Skip to content
Snippets Groups Projects
run.jl 48.9 KiB
Newer Older
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020

function runMetavoxelGPU!(setup,numTimeSteps,latticeSize,displacements,returnEvery,save)
    function initialize!(setup)
        nodes      = setup["nodes"]
        edges      = setup["edges"]

        i=1
        # pre-calculate current position
        for node in nodes
            node["position"]["y"]=node["position"]["y"]+0.0
            node["position"]["z"]=node["position"]["z"]+0.0
            # element=parse(Int,node["id"][2:end])
            N_position[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])
            N_restrained[i]=node["restrained_degrees_of_freedom"][1] ## todo later consider other degrees of freedom
            N_displacement[i]=Vector3(node["displacement"]["x"],node["displacement"]["y"],node["displacement"]["z"])
            N_angle[i]=Vector3(node["angle"]["x"],node["angle"]["y"],node["angle"]["z"])
            N_force[i]=Vector3(node["force"]["x"],node["force"]["y"],node["force"]["z"])
            N_fixedDisplacement[i]=Vector3(node["fixedDisplacement"]["x"],node["fixedDisplacement"]["y"],node["fixedDisplacement"]["z"])
            N_currPosition[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])
            #voxelMaterial(E,mass,nu,rho,zeta,zetaCollision,muStatic,muKinetic,nomSize)

            i=i+1
        end 

        i=1
        # pre-calculate the axis
        for edge in edges
            # element=parse(Int,edge["id"][2:end])

            # find the nodes that the lements connects
            fromNode = nodes[edge["source"]+1]
            toNode = nodes[edge["target"]+1]


            node1 = [fromNode["position"]["x"] fromNode["position"]["y"] fromNode["position"]["z"]]
            node2 = [toNode["position"]["x"] toNode["position"]["y"] toNode["position"]["z"]]

            length=norm(node2-node1)
            axis=normalize(collect(Iterators.flatten(node2-node1)))

            E_source[i]=edge["source"]+1
            E_target[i]=edge["target"]+1
            E_axis[i]=Vector3(axis[1],axis[2],axis[3])
            E_currentRestLength[i]=length #?????? todo change  
                      

            N_edgeID[E_source[i],N_currEdge[E_source[i]]]=i
            N_edgeFirst[E_source[i],N_currEdge[E_source[i]]]=true
            N_currEdge[E_source[i]]+=1

            N_edgeID[E_target[i],N_currEdge[E_target[i]]]=i
            N_edgeFirst[E_target[i],N_currEdge[E_target[i]]]=false
            N_currEdge[E_target[i]]+=1
            
            E=(N_material[E_source[i]].E+N_material[E_target[i]].E)/2.0
            mass=(N_material[E_source[i]].mass+N_material[E_target[i]].mass)/2.0
            nu=(N_material[E_source[i]].nu+N_material[E_target[i]].nu)/2.0
            rho=(N_material[E_source[i]].rho+N_material[E_target[i]].rho)/2.0
            area=edge["material"]["area"]
   
            E_material[i]=edgeMaterial()
            loaded=0.0

            strainRatio=(N_material[E_source[i]].E / N_material[E_target[i]].E)

            # linear=(N_material[E_source[i]].linear && N_material[E_target[i]].linear)
            # poisson=(N_material[E_source[i]].poisson || N_material[E_target[i]].poisson)
            linear=true
            poisson=false
            
            cTE=0.0 #Coefficient of thermal expansion
 

            # epsilonFail=(N_material[E_source[i]].epsilonFail+N_material[E_target[i]].epsilonFail)/2.0 #TODO CHANGE TO SMALLEST

            E_material[i]=edgeMaterial(E,mass,nu,rho,sqrt(area),sqrt(area),length,loaded,strainRatio,linear,poisson,cTE)
            #edgeMaterial(E,mass,nu,rho,b,h,L)


            i=i+1
        end 
    end
    function simulateParallel!(metavoxel,numTimeSteps,dt,returnEvery)
        # initialize(setup)

        for i in 1:numTimeSteps
            #println("Timestep:",i)
            doTimeStep!(metavoxel,dt,i)
            if(mod(i,returnEvery)==0)
                append!(displacements,[Array(metavoxel["N_displacementGPU"])])
            end
        end
    end
    
    ########
    voxCount=0
    linkCount=0
    nodes      = setup["nodes"]
    edges      = setup["edges"]
    voxCount=size(nodes)[1]
    linkCount=size(edges)[1]
    strain =0 #todooo moveeee
    maxNumEdges=10

    ########
    voxCount=0
    linkCount=0
    nodes      = setup["nodes"]
    edges      = setup["edges"]
    voxCount=size(nodes)[1]
    linkCount=size(edges)[1]
    strain =0 #todooo moveeee

    ############# nodes
    N_position=fill(Vector3(),voxCount)
    N_restrained=zeros(Bool, voxCount)
    N_displacement=fill(Vector3(),voxCount)
    N_angle=fill(Vector3(),voxCount)
    N_currPosition=fill(Vector3(),voxCount)
    N_linMom=fill(Vector3(),voxCount)
    N_angMom=fill(Vector3(),voxCount)
    N_intForce=fill(Vector3(),voxCount)
    N_intMoment=fill(Vector3(),voxCount)
    N_moment=fill(Vector3(),voxCount)
    N_force=fill(Vector3(),voxCount)
    N_fixedDisplacement=fill(Vector3(),voxCount)
    N_orient=fill(Quaternion(),voxCount)
    N_edgeID=fill(-1,(voxCount,maxNumEdges))
    N_edgeFirst=fill(true,(voxCount,maxNumEdges))
    N_currEdge=fill(1,voxCount)
    N_material=fill(voxelMaterial(),voxCount)
    N_poissonStrain=fill(Vector3(),voxCount)
    #voxelMaterial(E,mass,nu,rho,zeta,zetaCollision,muStatic,muKinetic,nomSize)

    ############# edges
    E_source=fill(0,linkCount)
    E_target=fill(0,linkCount)
    E_stress=fill(0.0,linkCount)
    E_axis=fill(Vector3(1.0,0.0,0.0),linkCount)
    E_currentRestLength=fill(0.0,linkCount)
    E_pos2=fill(Vector3(),linkCount)
    E_angle1v=fill(Vector3(),linkCount)
    E_angle2v=fill(Vector3(),linkCount)
    E_angle1=fill(Quaternion(),linkCount)
    E_angle2=fill(Quaternion(),linkCount)

    E_intForce1=fill(Vector3(),linkCount)
    E_intMoment1=fill(Vector3(),linkCount) 

    E_intForce2=fill(Vector3(),linkCount)
    E_intMoment2=fill(Vector3(),linkCount)
    E_damp=fill(false,linkCount)
    E_smallAngle=fill(true,linkCount)
    E_material=fill(edgeMaterial(),linkCount)

    E_strain=fill(0.0,linkCount)
    E_maxStrain=fill(0.0,linkCount)
    E_strainOffset=fill(0.0,linkCount)
    E_currentTransverseArea=fill(0.0,linkCount)
    E_currentTransverseStrainSum=fill(0.0,linkCount)# TODO remove ot incorporate


    #################################################################
    initialize!(setup)
    #################################################################

    ########################## turn to cuda arrays
    ############# nodes
    N_positionGPU=      CuArray(N_position)      
    N_restrainedGPU=    CuArray(N_restrained)  
    N_displacementGPU=  CuArray(N_displacement)   
    N_angleGPU=         CuArray(N_angle)       
    N_currPositionGPU=  CuArray(N_currPosition)    
    N_linMomGPU=        CuArray(N_linMom)        
    N_angMomGPU=        CuArray(N_angMom)        
    N_intForceGPU=      CuArray(N_intForce)     
    N_intMomentGPU=     CuArray(N_intMoment)        
    N_momentGPU=        CuArray(N_moment)         
    N_forceGPU=         CuArray(N_force)
    N_fixedDisplacementGPU=CuArray(N_fixedDisplacement)           
    N_orientGPU=        CuArray(N_orient)       
    N_edgeIDGPU=        CuArray(N_edgeID)         
    N_edgeFirstGPU=     CuArray(N_edgeFirst)
    N_materialGPU=      CuArray(N_material)
    N_poissonStrainGPU= CuArray(N_poissonStrain) 


    ############# edges
    E_sourceGPU=                    CuArray(E_source)   
    E_targetGPU=                    CuArray(E_target)
    E_stressGPU=                    CuArray(E_stress)
    E_axisGPU=                      CuArray(E_axis)          
    E_currentRestLengthGPU=         CuArray(E_currentRestLength)
    E_pos2GPU=                      CuArray(E_pos2)
    E_angle1vGPU=                   CuArray(E_angle1v)
    E_angle2vGPU=                   CuArray(E_angle2v)
    E_angle1GPU=                    CuArray(E_angle1)
    E_angle2GPU=                    CuArray(E_angle2)

    E_strainGPU=                    CuArray(E_strain)
    E_maxStrainGPU=                 CuArray(E_maxStrain)
    E_strainOffsetGPU=              CuArray(E_strainOffset)
    E_currentTransverseAreaGPU=     CuArray(E_currentTransverseArea)
    E_currentTransverseStrainSumGPU=CuArray(E_currentTransverseStrainSum)# TODO remove ot incorporate

    E_intForce1GPU=                 CuArray(E_intForce1) 
    E_intMoment1GPU=                CuArray(E_intMoment1)  
    E_intForce2GPU=                 CuArray(E_intForce2) 
    E_intMoment2GPU=                CuArray(E_intMoment2)
    E_dampGPU=                      CuArray(E_damp)
    E_smallAngleGPU=                CuArray(E_smallAngle)
    E_materialGPU=                  CuArray(E_material)



    #########################################
    metavoxel = Dict(
        "N_positionGPU" => N_positionGPU,    
        "N_restrainedGPU" => N_restrainedGPU,  
        "N_displacementGPU" => N_displacementGPU,
        "N_angleGPU" => N_angleGPU,       
        "N_currPositionGPU" => N_currPositionGPU,
        "N_linMomGPU" => N_linMomGPU,      
        "N_angMomGPU" => N_angMomGPU,      
        "N_intForceGPU" => N_intForceGPU,    
        "N_intMomentGPU" => N_intMomentGPU,   
        "N_momentGPU" => N_momentGPU,      
        "N_forceGPU" => N_forceGPU,
        "N_fixedDisplacementGPU"=>N_fixedDisplacementGPU,       
        "N_orientGPU" => N_orientGPU,      
        "N_edgeIDGPU" => N_edgeIDGPU,      
        "N_edgeFirstGPU" => N_edgeFirstGPU,
        "N_materialGPU"=>    N_materialGPU,
        "N_poissonStrainGPU"=> N_poissonStrainGPU,

        "E_sourceGPU" =>E_sourceGPU,                    
        "E_targetGPU" =>E_targetGPU,                    
        "E_stressGPU" =>E_stressGPU,                    
        "E_axisGPU" =>E_axisGPU,                      
        "E_currentRestLengthGPU" =>E_currentRestLengthGPU,         
        "E_pos2GPU" =>E_pos2GPU,                      
        "E_angle1vGPU" =>E_angle1vGPU,                   
        "E_angle2vGPU" =>E_angle2vGPU,                   
        "E_angle1GPU" =>E_angle1GPU,                    
        "E_angle2GPU" =>E_angle2GPU,

        "E_strainGPU" =>E_strainGPU,
        "E_maxStrainGPU" =>E_maxStrainGPU,
        "E_strainOffsetGPU"=>E_strainOffsetGPU,
        "E_currentTransverseAreaGPU" =>E_currentTransverseAreaGPU,
        "E_currentTransverseStrainSumGPU" =>E_currentTransverseStrainSumGPU,

        "E_intForce1GPU" =>E_intForce1GPU,                 
        "E_intMoment1GPU" =>E_intMoment1GPU,                
        "E_intForce2GPU" =>E_intForce2GPU,                 
        "E_intMoment2GPU" =>E_intMoment2GPU,                
        "E_dampGPU" =>E_dampGPU,
        "E_smallAngleGPU" =>E_smallAngleGPU,
        "E_materialGPU" =>E_materialGPU
    )

    #########################################
    
    #todo change to get min stiffness
    dt=0.0251646
    E = setup["edges"][1]["material"]["stiffness"]  # MPa
    s=sqrt(setup["edges"][1]["material"]["area"])
    mass=1  
    # mass=1e-6  
    MaxFreq2=E*s/mass
    dt= 1/(6.283185*sqrt(MaxFreq2))
    println("dt: $dt")
    
    append!(displacements,[Array(metavoxel["N_displacementGPU"])])
    
    t=@timed doTimeStep!(metavoxel,dt,0)
    append!(displacements,[Array(metavoxel["N_displacementGPU"])])
    time=t[2]
    println("first timestep took $time seconds")
    t=@timed simulateParallel!(metavoxel,numTimeSteps-1,dt,returnEvery)
    time=t[2]
    
    if save
        updateDataAndSave!(metavoxel,setup,"./../../json/trialJuliaParallelGPUDynamic.json")
    end
    println("ran latticeSize $latticeSize with $voxCount nodes and $linkCount edges for $numTimeSteps time steps took $time seconds")
    return
end

#################################################################

function doTimeStep!(metavoxel,dt,currentTimeStep)
    # update forces: go through edges, get currentposition from nodes, calc pos2 and update stresses and interior forces of nodes
    run_updateEdges!(dt,currentTimeStep,
        metavoxel["E_sourceGPU"], 
        metavoxel["E_targetGPU"],
        metavoxel["E_stressGPU"],
        metavoxel["E_axisGPU"],
        metavoxel["E_currentRestLengthGPU"],
        metavoxel["E_pos2GPU"],
        metavoxel["E_angle1vGPU"],
        metavoxel["E_angle2vGPU"],
        metavoxel["E_angle1GPU"],
        metavoxel["E_angle2GPU"],
        metavoxel["E_intForce1GPU"],
        metavoxel["E_intMoment1GPU"],
        metavoxel["E_intForce2GPU"],
        metavoxel["E_intMoment2GPU"],
        metavoxel["E_dampGPU"],
        metavoxel["E_smallAngleGPU"],
        metavoxel["E_materialGPU"],
        metavoxel["E_strainGPU"],
        metavoxel["E_maxStrainGPU"],
        metavoxel["E_strainOffsetGPU"],
        metavoxel["E_currentTransverseAreaGPU"],
        metavoxel["E_currentTransverseStrainSumGPU"],
        metavoxel["N_currPositionGPU"],
        metavoxel["N_orientGPU"],
        metavoxel["N_poissonStrainGPU"])
    
    # update forces: go through nodes and update interior force (according to int forces from edges), integrate and update currpos
    run_updateNodes!(dt,currentTimeStep,
        metavoxel["N_positionGPU"], 
        metavoxel["N_restrainedGPU"],
        metavoxel["N_displacementGPU"],
        metavoxel["N_angleGPU"],
        metavoxel["N_currPositionGPU"],
        metavoxel["N_linMomGPU"],
        metavoxel["N_angMomGPU"],
        metavoxel["N_intForceGPU"],
        metavoxel["N_intMomentGPU"],
        metavoxel["N_forceGPU"],
        metavoxel["N_fixedDisplacementGPU"],
        metavoxel["N_momentGPU"],
        metavoxel["N_orientGPU"],
        metavoxel["N_edgeIDGPU"], 
        metavoxel["N_edgeFirstGPU"],
        metavoxel["N_materialGPU"],
        metavoxel["N_poissonStrainGPU"],
        metavoxel["E_intForce1GPU"],
        metavoxel["E_intMoment1GPU"],
        metavoxel["E_intForce2GPU"],
        metavoxel["E_intMoment2GPU"],
        metavoxel["E_axisGPU"],
        metavoxel["E_strainGPU"],
        metavoxel["E_materialGPU"]
        )
    
end

#################################################################

function runMetavoxelGPULive!(setup,folderPath)

    maxNumTimeSteps=setup["numTimeSteps"]
    maxNumFiles=setup["maxNumFiles"]

    saveEvery=round(maxNumTimeSteps/maxNumFiles)
    maxNumFiles=round(maxNumTimeSteps/saveEvery)-1
    setup["maxNumFiles"]=maxNumFiles

    function initialize!(setup)
        nodes      = setup["nodes"]
        edges      = setup["edges"]

        i=1
        # pre-calculate current position
        for node in nodes
            # element=parse(Int,node["id"][2:end])
            node["position"]["y"]=node["position"]["y"]+0.0
            node["position"]["z"]=node["position"]["z"]+0.0
            N_position[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])
            N_restrained[i]=node["restrained_degrees_of_freedom"][1] ## todo later consider other degrees of freedom
            N_displacement[i]=Vector3(node["displacement"]["x"],node["displacement"]["y"],node["displacement"]["z"])
            N_angle[i]=Vector3(node["angle"]["x"],node["angle"]["y"],node["angle"]["z"])
            N_force[i]=Vector3(node["force"]["x"],node["force"]["y"],node["force"]["z"])
            N_fixedDisplacement[i]=Vector3(node["fixedDisplacement"]["x"],node["fixedDisplacement"]["y"],node["fixedDisplacement"]["z"])
            N_currPosition[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])

            E=2000
            E = node["material"]["stiffness"]  # MPa
            nu=0.0
            if haskey(node["material"], "poissonRatio") #todo change material data to nodes
                nu= node["material"]["poissonRatio"]
            end
            # println(nu)
            
            rho=1e3
            rho = node["material"]["density"]  # MPa

            momentInertiaInverse=1.92e-6
            inertia=1/momentInertiaInverse
            zetaInternal=1.0
            zetaGlobal=0.2
            if haskey(setup,"globalDamping")
                zetaGlobal=setup["globalDamping"]
            end
            zetaCollision=0.0
            muStatic= 2.0
            muKinetic= 0.1
            nomSize=round(sqrt(node["material"]["area"] );digits=10)
            nomSize=nomSize*2.0
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
            mass=round(nomSize*nomSize*nomSize *rho;digits=10)

            # E=1e6
            # nu=0.3
            # rho=1e3
            # mass=1e-6 #nomSize*nomSize*nomSize *rho
            # massInverse=1.0/mass
            # momentInertiaInverse=1.92e-6
            # inertia=1/momentInertiaInverse
            # zetaInternal=1.0
            # zetaGlobal=0.2
            # zetaCollision=0.0
            # muStatic= 2.0
            # muKinetic= 0.1
            # nomSize=0.001
            linear=true
            poisson=false
            if haskey(setup,"linear")
                linear=setup["linear"]
            end
            if haskey(setup,"poisson")
                poisson= setup["poisson"]
            end
            cTE=0.0 #Coefficient of thermal expansion
            if haskey(setup,"thermal") # later change for node matrial data
                if setup["thermal"]
                    cTE=node["material"]["cTE"]
                end
            end
            # print("poisson $poisson")
            # epsilonFail=E*1000.0
            N_material[i]=voxelMaterial(E,mass,nu,rho,zetaInternal,zetaGlobal,zetaCollision,muStatic,muKinetic,nomSize,linear,poisson,cTE)

            #voxelMaterial(E,mass,nu,rho,zeta,zetaCollision,muStatic,muKinetic,nomSize)
            i=i+1
        end 

        i=1
        # pre-calculate the axis
        for edge in edges
            # element=parse(Int,edge["id"][2:end])

            # find the nodes that the lements connects
            fromNode = nodes[edge["source"]+1]
            toNode = nodes[edge["target"]+1]


            node1 = [fromNode["position"]["x"] fromNode["position"]["y"] fromNode["position"]["z"]]
            node2 = [toNode["position"]["x"] toNode["position"]["y"] toNode["position"]["z"]]

            length=norm(node2-node1)
            axis=normalize(collect(Iterators.flatten(node2-node1)))


            E_source[i]=edge["source"]+1
            E_target[i]=edge["target"]+1
            E_axis[i]=Vector3(axis[1],axis[2],axis[3])
            E_currentRestLength[i]=length #?????? todo change
            

            N_edgeID[E_source[i],N_currEdge[E_source[i]]]=i
            N_edgeFirst[E_source[i],N_currEdge[E_source[i]]]=true
            N_currEdge[E_source[i]]+=1

            N_edgeID[E_target[i],N_currEdge[E_target[i]]]=i
            N_edgeFirst[E_target[i],N_currEdge[E_target[i]]]=false
            N_currEdge[E_target[i]]+=1
            
            E=edge["material"]["stiffness"]
            E=(N_material[E_source[i]].E+N_material[E_target[i]].E)/2.0
            mass=(N_material[E_source[i]].mass+N_material[E_target[i]].mass)/2.0
            nu=(N_material[E_source[i]].nu+N_material[E_target[i]].nu)/2.0
            rho=edge["material"]["density"]
            rho=(N_material[E_source[i]].rho+N_material[E_target[i]].rho)/2.0

            
            # E_material[i]=edgeMaterial()

            # E=edge["material"]["stiffness"]
            area=edge["material"]["area"]
            # mass=1e-6
            
            loaded=0.0
            if(haskey(edge, "loaded"))
                loaded=edge["loaded"]
            end

            strainRatio=(N_material[E_source[i]].E / N_material[E_target[i]].E)
            linear=(N_material[E_source[i]].linear && N_material[E_target[i]].linear)
            poisson=(N_material[E_source[i]].poisson || N_material[E_target[i]].poisson)
            # epsilonFail=(N_material[E_source[i]].epsilonFail+N_material[E_target[i]].epsilonFail)/2.0 #TODO CHANGE TO SMALLEST
            b=sqrt(area)
            h=sqrt(area)
            E_currentTransverseArea[i]=b*h

            linear=true
            if haskey(setup,"linear")
                linear=setup["linear"]
            end
            cTE=0.0 #Coefficient of thermal expansion
            if haskey(edge,"cTE")
                cTE=edge["cTE"]
            end
            cTE=N_material[E_source[i]].cTE+N_material[E_target[i]].cTE      

            E_material[i]=edgeMaterial(E,mass,nu,rho,b,h,length,loaded,strainRatio,linear,poisson,cTE)

            if !linear
                plasticModulus=5e5
                yieldStress=1e5
                failureStress=-1.0
                E_material[i]=setModelBilinear(E_material[i], plasticModulus, yieldStress)
                
            end
            
            i=i+1
        end 
    end
    function simulateParallel!(metavoxel,maxNumTimeSteps,dt)
        # initialize(setup)
        for i in 1:maxNumTimeSteps
            doTimeStep!(metavoxel,dt,i)
            if(mod(i,saveEvery)==0)
                #append!(displacements,[Array(metavoxel["N_displacementGPU"])])
                updateDataAndSave!(metavoxel,setup,"$(folderPath)$(numFile).json")
                numFile+=1
                if numFile>maxNumFiles
                    numFile=0
                end
            end
        end
    end
    
    ########
    voxCount=0
    linkCount=0
    nodes      = setup["nodes"]
    edges      = setup["edges"]
    voxCount=size(nodes)[1]
    linkCount=size(edges)[1]
    strain =0 #todooo moveeee
    maxNumEdges=10

    ########
    voxCount=0
    linkCount=0
    nodes      = setup["nodes"]
    edges      = setup["edges"]
    voxCount=size(nodes)[1]
    linkCount=size(edges)[1]
    strain =0 #todooo moveeee

    ############# nodes
    N_position=fill(Vector3(),voxCount)
    N_restrained=zeros(Bool, voxCount)
    N_displacement=fill(Vector3(),voxCount)
    N_angle=fill(Vector3(),voxCount)
    N_currPosition=fill(Vector3(),voxCount)
    N_linMom=fill(Vector3(),voxCount)
    N_angMom=fill(Vector3(),voxCount)
    N_intForce=fill(Vector3(),voxCount)
    N_intMoment=fill(Vector3(),voxCount)
    N_moment=fill(Vector3(),voxCount)
    N_force=fill(Vector3(),voxCount)
    N_fixedDisplacement=fill(Vector3(),voxCount)
    N_orient=fill(Quaternion(),voxCount)
    N_edgeID=fill(-1,(voxCount,maxNumEdges))
    N_edgeFirst=fill(true,(voxCount,maxNumEdges))
    N_currEdge=fill(1,voxCount)
    N_material=fill(voxelMaterial(),voxCount)
    N_poissonStrain=fill(Vector3(),voxCount)
    #voxelMaterial(E,mass,nu,rho,zeta,zetaCollision,muStatic,muKinetic,nomSize)

    ############# edges
    E_source=fill(0,linkCount)
    E_target=fill(0,linkCount)
    E_stress=fill(0.0,linkCount)
    E_axis=fill(Vector3(1.0,0.0,0.0),linkCount)
    E_currentRestLength=fill(0.0,linkCount)
    E_pos2=fill(Vector3(),linkCount)
    E_angle1v=fill(Vector3(),linkCount)
    E_angle2v=fill(Vector3(),linkCount)
    E_angle1=fill(Quaternion(),linkCount)
    E_angle2=fill(Quaternion(),linkCount)

    E_intForce1=fill(Vector3(),linkCount)
    E_intMoment1=fill(Vector3(),linkCount) 

    E_intForce2=fill(Vector3(),linkCount)
    E_intMoment2=fill(Vector3(),linkCount)
    E_damp=fill(false,linkCount)
    E_smallAngle=fill(true,linkCount)
    E_material=fill(edgeMaterial(),linkCount)
    
    E_strain=fill(0.0,linkCount)
    E_maxStrain=fill(0.0,linkCount)
    E_strainOffset=fill(0.0,linkCount)
    E_currentTransverseArea=fill(0.0,linkCount)
    E_currentTransverseStrainSum=fill(0.0,linkCount)# TODO remove ot incorporate


    #################################################################
    initialize!(setup)
    #################################################################

    ########################## turn to cuda arrays
    ############# nodes
    N_positionGPU=      CuArray(N_position)      
    N_restrainedGPU=    CuArray(N_restrained)  
    N_displacementGPU=  CuArray(N_displacement)   
    N_angleGPU=         CuArray(N_angle)       
    N_currPositionGPU=  CuArray(N_currPosition)    
    N_linMomGPU=        CuArray(N_linMom)        
    N_angMomGPU=        CuArray(N_angMom)        
    N_intForceGPU=      CuArray(N_intForce)     
    N_intMomentGPU=     CuArray(N_intMoment)        
    N_momentGPU=        CuArray(N_moment)         
    N_forceGPU=         CuArray(N_force)
    N_fixedDisplacementGPU= CuArray(N_fixedDisplacement)           
    N_orientGPU=        CuArray(N_orient)       
    N_edgeIDGPU=        CuArray(N_edgeID)         
    N_edgeFirstGPU=     CuArray(N_edgeFirst)
    N_materialGPU=      CuArray(N_material)
    N_poissonStrainGPU= CuArray(N_poissonStrain) 


    ############# edges
    E_sourceGPU=                    CuArray(E_source)   
    E_targetGPU=                    CuArray(E_target)
    E_stressGPU=                    CuArray(E_stress)
    E_axisGPU=                      CuArray(E_axis)          
    E_currentRestLengthGPU=         CuArray(E_currentRestLength)
    E_pos2GPU=                      CuArray(E_pos2)
    E_angle1vGPU=                   CuArray(E_angle1v)
    E_angle2vGPU=                   CuArray(E_angle2v)
    E_angle1GPU=                    CuArray(E_angle1)
    E_angle2GPU=                    CuArray(E_angle2)

    E_strainGPU=                    CuArray(E_strain)
    E_maxStrainGPU=                 CuArray(E_maxStrain)
    E_strainOffsetGPU=              CuArray(E_strainOffset)
    E_currentTransverseAreaGPU=     CuArray(E_currentTransverseArea)
    E_currentTransverseStrainSumGPU=CuArray(E_currentTransverseStrainSum)# TODO remove ot incorporate

    E_intForce1GPU=                 CuArray(E_intForce1) 
    E_intMoment1GPU=                CuArray(E_intMoment1)  
    E_intForce2GPU=                 CuArray(E_intForce2) 
    E_intMoment2GPU=                CuArray(E_intMoment2)
    E_dampGPU=                      CuArray(E_damp)
    E_smallAngleGPU=                CuArray(E_smallAngle)
    E_materialGPU=                  CuArray(E_material)


    #########################################
    metavoxel = Dict(
        "N_positionGPU" => N_positionGPU,    
        "N_restrainedGPU" => N_restrainedGPU,  
        "N_displacementGPU" => N_displacementGPU,
        "N_angleGPU" => N_angleGPU,       
        "N_currPositionGPU" => N_currPositionGPU,
        "N_linMomGPU" => N_linMomGPU,      
        "N_angMomGPU" => N_angMomGPU,      
        "N_intForceGPU" => N_intForceGPU,    
        "N_intMomentGPU" => N_intMomentGPU,   
        "N_momentGPU" => N_momentGPU,      
        "N_forceGPU" => N_forceGPU,
        "N_fixedDisplacementGPU"=>N_fixedDisplacementGPU,       
        "N_orientGPU" => N_orientGPU,      
        "N_edgeIDGPU" => N_edgeIDGPU,      
        "N_edgeFirstGPU" => N_edgeFirstGPU,
        "N_materialGPU"=>    N_materialGPU,
        "N_poissonStrainGPU"=> N_poissonStrainGPU,

        "E_sourceGPU" =>E_sourceGPU,                    
        "E_targetGPU" =>E_targetGPU,                    
        "E_stressGPU" =>E_stressGPU,                    
        "E_axisGPU" =>E_axisGPU,                      
        "E_currentRestLengthGPU" =>E_currentRestLengthGPU,         
        "E_pos2GPU" =>E_pos2GPU,                      
        "E_angle1vGPU" =>E_angle1vGPU,                   
        "E_angle2vGPU" =>E_angle2vGPU,                   
        "E_angle1GPU" =>E_angle1GPU,                    
        "E_angle2GPU" =>E_angle2GPU,  

        "E_strainGPU" =>E_strainGPU,
        "E_maxStrainGPU" =>E_maxStrainGPU,
        "E_strainOffsetGPU"=>E_strainOffsetGPU,
        "E_currentTransverseAreaGPU" =>E_currentTransverseAreaGPU,
        "E_currentTransverseStrainSumGPU" =>E_currentTransverseStrainSumGPU,

        "E_intForce1GPU" =>E_intForce1GPU,                 
        "E_intMoment1GPU" =>E_intMoment1GPU,                
        "E_intForce2GPU" =>E_intForce2GPU,                 
        "E_intMoment2GPU" =>E_intMoment2GPU,                
        "E_dampGPU" =>E_dampGPU,
        "E_smallAngleGPU" =>E_smallAngleGPU,
        "E_materialGPU" =>E_materialGPU
    )

    #########################################
    
    #todo make recommended timestep a function
    dt=0.0251646
    E = setup["edges"][1]["material"]["stiffness"]  # MPa
    s=round(sqrt(setup["edges"][1]["material"]["area"] );digits=10)
    # s=E_material[1].L
    # s=setup["voxelSize"]
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
    mass=N_material[1].mass
    MaxFreq2=E*s/mass
    if(setup["poisson"])
        # mat->_eHat*currentTransverseArea/((strain+1.0)*currentRestLength)
        eHat=E_material[1].eHat
        temp=eHat*E_material[1].b*E_material[1].h/((0.0+1.0)*E_material[1].L)
        MaxFreq2=temp/mass
    end
    dt= 1.0/(6.283185*sqrt(MaxFreq2))
    # println("E: $(E_material[1].E)")
    # println("L: $(E_material[1].L)")
    # println("b: $(E_material[1].b)")
    # println("h: $(E_material[1].h)")
    # println("a1: $(E_material[1].a1)")
    # println("a2: $(E_material[1].a2)")
    # println("b1: $(E_material[1].b1)")
    # println("b2: $(E_material[1].b2)")
    # println("b3: $(E_material[1].b3)")
    # println("eHat: $(E_material[1].eHat)")
    println("dt: $dt, s: $s, mass: $mass, momentInertiaInverse: $(N_material[1].momentInertiaInverse)")
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
    
    numFile=0
    numSaves=0
    
    
    t=@timed doTimeStep!(metavoxel,dt,0)
    time=t[2]
    println("first timestep took $time seconds")
    t=@timed simulateParallel!(metavoxel,maxNumTimeSteps-1,dt)
    time=t[2]
    
    setup["maxNumFiles"]=numSaves
    

    println("ran $voxCount nodes and $linkCount edges for $maxNumTimeSteps time steps took $time seconds")
    return
end

########################################

function getYoungsModulus(latticeSize,voxelSize,disp,Load,topNodesIndices)
    F=-Load
    l0=voxelSize*latticeSize
    A=l0*l0

    δl1=-mean( x.y for x in disp[topNodesIndices])
        
    stresses=F/A
    strain=δl1/l0
    println("Load=$Load")
    println("stress=$stresses")

    E=stresses/strain 

    return E
end

####################################

function runMetavoxel2DGPULive!(setup,x,nelx,nely,p,EE,nu,maxNumTimeSteps,saveEvery,maxNumFiles,save)
    function initialize!(setup)
        nodes      = setup["nodes"]
        edges      = setup["edges"]
        
        d=10.0

        for ii in 0:(nelx-1)
            for jj in 0:(nely-1)
                
                i=(ii*nely +jj)+1
                nodes[i]=deepcopy(nodes[1])
                
                N_position[i]=Vector3(ii*d,jj*d + 2.0*d ,0.0)
                nodes[i]["position"]["x"]=N_position[i].x
                nodes[i]["position"]["y"]=N_position[i].y
                nodes[i]["position"]["z"]=N_position[i].z
                
                nodes[i]["id"]="n$(i-1)"
                
                if((ii==0))
                #if((ii==0&&jj==0)||(ii==(nelx-1)&&jj==0))
                    N_restrained[i]=true## todo later consider other degrees of freedom
                    nodes[i]["restrained_degrees_of_freedom"]=[true,true,true,true,true,true]
                else
                    N_restrained[i]=false ## todo later consider other degrees of freedom
                    nodes[i]["restrained_degrees_of_freedom"]=[false,false,false,true,true,true]
                end
                
                #if((ii==round(nelx/2)&&jj==(nely-1)))
                #if((ii==round(nelx/2)&&jj==(nely-1))||(ii==round(nelx/2)-1&&jj==(nely-1)))
                if((ii==round(nelx-3)&&jj==(nely-1)))
                    N_force[i]=Vector3(0.0,-100.0,0.0)
                    
                else
                    N_force[i]=Vector3(0.0,0.0,0.0)
                end
                
                nodes[i]["force"]["x"]=N_force[i].x
                nodes[i]["force"]["y"]=N_force[i].y
                nodes[i]["force"]["z"]=N_force[i].z
                
                nodes[i]["displacement"]["x"]=0.0
                nodes[i]["displacement"]["y"]=0.0
                nodes[i]["displacement"]["z"]=0.0
                
                
                
                N_material[i]=voxelMaterial()
                
                if ii==(nelx-1)&& jj==(nely-1)
                    E=EE*x[ii,jj]^p
                    nodes[i]["size"]=x[ii,jj]
                elseif ii==(nelx-1)
                    E=EE*x[ii,jj+1]^p
                    nodes[i]["size"]=x[ii,jj+1]
                elseif jj==(nely-1)
                    E=EE*x[ii+1,jj]^p
                    nodes[i]["size"]=x[ii+1,jj]
                else
                    E=EE*x[ii+1,jj+1]^p
                    nodes[i]["size"]=x[ii+1,jj+1]
                
                end
                
                mass=10
                rho=7.85e-9
                momentInertiaInverse=1.92e-6
                zeta=1.0
                zetaCollision=0.0
                zetaGlobal=0.2
                zetaInternal=1.0
                muStatic= 2.0
                muKinetic= 0.1
                nomSize=1.0
                linear=true
                poisson=false 
                cTE=0.0 #Coefficient of thermal expansion
                N_material[i]=voxelMaterial(E,mass,nu,rho,zetaInternal,zetaGlobal,zetaCollision,muStatic,muKinetic,nomSize,linear,poisson,cTE)

                N_currPosition[i]=deepcopy(N_position[i])
                
                
            end
        end
        
        j=1
        for ii in 0:(nelx-1)
            for jj in 0:(nely-1)
                i=(ii*nely +jj)+1
                if ii<(nelx-1)
                    edges[j]=deepcopy(edges[1])
                    node1 = [ii*d jj*d 0.0]
                    node2 = [(ii+1)*d jj*d 0.0]
                    
                    length=d
                    length=norm(node2-node1)
                    axis=normalize(collect(Iterators.flatten(node2-node1)))
                    
                    E_source[j]=i
                    E_target[j]=((ii+1)*nely +jj)+1
                    
                    edges[j]["id"]="e$(j-1)"
                    
                    edges[j]["source"]=E_source[j]-1
                    edges[j]["target"]=E_target[j]-1
                    E_axis[j]=Vector3(axis[1],axis[2],axis[3])
                    E_currentRestLength[j]=length
                    
                    
                    
                    N_edgeID[E_source[j],N_currEdge[E_source[j]]]=j
                    N_edgeFirst[E_source[j],N_currEdge[E_source[j]]]=true
                    N_currEdge[E_source[j]]+=1

                    N_edgeID[E_target[j],N_currEdge[E_target[j]]]=j
                    N_edgeFirst[E_target[j],N_currEdge[E_target[j]]]=false
                    N_currEdge[E_target[j]]+=1
                    
                    
                    

                    #E=(N_material[E_source[j]].E+N_material[E_target[j]].E)/2.0
                    #mass=(N_material[E_source[j]].mass+N_material[E_target[j]].mass)/2.0
                    #nu=(N_material[E_source[j]].nu+N_material[E_target[j]].nu)/2.0
                    #rho=(N_material[E_source[j]].rho+N_material[E_target[j]].rho)/2.0
                    E=(N_material[E_source[j]].E)/1.0
                    mass=(N_material[E_source[j]].mass)/1.0
                    nu=(N_material[E_source[j]].nu)/1.0
                    rho=(N_material[E_source[j]].rho)/1.0
                    
                    edges[j]["material"]["area"]=(E/EE)^(1/p)
                    
                    E_material[j]=edgeMaterial()
                    loaded=0.0
                    linear=true
                    poisson=false
                    cTE=0.0 #Coefficient of thermal expansion

                    E_material[j]=edgeMaterial(E,mass,nu,rho,2.38,2.38,length,loaded,1.0,linear,poisson,cTE)       
                    
                    j+=1
                end
                if jj<(nely-1)
                    edges[j]=deepcopy(edges[1])
                    node1 = [ii*d jj*d 0.0]
                    node2 = [(ii)*d (jj+1)*d 0.0]
                    
                    length=d
                    length=norm(node2-node1)
                    axis=normalize(collect(Iterators.flatten(node2-node1)))
                    
                    E_source[j]=i
                    E_target[j]=((ii)*nely +(jj+1))+1
                    
                    edges[j]["id"]="e$(j-1)"
                    
                    edges[j]["source"]=E_source[j]-1
                    edges[j]["target"]=E_target[j]-1
                    E_axis[j]=Vector3(axis[1],axis[2],axis[3])
                    E_currentRestLength[j]=length
                    
                    N_edgeID[E_source[j],N_currEdge[E_source[j]]]=j
                    N_edgeFirst[E_source[j],N_currEdge[E_source[j]]]=true
                    N_currEdge[E_source[j]]+=1

                    N_edgeID[E_target[j],N_currEdge[E_target[j]]]=j
                    N_edgeFirst[E_target[j],N_currEdge[E_target[j]]]=false
                    N_currEdge[E_target[j]]+=1

                    #E=(N_material[E_source[j]].E+N_material[E_target[j]].E)/2.0
                    #mass=(N_material[E_source[j]].mass+N_material[E_target[j]].mass)/2.0
                    #nu=(N_material[E_source[j]].nu+N_material[E_target[j]].nu)/2.0
                    #rho=(N_material[E_source[j]].rho+N_material[E_target[j]].rho)/2.0
                    E=(N_material[E_source[j]].E)/1.0
                    mass=(N_material[E_source[j]].mass)/1.0
                    nu=(N_material[E_source[j]].nu)/1.0
                    rho=(N_material[E_source[j]].rho)/1.0
                    edges[j]["material"]["area"]=(E/EE)^(1/p)

                    E_material[j]=edgeMaterial()
                    loaded=0.0
                    poisson=false
                    linear=true
                    cTE=0.0 #Coefficient of thermal expansion
                    E_material[j]=edgeMaterial(E,mass,nu,rho,2.38,2.38,length,loaded,1.0,linear,poisson,cTE) 

                    
                    j+=1
                    
                end
                
                if jj>0&&ii<(nelx-1)
                    edges[j]=deepcopy(edges[1])
                    node1 = [ii*d jj*d 0.0]
                    node2 = [(ii+1)*d (jj-1)*d 0.0]
                    
                    length=d
                    length=norm(node2-node1)
                    axis=normalize(collect(Iterators.flatten(node2-node1)))
                    
                    E_source[j]=i
                    E_target[j]=((ii+1)*nely +(jj-1))+1
                    
                    edges[j]["id"]="e$(j-1)"
                    
                    edges[j]["source"]=E_source[j]-1
                    edges[j]["target"]=E_target[j]-1
                    E_axis[j]=Vector3(axis[1],axis[2],axis[3])
                    E_currentRestLength[j]=length
                    
                    N_edgeID[E_source[j],N_currEdge[E_source[j]]]=j
                    N_edgeFirst[E_source[j],N_currEdge[E_source[j]]]=true
                    N_currEdge[E_source[j]]+=1

                    N_edgeID[E_target[j],N_currEdge[E_target[j]]]=j
                    N_edgeFirst[E_target[j],N_currEdge[E_target[j]]]=false
                    N_currEdge[E_target[j]]+=1

                    #E=(N_material[E_source[j]].E+N_material[E_target[j]].E)/2.0
                    #mass=(N_material[E_source[j]].mass+N_material[E_target[j]].mass)/2.0
                    #nu=(N_material[E_source[j]].nu+N_material[E_target[j]].nu)/2.0
                    #rho=(N_material[E_source[j]].rho+N_material[E_target[j]].rho)/2.0
                    E=(N_material[E_source[j]].E)/1.0
                    mass=(N_material[E_source[j]].mass)/1.0
                    nu=(N_material[E_source[j]].nu)/1.0
                    rho=(N_material[E_source[j]].rho)/1.0
                    
                    edges[j]["material"]["area"]=(E/EE)^(1/p)