffset[i],E_material[i],E_currentTransverseStrainSum[i]) #updateStrain(strain,E)
        # @inbounds E_stress[i]=0.0
        # @inbounds E_maxStrain[i]=0.0
        
        @inbounds _stress=E_stress[i]
        # @cuprintln("strain $(strain)")
        
        # @cuprintln("strain: $(strain*1e6) 1e-6 ")
        
        #@cuprintln("_stress $_stress")
        x=(_stress*currentTransverseArea)

        @inbounds y=(b1*E_pos2[i].y-b2*(E_angle1v[i].z + E_angle2v[i].z))
        @inbounds z=(b1*E_pos2[i].z + b2*(E_angle1v[i].y + E_angle2v[i].y))
        
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)

        
        
        # Use Curstress instead of -a1*Pos2.x to account for non-linear deformation 

        # max=20000.0
        # factor=currentTimeStep/max
        # if currentTimeStep>max
        #     factor=1.0
        # end
        # @inbounds loaded = convert(Float64,E_material[i].loaded)*factor
        # forceNeg = Vector3(x+loaded,y,z)
        # forcePos = Vector3(-x,-y,-z)

        forceNeg = Vector3(x,y,z)
        forcePos = Vector3(-x,-y,-z)

        # if(i==67)
        #     x=forceNeg.x*1e0
        #     y=forceNeg.y*1e0
        #     z=forceNeg.z*1e0
        #     @cuprintln("strain 11 x $strain")
        #     @cuprintln("currentTransverseArea 11 x $currentTransverseArea")
        #     @cuprintln("E_currentTransverseStrainSum[i] 11 x $(E_currentTransverseStrainSum[i])")
        #     @cuprintln("_stress $_stress")
        #     @cuprintln("forceNeg 11 x $x, y $y, z $z i $i")
        # end

        # if(i==10)
        #     @cuprintln("E_pos2[i].x 2 $(E_pos2[i].x*1e10) *1e-10")
        #     @cuprintln("l $(l*1e10) *1e-10")
        #     @cuprintln("strain $(strain*1e10) *1e-10")
        #     @cuprintln("_stress $(_stress*1e8) *1e-8")
        #     @cuprintln("currentTransverseArea $(currentTransverseArea*1e6) *1e-6")
        #     x=forceNeg.x*1e6
        #     y=forceNeg.y*1e6
        #     z=forceNeg.z*1e6
        #     @cuprintln("forceNeg $x 1e-6, y $y 1e-6, z $z 1e-6")

        #     x=forcePos.x*1e6
        #     y=forcePos.y*1e6
        #     z=forcePos.z*1e6
        #     @cuprintln("forcePos $x 1e-6, y $y 1e-6, z $z 1e-6")
        # end
        
        @inbounds x= (a2*(E_angle2v[i].x-E_angle1v[i].x))
        @inbounds y= (-b2*E_pos2[i].z-b3*(2.0*E_angle1v[i].y+E_angle2v[i].y))
        @inbounds z=(b2*E_pos2[i].y - b3*(2.0*E_angle1v[i].z + E_angle2v[i].z))  
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        momentNeg = Vector3(x,y,z)
        

        @inbounds x= (a2*(E_angle1v[i].x-E_angle2v[i].x))
        @inbounds y= (-b2*E_pos2[i].z- b3*(E_angle1v[i].y+2.0*E_angle2v[i].y))
        @inbounds z=(b2*E_pos2[i].y - b3*(E_angle1v[i].z + 2.0*E_angle2v[i].z))
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        momentPos = Vector3(x,y,z)

        # x=forceNeg.x*1e0
        # y=forceNeg.y*1e0
        # z=forceNeg.z*1e0
        # @cuprintln("forceNeg 1 x $x, y $y, z $z ")
        
        
        ### damping
        @inbounds if E_damp[i] #first pass no damping
            # @cuprintln("damping!!!!!!!!!!")
            @inbounds sqA1     =convert(Float64,E_material[i].sqA1)
            @inbounds sqA2xIp  =convert(Float64,E_material[i].sqA2xIp)
            @inbounds sqB1     =convert(Float64,E_material[i].sqB1)
            @inbounds sqB2xFMp =convert(Float64,E_material[i].sqB2xFMp)
            @inbounds sqB3xIp  =convert(Float64,E_material[i].sqB3xIp)
            
            dampingMultiplier=Vector3(28099.3,28099.3,28099.3) # 2*mat->_sqrtMass*mat->zetaInternal/previousDt;?? todo link to material
            
            zeta=1.0
            dampingM= convert(Float64,E_material[i].dampingM)/dt*1.0
            dampingMultiplier=Vector3(dampingM,dampingM,dampingM)

            
            
            posCalc=Vector3(sqA1*dPos2.x, 
                            sqB1*dPos2.y - sqB2xFMp*(dAngle1.z+dAngle2.z),
                            sqB1*dPos2.z + sqB2xFMp*(dAngle1.y+dAngle2.y))

            # x=posCalc.x*1e6
            # y=posCalc.y*1e6
            # z=posCalc.z*1e6
            # @cuprintln("posCalc x $x 1e-6, y $y 1e-6, z $z 1e-6")
            
            
            forceNeg =forceNeg + (dampingMultiplier*posCalc);
            forcePos =forcePos - (dampingMultiplier*posCalc);

            momentNeg -= Vector3(0.5,0.5,0.5)*dampingMultiplier*Vector3(-sqA2xIp*(dAngle2.x - dAngle1.x),
                                                                    sqB2xFMp*dPos2.z + sqB3xIp*(2*dAngle1.y + dAngle2.y),
                                                                    -sqB2xFMp*dPos2.y + sqB3xIp*(2*dAngle1.z + dAngle2.z));
            momentPos -= Vector3(0.5,0.5,0.5)*dampingMultiplier*Vector3(sqA2xIp*(dAngle2.x - dAngle1.x),
                                                                sqB2xFMp*dPos2.z + sqB3xIp*(dAngle1.y + 2*dAngle2.y),
                                                                -sqB2xFMp*dPos2.y + sqB3xIp*(dAngle1.z + 2*dAngle2.z));

        else
           @inbounds E_damp[i]=true 
        end

        # x=forceNeg.x*1e0
        # y=forceNeg.y*1e0
        # z=forceNeg.z*1e0
        # @cuprintln("forceNeg 2 x $x, y $y, z $z ")

        # smallAngle=true
        @inbounds if !E_smallAngle[i] # ?? check
            # @cuprintln("not small angle")
            # if(i==10)
            #     @cuprintln("not small angle")
            # end
            @inbounds forceNeg = RotateVec3DInv(E_angle1[i],forceNeg)
            @inbounds momentNeg = RotateVec3DInv(E_angle1[i],momentNeg)
        end

        

        
        @inbounds forcePos = RotateVec3DInv(E_angle2[i],forcePos)
        @inbounds momentPos = RotateVec3DInv(E_angle2[i],momentPos)

        @inbounds forceNeg =toAxisOriginalVector3(forceNeg,E_axis[i])
        @inbounds forcePos =toAxisOriginalVector3(forcePos,E_axis[i])

        @inbounds momentNeg=toAxisOriginalQuat(momentNeg,E_axis[i])# TODOO CHECKKKKKK
        @inbounds momentPos=toAxisOriginalQuat(momentPos,E_axis[i])

        
        # vecc=normalizeVector3(pVNeg-pVPos)
        # vecc=Vector3(vecc.x*loaded,vecc.y*loaded,vecc.z*loaded)
        @inbounds E_intForce1[i] =forceNeg 
        @inbounds E_intForce2[i] =forcePos

        @inbounds x= momentNeg.x
        @inbounds y= momentNeg.y
        @inbounds z= momentNeg.z  
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        
        @inbounds E_intMoment1[i]=Vector3(x,y,z)

        @inbounds x= momentPos.x #changed to momentPos todo check!!
        @inbounds y= momentPos.y #changed to momentPos todo check!!
        @inbounds z= momentPos.z #changed to momentPos todo check!!
        x=convert(Float64,x)
        y=convert(Float64,y)
        z=convert(Float64,z)
        
        @inbounds E_intMoment2[i]=Vector3(x,y,z)

        # x=forceNeg.x*1e0
        # y=forceNeg.y*1e0
        # z=forceNeg.z*1e0
        # @cuprintln("forceNeg 3 x $x, y $y, z $z ")
        
        # x=E_pos2[i].x*1e6
        # y=E_pos2[i].y*1e6
        # z=E_pos2[i].z*1e6
        # @cuprintln("pos2 2 x $x 1e-6, y $y 1e-6, z $z 1e-6")



        # x=momentNeg.x*1e6
        # y=momentNeg.y*1e6
        # z=momentNeg.z*1e6
        # @cuprintln("momentNeg x $x, y $y, z $z ")

        # # x=momentPos.x*1e6
        # # y=momentPos.y*1e6
        # # z=momentPos.z*1e6
        # @cuprintln("momentPos x $x, y $y, z $z ")

        # if(i==67)
        #     x=forceNeg.x*1e6
        #     y=forceNeg.y*1e6
        #     z=forceNeg.z*1e6
        #     @cuprintln("forceNeg 12 x $x 1e-6, y $y 1e-6, z $z 1e-6 i $i")
        # end
        
    end

    return
end

function run_updateEdges!(dt,currentTimeStep,E_source,E_target,
        E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,E_angle2v,
        E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,E_intMoment2,
        E_damp,E_smallAngle,E_material,
        E_strain,E_maxStrain,E_strainOffset,E_currentTransverseArea,E_currentTransverseStrainSum,
        N_currPosition,N_orient,N_poissonStrain)
    N=length(E_source)
    numblocks = ceil(Int, N/256)
    CuArrays.@sync begin
        @cuda threads=256 blocks=numblocks updateEdges!(dt,currentTimeStep,E_source,E_target,E_stress,E_axis,E_currentRestLength,E_pos2,E_angle1v,
            E_angle2v,E_angle1,E_angle2,E_intForce1,E_intMoment1,E_intForce2,
            E_intMoment2,E_damp,E_smallAngle,E_material,
            E_strain,E_maxStrain,E_strainOffset,E_currentTransverseArea,E_currentTransverseStrainSum,
            N_currPosition,N_orient,N_poissonStrain)
    end
end

function orientLink!(i,currentRestLength,pVNeg,pVPos,oVNeg,oVPos,axis,smallAngle,damp)  # updates pos2, angle1, angle2, and smallAngle //Quat3D<double> /*double restLength*/
    
    
    pos2 = toAxisXVector3(pVPos-pVNeg,axis) # digit truncation happens here...


    

    angle1 = toAxisXQuat(oVNeg,axis)
    angle2 = toAxisXQuat(oVPos,axis)

    
    totalRot = conjugate(angle1) #keep track of the total rotation of this bond (after toAxisX()) # Quat3D<double>
    pos2 = RotateVec3D(totalRot,pos2)



    angle2 = multiplyQuaternions(totalRot,angle2)
    angle1 = Quaternion(0.0,0.0,0.0,1.0)#new THREE.Quaternion() #zero for now...


    # smallAngle=true #todo later remove
    
    #small angle approximation?
	SmallTurn = ((abs(pos2.z)+abs(pos2.y))/pos2.x);
    ExtendPerc = (abs(1.0-pos2.x/currentRestLength));

    HYSTERESIS_FACTOR = 1.2 * 1e0; #Amount for small angle bond calculations *todo change based on scale
    SA_BOND_BEND_RAD = 0.05 * 1e0; #Amount for small angle bond calculations *todo change based on scale
    SA_BOND_EXT_PERC = 0.50 * 1e0; #Amount for small angle bond calculations *todo change based on scale

    if (!smallAngle && SmallTurn < SA_BOND_BEND_RAD && ExtendPerc < SA_BOND_EXT_PERC)
        smallAngle=true
        damp=false
    elseif ( smallAngle && (SmallTurn > HYSTERESIS_FACTOR*SA_BOND_BEND_RAD || ExtendPerc > HYSTERESIS_FACTOR*SA_BOND_EXT_PERC))
        smallAngle=false
        damp=false
        # @cuprintln("not small angle!!!!!!!!!!")
    end

    # smallAngle=true #todo later remove

    

    if (smallAngle)	 #Align so Angle1 is all zeros
        #pos2[1] =pos2[1]- currentRestLength #only valid for small angles
        pos2=Vector3(pos2.x-currentRestLength,pos2.y,pos2.z)
    else  #Large angle. Align so that Pos2.y, Pos2.z are zero.
        # @cuprintln("large Angle!!!")
        angle1=FromAngleToPosX(angle1,pos2) #get the angle to align Pos2 with the X axis
       
        # totalRot=Quaternion(angle1.x*totalRot.x ,angle1.y*totalRot.y ,angle1.z*totalRot.z ,angle1.w*totalRot.w )  #update our total rotation to reflect this
        totalRot = multiplyQuaternions(angle1,totalRot)

        # angle2=Quaternion(angle1.x*angle2.x ,angle1.y*angle2.y ,angle1.z*angle2.z ,angle1.w*angle2.w ) #rotate angle2
        angle2 = multiplyQuaternions(angle1,angle2)

        pos2=Vector3(lengthVector3(pos2)- currentRestLength,0.0,0.0)

        

    end

    
    angle1v = ToRotationVector(angle1)
    angle2v = ToRotationVector(angle2)

    prec=10e12
    x=roundd(pos2.x,prec)
    y=roundd(pos2.y,prec)
    z=roundd(pos2.z,prec)
    pos2=Vector3(x,y,z)


    # pos2,angle1v,angle2v,angle1,angle2,
    return pos2,angle1v,angle2v,angle1,angle2,totalRot,smallAngle,damp
end

###################################
function isFailed(strain,mat) 
    # return strain > mat.epsilonFail #todo fix
    return mat.epsilonFail != -1.0 && strain>mat.epsilonFail; 
end #!< Returns true if the specified strain is past the failure point (if one is specified)

function stress(strain, transverseStrainSum,mat)
    #reference: http://www.colorado.edu/engineering/CAS/courses.d/Structures.d/IAST.Lect05.d/IAST.Lect05.pdf page 10
    if (isFailed(strain,mat)) 
        return 0.0; #/if a failure point is set and exceeded, we've broken!
    end
    
    # if ( mat.linear)
	if (strain <= mat.strainData[1] || mat.linear)# || forceLinear) #for compression/first segment and linear materials (forced or otherwise), simple calculation
        if ( !mat.poisson || mat.nu == 0.0)
            prec=10e8 #do i really need it now??
            return roundd(mat.E,prec)*strain;
        else
            # @cuprintln(" transverseStrainSum $(transverseStrainSum*1e6) *1e-6")
            # @cuprintln(" mat.eHat $(mat.eHat)")
            return mat.eHat*((1.0-mat.nu)*strain + mat.nu*transverseStrainSum)
            #else return eHat()*((1-nu)*strain + nu*transverseStrainSum); 
        end
	end

	#the non-linear feature with non-zero poissons ratio is currently experimental
    DataCount = length(mat.strainData); #int
	for i = 3:DataCount #(i=2; i<DataCount; i++) #go through each segment in the material model (skipping the first segment because it has already been handled.
		if (strain <= mat.strainData[i] || i==DataCount-1) #if in the segment ending with this point (or if this is the last point extrapolate out) 
			Perc = (strain-mat.strainData[i-1])/(mat.strainData[i]-mat.strainData[i-1]);
			basicStress = mat.stressData[i-1] + Perc*(mat.stressData[i]-mat.stressData[i-1]);
            if (!mat.poisson || mat.nu == 0.0) 
                return basicStress;
			else  #accounting for volumetric effects
				modulus = (mat.stressData[i]-mat.stressData[i-1])/(mat.strainData[i]-mat.strainData[i-1]);
				modulusHat = modulus/((1.0-2.0*mat.nu)*(1.0+mat.nu));
				effectiveStrain = basicStress/modulus; #this is the strain at which a simple linear stress strain line would hit this point at the definied modulus
				effectiveTransverseStrainSum = transverseStrainSum*(effectiveStrain/strain);
				return modulusHat*((1.0-mat.nu)*effectiveStrain + mat.nu*effectiveTransverseStrainSum);
            end
		end
	end

    ##assert(false); //should never reach this point
    # todo show error
	return 0.0;
end

function updateTransverseInfo(currentTransverseArea,currentTransverseStrainSum,mat,axis,poissonsStrainNeg,poissonsStrainPos)
    # @cuprintln("updateTransverseInfo!!!!!!!!!!!!!")

	currentTransverseArea = 0.5*(transverseArea( mat,axis,poissonsStrainNeg)+transverseArea( mat,axis,poissonsStrainPos));
    currentTransverseStrainSum = 0.5*(transverseStrainSum( mat,axis,poissonsStrainNeg)+transverseStrainSum( mat,axis,poissonsStrainPos));

    # @cuprintln("currentTransverseArea: $(currentTransverseArea*1e6) 1e-6")
    # @cuprintln("currentTransverseStrainSum: $(currentTransverseStrainSum*1e6) 1e-6")

    return currentTransverseArea,currentTransverseStrainSum

end

function strainEnergy(mat,forceNeg,momentNeg,momentPos) 
	return	forceNeg.x*forceNeg.x/(2.0*mat.a1) + #Tensile strain
			momentNeg.x*momentNeg.x/(2.0*mat.a2) + #Torsion strain
			(momentNeg.z*momentNeg.z - momentNeg.z*momentPos.z +momentPos.z*momentPos.z)/(3.0*mat.b3) + #Bending Z
			(momentNeg.y*momentNeg.y - momentNeg.y*momentPos.y +momentPos.y*momentPos.y)/(3.0*mat.b3); #/Bending Y
end

function updateStrain( axialStrain,maxStrain,strainOffset,mat,currentTransverseStrainSum)

	if (mat.linear)
        if (axialStrain > maxStrain) 
            maxStrain = axialStrain; #remember this maximum for easy reference
        end
		return stress(axialStrain, currentTransverseStrainSum,mat),maxStrain,strainOffset;
	else 
		# @cuprintln(" non linear material!")
		returnStress=0.0

        if (axialStrain > maxStrain) #if new territory on the stress/strain curve
			maxStrain = axialStrain; #remember this maximum for easy reference
			returnStress = stress(axialStrain, currentTransverseStrainSum,mat);
			
            if (mat.poisson && mat.nu != 0.0) 
                strainOffset = maxStrain-stress(axialStrain, 0.0,mat)/(mat.eHat*(1.0-mat.nu)); #precalculate strain offset for when we back off
            else 
                strainOffset = maxStrain-returnStress/mat.E; #precalculate strain offset for when we back off
            end
		else  #backed off a non-linear material, therefore in linear region.
			relativeStrain = axialStrain-strainOffset; # treat the material as linear with a strain offset according to the maximum plastic deformation
			
            if (mat.poisson && mat.nu != 0.0) 
                returnStress = stress(relativeStrain, currentTransverseStrainSum,mat);
            else 
                returnStress = mat.E*relativeStrain;
            end
		end
		return returnStress,maxStrain,strainOffset;
    end
end

function transverseStrainSum( mat,axis,poissonsStrain)
    if (!mat.poisson || mat.nu == 0.0)
        return 0;
    end
	
    psVec = poissonsStrain; 
    
    val=0.0 #todo change for multiple degrees of freedom
    if (axis.x!=0.0)
        val=val+psVec.y+psVec.z
    elseif (axis.y!=0.0)
        val=val+psVec.x+psVec.z
    elseif (axis.z!=0.0)
        val=val+psVec.x+psVec.y
    end
    return val
end

function transverseArea(mat,axis,poissonsStrain)
    # size =mat.nominalSize;
    size =mat.b; #todo change later to nom size
    
    if (!mat.poisson || mat.nu == 0.0) 
        return size*size
    end

    psVec = poissonsStrain;

    # x=pos2.x*1e6
    # y=pos2.y*1e6
    # z=pos2.z*1e6
    # @cuprintln("pos2 12 x $x 1e-6, y $y 1e-6, z $z 1e-6")

    val=size*size #todo change for multiple degrees of freedom
    if (axis.x!=0.0)
        val=val*(1.0+psVec.y)*(1.0+psVec.z)
    elseif (axis.y!=0.0)
        val=val*(1.0+psVec.x)*(1.0+psVec.z)
    elseif (axis.z!=0.0)
        val=val*(1.0+psVec.x)*(1.0+psVec.y)
    end
    return val

end



# function axialStiffness(pVNeg,pVPos,axis,mat,currentTransverseArea,strain,currentRestLength) 
#     if (mat.isXyzIndependent()) 
#         return mat.a1;
# 	else 
# 		# updateRestLength();
# 		updateTransverseInfo(pVNeg,pVPos,axis)

# 		return (mat.eHat*currentTransverseArea/((strain+1.0)*currentRestLength)); # _a1;
#     end
# end
###########################################################################