Skip to content
Snippets Groups Projects
Asymp_homogenization.jl 18.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020

# Asymptotic Homogenization Implementation in Julia
# Based on: https://asmedigitalcollection.asme.org/materialstechnology/article-abstract/141/1/011005/368579

# using MAT
# using LinearAlgebra
# using CUDA, IterativeSolvers
# using SparseArrays
# using Krylov

# vars = matread("grid_octet_skel.mat")
# GRID=vars["GRID"];
# STRUT=vars["STRUT"];
# res = 40; # number of voxels per side
# rad = 0.1; # radius of struts

# two options to format effective property results: 'vec' or 'struct'
# outOption = "struct";
# options to print results and/or plot Young's modulus surface
# dispFlag = 1;
# plotFlag = 1;
# props, SH = evaluateCH(CH, dens, outOption, dispFlag);
function KE_from_E(E,nu)
    D0 = E/(1+nu)/(1-2*nu)*
        [ 1-nu   nu   nu     0          0          0     ;
            nu 1-nu   nu     0          0          0     ;
            nu   nu 1-nu     0          0          0     ;
             0    0    0 (1-2*nu)/2     0          0     ;
             0    0    0     0      (1-2*nu)/2     0     ;
             0    0    0     0          0      (1-2*nu)/2];
    Ke = elementMatVec3D(0.5, 0.5, 0.5, D0);
    
    return Ke,[E,E,E]
end

function getCH(GRID,STRUT,res,rad)

    
    vox, dens = generateVoxelLattice(res, rad, GRID, STRUT);
    # alternatively, define voxels directly
    # vars = matread("grid_octet_vox.mat")
    # vox=vars["vox"];
    # dens = sum(vox)/length(vox)
    # lengths of sides of unit cell
    ll = [1,1,1];

    # properties of isotropic constituent material properties
    E = [1e-9 2e9]; # E1, E2
    nu = [0.33 0.33]; # nu1, nu2
    lam = nu.*E ./ ((1.0 .+nu).*(1.0 .-2.0*nu));
    mu = E ./ (2.0*(1.0 .+nu));

    # two options to define constituent materials: 'young's or 'lame'
    # changes how stiffness matrix is assembled.
    def = "youngs"; props0 = [E; nu];   # with young's modulus and poisson's ratio
    # def = "lame"; props0 = [lam; mu]; # with lame's parameters

    # two options for solver: 'pcg' or 'direct'
    solver = "pcg";


    
    CH = homogAsymp3D(ll, vox, props0, def, solver);

    # two options to format effective property results: 'vec' or 'struct'
    outOption = "struct";
    # options to print results and/or plot Young's modulus surface
    dispFlag = 1;
    plotFlag = 1;
    dens=0.5
    props, SH = evaluateCH(CH, dens, outOption, dispFlag);
    EH=props["EH"]

    return CH,EH
end

function generateVoxelLattice(n,radius,node,strut)
    #########################################################################

    #########################################################################
    vox_size = 1/n;               # initial size of voxels
    voxel = zeros(Int,n,n,n);      # initial grid with zeros
    ## generate a list of centers of voxel
    voxel_c = zeros(n^3,6);   
    p = 0;                    # p count the number of all voxels
    for i = 1:n               # i for z axis
        for j = 1:n           # j for y axis
            for k = 1:n       # k for x axis
                p = p + 1;
                voxel_c[p,1:3] = [k,j,i];  # save index along x,y,z axis
                # save coordinate along x,y,z axis
                voxel_c[p,4:6] = [(k-0.5)*vox_size,(j-0.5)*vox_size,(i-0.5)*vox_size];         
            end
        end
    end
    voxel_i = Base._sub2ind(size(voxel), map(y->Int.(y),voxel_c[:,1]), map(y->Int.(y),voxel_c[:,2]), map(y->Int.(y),voxel_c[:,3]));
    start_n = node[Int.(strut[:,1]),:];
    end_n = node[Int.(strut[:,2]),:];
    

    ## Get the voxel close the the strut witnin a certain distance
    for i = 1:size(strut)[1]
        
        alpha = acosd.( sum((voxel_c[:,4:6] .- start_n[i,:]') .* (end_n[i,:]' .- start_n[i,:]'), dims=2) ./ (vecNorm(voxel_c[:,4:6] .- start_n[i,:]') .* vecNorm(end_n[i,:]' .- start_n[i,:]')) );
        beta  = acosd.( sum((voxel_c[:,4:6] .- end_n[i,:]') .* (start_n[i,:]' .- end_n[i,:]'), dims=2) ./ (vecNorm(voxel_c[:,4:6] .- end_n[i,:]') .* vecNorm(start_n[i,:]' .- end_n[i,:]')) );
        
        # if it is acute angle, distance to node
        distance = min.(vecNorm(voxel_c[:,4:6] .- start_n[i,:]'), vecNorm(voxel_c[:,4:6] .- end_n[i,:]'));
        
        
        # if not acute angle, distance to line
        obtuse = ((alpha .<90.0) .& (beta .<90.0));

        A=end_n[i,:] .- start_n[i,:];
        B= voxel_c[:,4:6] .- start_n[i,:]';
        
        temp = vecNorm(  getCross(A,B) ) ./ vecNorm(end_n[i,:]' .- start_n[i,:]');
        
        distance[obtuse] = temp[obtuse];

        # if distance less than radius, activate it
        temp = zeros(Int,p,1);
        active = (distance .<= radius);
        temp[active] .= 1;
        temp_voxel = zeros(Int,size(voxel));
        temp_voxel[voxel_i] = temp;
        voxel .= temp_voxel .| voxel;
    end

    Density = sum(sum(sum(voxel)))/length(voxel); # calculate the relative density                            
    return voxel,Density
end

function vecNorm(A)
    new_norm = sqrt.(sum(A.^2, dims=2));
    return new_norm
end  
    
function getCross(A,B)
    dim1=size(B)[1]
    dim2=size(B)[2]
    result=zeros(dim1,dim2)
    for i=1:dim1 #64000
        result[i,:].=cross(A,B[i,:])
    end
    return result   
end

## COMPUTE UNIT ELEMENT STIFFNESS MATRIX AND LOAD VECTOR
function assemble_lame(a, b, c)
    # Initialize
    keLambda = zeros(24,24); keMu = zeros(24,24);
    feLambda = zeros(24,6); feMu = zeros(24,6);
    ww = [5/9, 8/9, 5/9];
    J_ = [-a a a -a -a a a -a; -b -b b b -b -b b b; -c -c -c -c c c c c]';
    # Constitutive matrix contributions
    CMu = diagm(0=>[2, 2, 2, 1, 1, 1]); 
    CLambda = zeros(6); 
    CLambda[1:3,1:3] = 1;
    # Three Gauss points in both directions
    xx = [-sqrt(3/5), 0, sqrt(3/5)]; yy = xx; zz = xx;
    for ii = 1:size(xx)[1]
        for jj = 1:size(yy)[1]
            for kk = 1:size(zz)[1]
                # integration point
                x = xx(ii); y = yy(jj); z = zz(kk);
                # stress strain displacement matrix
                B, J = strain_disp_matrix(x, y, z, J_);
                # Weight factor at this point
                weight = det(J) * ww(ii) * ww(jj) * ww(kk);
                # Element matrices
                keLambda = keLambda + weight * B' * CLambda * B;
                keMu = keMu + weight * B' * CMu * B;
                # Element loads
                feLambda = feLambda + weight * B' * CLambda;       
                feMu = feMu + weight * B' * CMu; 
            end
        end
    end
        
    return keLambda, keMu, feLambda, feMu

end

function assemble_youngs(nu, a, b, c)
    #  Initialize
    ww = [5/9, 8/9, 5/9];
    J_ = [-a a a -a -a a a -a; -b -b b b -b -b b b; -c -c -c -c c c c c]';

    ke = zeros(24,24); fe = zeros(24,6);
    # Constitutive matrix with unit Young's modulus
    nu = nu[2]; #TODO multi-material nu
    C = diagm(1=>[nu, nu, 0, 0, 0]) .+ diagm(2=>[nu, 0, 0, 0]); 
    C = C .+C';
    C = C + diagm(0=>[ 1-nu,1-nu,1-nu,(1-2*nu)/2,(1-2*nu)/2, (1-2*nu)/2]);
    C = C / ((1+nu).*(1-2*nu));
    # Three Gauss points in both directions
    xx = [-sqrt(3/5), 0, sqrt(3/5)]; yy = xx; zz = xx;
    for ii = 1:size(xx)[1]
        for jj = 1:size(yy)[1]
            for kk = 1:size(zz)[1]
                # integration point
                x = xx[ii]; y = yy[jj]; z = zz[kk];
                # stress strain displacement matrix
                B, J = strain_disp_matrix(x, y, z, J_);
                # Weight factor at this point
                weight = det(J) * ww[ii] * ww[jj] * ww[kk];

                # Element matrices
                ke = ke + weight * B' * C * B;
                # Element loads
                fe = fe + weight * B' * C;       
            end
        end
    end
    return ke, fe
end

function strain_disp_matrix(x, y, z, J_)
    #stress strain displacement matrix
    qx = [ -((y-1)*(z-1))/8, ((y-1)*(z-1))/8, -((y+1)*(z-1))/8, ((y+1)*(z-1))/8, ((y-1)*(z+1))/8, -((y-1)*(z+1))/8,((y+1)*(z+1))/8, -((y+1)*(z+1))/8];
    qy = [ -((x-1)*(z-1))/8, ((x+1)*(z-1))/8, -((x+1)*(z-1))/8, ((x-1)*(z-1))/8, ((x-1)*(z+1))/8, -((x+1)*(z+1))/8,((x+1)*(z+1))/8, -((x-1)*(z+1))/8];
    qz = [ -((x-1)*(y-1))/8, ((x+1)*(y-1))/8, -((x+1)*(y+1))/8, ((x-1)*(y+1))/8, ((x-1)*(y-1))/8, -((x+1)*(y-1))/8,((x+1)*(y+1))/8, -((x-1)*(y+1))/8];

    J = [qx  qy  qz]' * J_; # Jacobian
    qxyz = J \ [qx   qy   qz]';
    B_e = zeros(6,3,8);
    for i_B = 1:8
        B_e[:,:,i_B] = [qxyz[1,i_B]   0             0;
                        0             qxyz[2,i_B]   0;
                        0             0             qxyz[3,i_B];
                        qxyz[2,i_B]   qxyz[1,i_B]   0;
                        0             qxyz[3,i_B]   qxyz[2,i_B];
                        qxyz[3,i_B]   0             qxyz[1,i_B]];
    end
    B = [B_e[:,:,1] B_e[:,:,2] B_e[:,:,3] B_e[:,:,4] B_e[:,:,5] B_e[:,:,6] B_e[:,:,7] B_e[:,:,8]];
    return B, J
    
end

function homogAsymp3D(ll, vox, props0, def="youngs", solver="pcg")
    nelx, nely, nelz = size(vox); #size of voxel model along x,y and z axis
    dx = ll[1]/nelx; dy = ll[2]/nely; dz = ll[3]/nelz;
    nel = nelx*nely*nelz;
    
    # Node numbers and element degrees of freedom for full (not periodic) mesh
    nodenrs = reshape(1:(1+nelx)*(1+nely)*(1+nelz),1+nelx,1+nely,1+nelz);
    edofVec = reshape(3*nodenrs[1:end-1,1:end-1,1:end-1] .+ 1,nel,1);

    addx = [0 1 2 3*nelx .+ [3 4 5 0 1 2] -3 -2 -1];
    addxy = 3*(nely+1)*(nelx+1) .+ addx;
    edofMat = repeat(edofVec,1,24) .+ repeat([addx addxy],nel,1);

    ## IMPOSE PERIODIC BOUNDARY CONDITIONS
    # Use original edofMat to index into list with the periodic dofs
    nn = (nelx+1)*(nely+1)*(nelz+1); # Total number of nodes
    nnP = (nelx)*(nely)*(nelz);      # Total number of unique nodes
    nnPArray_old = reshape(1:nnP, nelx, nely, nelz);
    
    nnPArray=zeros(nelx+1, nely+1, nelz+1);
    
    nnPArray[1:nelx,1:nely,1:nelz].=nnPArray_old;
        
    # Extend with a mirror of the back border
    nnPArray[end,:,:] = nnPArray[1,:,:];    
    # Extend with a mirror of the left border
    nnPArray[:, end, :] = nnPArray[:,1,:];
    # Extend with a mirror of the top border
    nnPArray[:, :, end] = nnPArray[:,:,1];
    
    # Make a vector into which we can index using edofMat:
    dofVector = zeros(3*nn, 1);
    dofVector[1:3:end] = 3*nnPArray[:] .-2;
    dofVector[2:3:end] = 3*nnPArray[:] .-1;
    dofVector[3:3:end] = 3*nnPArray[:];
    edof = Int.(dofVector[edofMat]);
    ndof = 3 .*nnP;

    ## ASSEMBLE GLOBAL STIFFNESS MATRIX K AND LOAD VECTOR F
    # Indexing vectors
    iK = kron(edof,ones(24,1))';
    jK = kron(edof,ones(1,24))';
    iF = repeat(edof',6,1);
    jF = [ones(24,nel); 2 .*ones(24,nel); 3 .*ones(24,nel); 4 .*ones(24,nel); 5 .*ones(24,nel); 6 .*ones(24,nel);];

    # Assemble stiffness matrix and load vector
    if def == "lame"
        # Material properties assigned to voxels with materials
        lambda = props0[1,:]; 
        mu = props0[2,:];
        lambda = lambda[1]*(vox==0) + lambda[2]*(vox==1);
        mu = mu[1]*(vox==0) + mu[2]*(vox==1);
        
        # Unit element stiffness matrix and load
        keLambda, keMu, feLambda, feMu = assemble_lame(dx/2, dy/2, dz/2);
        ke = keMu + keLambda; # Here the exact ratio does not matter, because
        fe = feMu + feLambda; # it is reflected in the load vector
        sK = keLambda[:]* lambda[:]' + keMu(:)*mu(:)';
        sF = feLambda[:]* lambda[:]' + feMu(:)*mu(:)';
    
        # sK = keLambda[:]* lambda[:].' + keMu(:)*mu(:).';
        # sF = feLambda[:]* lambda[:].' + feMu(:)*mu(:).';
    
    elseif def == "youngs"
        E = props0[1,:]; 
        E = E[1] .+ vox .*(E[2] .-E[1]); # SIMP
        nu = props0[2,:];
        
        # Unit element stiffness matrix and load
        ke, fe = assemble_youngs(nu, dx/2, dy/2, dz/2);
        sK = ke[:]*E[:]';
        sF = fe[:]*E[:]';
    else
        error("unavailable option for constituent properties definition")
    end
    # Global stiffness matrix
    K = sparse(iK[:], jK[:], sK[:], ndof, ndof);
    K = (K+K')/2;
    # Six load cases corresponding to the six strain cases
    F  = sparse(iF[:], jF[:], sF[:], ndof, 6);

    ## SOLUTION    
    activedofs = edof[reshape((vox.==0) .| (vox.==1),nelx* nely* nelz ),:];
    activedofs = Int.(sort(unique(activedofs[:])));
    X = zeros(ndof,6);
    display("Solving")
    if solver =="pcg"
        # solve using PCG method, remember to constrain one node
        # L = ichol(K[activedofs[4:end],activedofs[4:end]]); # preconditioner
        display("started pcg")
        for i = 1:6 # run once for each loading condition
            # [X[activedofs[4:end],i],~,~,~] = cg(K[activedofs[4:end],activedofs[4:end]],F[activedofs[4:end],i]
            #     ,1e-10,300,L,L');
            
            # A = cu(K[activedofs[4:end],activedofs[4:end]])
            # b = cu(F[activedofs[4:end],i])
            # X[activedofs[4:end],i].= Array(cg(A, b,verbose=true))
            A = K[activedofs[4:end],activedofs[4:end]]
            b = F[activedofs[4:end],i]
            # x = cg(A, b,tol=1.0e-10,maxiter=300)
            X[activedofs[4:end],i].= Krylov.cg(A, b,atol=1.0e-12,rtol=1.0e-12,itmax =500,verbose=false)[1]
            # X[activedofs[4:end],i].= Krylov.cg(A, b,tol=1.0e-10,maxiter=2,verbose=true)
            
            # X[activedofs[4:end],i]=cg(K[activedofs[4:end],activedofs[4:end]],F[activedofs[4:end],i])
            display(i)
        end
    elseif solver=="direct"
        display("started direct")
        # solve using direct method
        X[activedofs[4:end],:] = K[activedofs[4:end],activedofs[4:end]] \ F[activedofs[4:end],:];
    else
        error("unavailable option for solver")
    
    end

    ## ASYMPTOTIC HOMOGENIZATION
    # The displacement vectors corresponding to the unit strain cases
    X0 = zeros(nel, 24, 6);
    # The element displacements for the six unit strains
    X0_e = zeros(24, 6);
    # fix degrees of nodes [1 2 3 5 6 12];
    X0_e[vcat(4,7:11,13:24),:] = ke[vcat(4,7:11,13:24),vcat(4,7:11,13:24)] \fe[vcat(4, 7:11, 13:24),:];
    X0[:,:,1] = kron(X0_e[:,1]', ones(nel,1)); # epsilon0_11 = (1,0,0,0,0,0)
    X0[:,:,2] = kron(X0_e[:,2]', ones(nel,1)); # epsilon0_22 = (0,1,0,0,0,0)
    X0[:,:,3] = kron(X0_e[:,3]', ones(nel,1)); # epsilon0_33 = (0,0,1,0,0,0)
    X0[:,:,4] = kron(X0_e[:,4]', ones(nel,1)); # epsilon0_12 = (0,0,0,1,0,0)
    X0[:,:,5] = kron(X0_e[:,5]', ones(nel,1)); # epsilon0_23 = (0,0,0,0,1,0)
    X0[:,:,6] = kron(X0_e[:,6]', ones(nel,1)); # epsilon0_13 = (0,0,0,0,0,1)
    CH = zeros(6,6);
    volume = prod(ll);
    # Homogenized elasticity tensor
    if def == "lame"
        for i = 1:6
            for j = 1:6
                sum_L = (X0[:,:,i] .- X[edof .+(i-1)*ndof]*keLambda).*(X0[:,:,j] .- X[edof .+(j-1)*ndof]);
                sum_M = (X0[:,:,i] .- X[edof .+(i-1)*ndof]*keMu).* (X0[:,:,j] .- X[edof .+(j-1)*ndof]);
                sum_L = reshape(sum(sum_L,dims=2), nelx, nely, nelz);
                sum_M = reshape(sum(sum_M,dims=2), nelx, nely, nelz);
                CH[i,j] = 1/volume*sum(sum(sum(lambda.*sum_L + mu .* sum_M)));
            end
        end
    elseif def == "youngs"
        for i = 1:6
            for j = 1:6
                sum_XkX = ((X0[:,:,i] .- X[edof .+ (i-1)*ndof] )*ke).* (X0[:,:,j] .- X[edof .+ (j-1)*ndof]);
                sum_XkX = reshape(sum(sum_XkX,dims=2), nelx, nely, nelz);
                CH[i,j] = 1/volume*sum(sum(sum(sum_XkX.*E)));
            end
        end
    end
    return CH

end

function evaluateCH(CH, dens, outOption, dispFlag)

    U,S,V = svd(CH);
    sigma = S;
    k = sum(sigma .> 1e-15);
    SH = (U[:,1:k] * diagm(0=>(1 ./sigma[1:k])) * V[:,1:k]')'; # more stable SVD (pseudo)inverse
    EH = [1/SH[1,1], 1/SH[2,2], 1/SH[3,3]]; # effective Young's modulus
    GH = [1/SH[4,4], 1/SH[5,5], 1/SH[6,6]]; # effective shear modulus
    vH = [-SH[2,1]/SH[1,1]  -SH[3,1]/SH[1,1]  -SH[3,2]/SH[2,2];
         -SH[1,2]/SH[2,2]  -SH[1,3]/SH[3,3]  -SH[2,3]/SH[3,3]]; # effective Poisson's ratio
        
    if outOption=="struct"
        props = Dict("CH"=>CH, "SH"=>SH, "EH"=>EH, "GH"=>GH, "vH"=>vH, "density"=>dens);
    elseif outOption== "vec"
        props =  [EH, GH, vH[:]', dens];
    end
        
    if true
        println("\n--------------------------EFFECTIVE PROPERTIES--------------------------\n")
        println("Density: $dens")
        println("Youngs Modulus:____E11_____|____E22_____|____E33_____\n")
        println("               $(EH[1]) | $(EH[2]) | $(EH[3])\n\n")
        println("Shear Modulus:_____G23_____|____G31_____|____G12_____\n")
        println("               $(GH[1]) | $(GH[2]) | $(GH[3])\n\n")
        println("Poissons Ratio:____v12_____|____v13_____|____v23_____\n")
        println("               $(vH[1,1]) | $(vH[1,2]) | $(vH[1,3])\n\n")
        println("               ____v21_____|____v31_____|____v32_____\n")
        println("               $(vH[2,1]) | $(vH[2,2]) | $(vH[2,3])\n\n")
        println("------------------------------------------------------------------------")
    end
        
        
    return props, SH
end


## SUB FUNCTION: elementMatVec3D
function elementMatVec3D(a, b, c, DH)
    GN_x=[-1/sqrt(3),1/sqrt(3)]; GN_y=GN_x; GN_z=GN_x; GaussWeigh=[1,1];
    Ke = zeros(24,24); L = zeros(6,9);
    L[1,1] = 1; L[2,5] = 1; L[3,9] = 1;
    L[4,2] = 1; L[4,4] = 1; L[5,6] = 1;
    L[5,8] = 1; L[6,3] = 1; L[6,7] = 1;
    for ii=1:length(GN_x)
        for jj=1:length(GN_y)
            for kk=1:length(GN_z)
                x = GN_x[ii];y = GN_y[jj];z = GN_z[kk];
                dNx = 1/8*[-(1-y)*(1-z)  (1-y)*(1-z)  (1+y)*(1-z) -(1+y)*(1-z) -(1-y)*(1+z)  (1-y)*(1+z)  (1+y)*(1+z) -(1+y)*(1+z)];
                dNy = 1/8*[-(1-x)*(1-z) -(1+x)*(1-z)  (1+x)*(1-z)  (1-x)*(1-z) -(1-x)*(1+z) -(1+x)*(1+z)  (1+x)*(1+z)  (1-x)*(1+z)];
                dNz = 1/8*[-(1-x)*(1-y) -(1+x)*(1-y) -(1+x)*(1+y) -(1-x)*(1+y)  (1-x)*(1-y)  (1+x)*(1-y)  (1+x)*(1+y)  (1-x)*(1+y)];
                J = [dNx;dNy;dNz]*[ -a  a  a  -a  -a  a  a  -a ;  -b  -b  b  b  -b  -b  b  b; -c -c -c -c  c  c  c  c]';
                G = [inv(J) zeros(3) zeros(3);zeros(3) inv(J) zeros(3);zeros(3) zeros(3) inv(J)];
                dN=zeros(9,24)
                dN[1,1:3:24] = dNx; dN[2,1:3:24] = dNy; dN[3,1:3:24] = dNz;
                dN[4,2:3:24] = dNx; dN[5,2:3:24] = dNy; dN[6,2:3:24] = dNz;
                dN[7,3:3:24] = dNx; dN[8,3:3:24] = dNy; dN[9,3:3:24] = dNz;
                Be = L*G*dN;
                Ke = Ke + GaussWeigh[ii]*GaussWeigh[jj]*GaussWeigh[kk]*det(J)*(Be'*DH*Be);
            end
        end
    end
    return Ke
end