Skip to content
Snippets Groups Projects
compliant_mechanisms.jl 12.6 KiB
Newer Older
Amira Abdel-Rahman's avatar
Amira Abdel-Rahman committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020 

function getDataFromSetup3D(setup,scale)
    # -----------------------------------------------------------------------
    # A(nel,1)        = cross-sectional area of elements
    # E(nel,1)        = Young's modulus of elements
    # f(ndf,nnp)      = prescribed nodal forces
    # g(ndf,nnp)      = prescribed nodal displacements
    # idb(ndf,nnp)    = 1 if the degree of freedom is prescribed, 0 otherwise
    # ien(nen,nel)    = element connectivities
    # ndf             = number of degrees of freedom per node
    # nel             = number of elements
    # nen             = number of element equations
    # nnp             = number of nodes
    # nsd             = number of spacial dimensions
    # xn(nsd,nnp)     = nodal coordinates

    # =======================================================================
    nodes=setup["nodes"]
    edges=setup["edges"]


    # ---- MESH -------------------------------------------------------------
    nsd =  3;  # number of spacial dimensions
    ndf =  3;  # number of degrees of freedom per node 
    nen =  2;  # number of element nodes

    nel =  length(edges);  # number of elements 
    nnp =  length(nodes);  # number of nodal points


    # ---- NODAL COORDINATES ------------------------------------------------
    # xn(i,N) = coordinate i for node N
    # N = 1,...,nnp
    # i = 1,...,nsd
    # -----------------------------------------------------------------------

    xn         = zeros(nsd,nnp);
    for i in 1:nnp
        xn[1:nsd, i]  = [(nodes[i]["position"]["x"]/scale)  (nodes[i]["position"]["y"]/scale) (nodes[i]["position"]["z"]/scale)]';
    end
    
    # ---- NODAL COORDINATES ------------------------------------------------
    # ien(a,e) = N
    # N: global node number - N = 1,...,nnp
    # e: element number     - e = 1,...,nel
    # a: local node number  - a = 1,...,nen
    # -----------------------------------------------------------------------

    ien = zeros(nen,nel);
    for i in 1:nel
        ien[1:2,i]  = [(edges[i]["source"]+1)   (edges[i]["target"]+1)]' ;
    end


    len=zeros(nel);
    for i in 1:nel
        x1=(nodes[(edges[i]["source"]+1)]["position"]["x"]/scale)
        x2=(nodes[(edges[i]["target"]+1)]["position"]["x"]/scale)

        y1=(nodes[(edges[i]["source"]+1)]["position"]["y"]/scale)
        y2=(nodes[(edges[i]["target"]+1)]["position"]["y"]/scale)

        z1=(nodes[(edges[i]["source"]+1)]["position"]["z"]/scale)
        z2=(nodes[(edges[i]["target"]+1)]["position"]["z"]/scale)

        len[i]  = sqrt((x1-x2)^2+(y1-y2)^2+(z1-z2)^2);
    end
    

    # ---- MATERIAL PROPERTIES ----------------------------------------------
    # E(e) = E_mat
    # e: element number     - e = 1,...,nel
    # -----------------------------------------------------------------------
    E_mat = 29000*1000;         # Young's modulus # lbf/in^2
    E = E_mat*ones(nel,1);
    # todo change to make it parameter

    # ---- GEOMETRIC PROPERTIES ---------------------------------------------
    # A(e) = A_bar
    # e: element number     - e = 1,...,nel
    # -----------------------------------------------------------------------
    #A = ones(nel);
    #A[:] .= 400; # mm^2

    # ---- BOUNDARY CONDITIONS ----------------------------------------------
    # prescribed displacement flags (essential boundary condition)
    #
    # idb(i,N) = 1 if the degree of freedom i of the node N is prescribed
    #          = 0 otherwise
    #
    # 1) initialize idb to 0
    # 2) enter the flag for prescribed displacement boundary conditions
    # -----------------------------------------------------------------------
    idb = zeros(ndf,nnp);
    for i in 1:nnp
        if nodes[i]["restrained_degrees_of_freedom"][1]
            idb[1,i]=1; 
        end
        if nodes[i]["restrained_degrees_of_freedom"][2]
            idb[2,i]=1; 
        end
        if nodes[i]["restrained_degrees_of_freedom"][3]
            idb[3,i]=1; 
        end
    end


    # ---- BOUNDARY CONDITIONS: PRESCRIBED NODAL DISPLACEMENTS --------------
    # g(i,N) = prescribed displacement magnitude
    # N = 1,...,nnp
    # i = 1,...,nsd
    #
    # 1) initialize g to 0
    # 2) enter the values
    # -----------------------------------------------------------------------
    g = zeros(ndf,nnp);


    # ---- BOUNDARY CONDITIONS: PRESCRIBED NODAL FORCES ---------------------
    # f(i,N) = prescribed force magnitude
    # N = 1,...,nnp
    # i = 1,...,nsd
    #
    # 1) initialize f to 0
    # 2) enter the values
    # -----------------------------------------------------------------------
    P = 20.0* 1000;     # lbf

    f = zeros(ndf,nnp);
    for i in 1:nnp
        #inverter
        f[1,i] = nodes[i]["force"]["x"]*P;
        f[2,i] = nodes[i]["force"]["y"]*P;
        f[3,i] = nodes[i]["force"]["z"]*P;
    end

    Ls=[]
    for i in 1:nnp
        if (nodes[i]["fixedDisplacement"]["x"]!=0)||(nodes[i]["fixedDisplacement"]["y"]!=0)||(nodes[i]["fixedDisplacement"]["z"]!=0)
            L=zeros(ndf,nnp);
            L[1,i] = nodes[i]["fixedDisplacement"]["x"];
            L[2,i] = nodes[i]["fixedDisplacement"]["y"];
            L[3,i] = nodes[i]["fixedDisplacement"]["z"];
            append!(Ls,[L]);
        end
    end
    
    A=ones(nel)
    
    # ---- NUMBER THE EQUATIONS ---------------------------------------------
    # line 380
    id,neq = number_eq(idb,ndf,nnp);
    
    # ---- FORM THE ELEMENT STIFFNESS MATRICES ------------------------------
    # line 324
    nee = ndf*nen;                   # number of element equations
    
    Ke  = zeros(nee,nee,nel);
    Te  = zeros(nen*1,nen*nsd,nel);  # *1 is specific to truss
    for i = 1:nel
        Ke[:,:,i],Te[:,:,i] = Ke_truss(A[i],E[i],ien[:,i],nee,nsd,xn);
    end    

    return E,f,g,idb,ien,ndf,nel,nen,nnp,nsd,xn,len,Ke,Te,Ls
end

# =======================================================================

function getSensitivites(Ke0,dcomp,ien,nel,len,λ)

    dfdA=zeros(nel)
    dgdA=zeros(nel)


    for i in 1:nel
        de=[dcomp[1,Int(ien[1,i])],dcomp[2,Int(ien[1,i])],dcomp[3,Int(ien[1,i])] ,dcomp[1,Int(ien[2,i])] ,dcomp[2,Int(ien[2,i])] ,dcomp[3,Int(ien[2,i])]]
        λe=[λ[1,Int(ien[1,i])],λ[2,Int(ien[1,i])],λ[3,Int(ien[1,i])] ,λ[1,Int(ien[2,i])] ,λ[2,Int(ien[2,i])],λ[3,Int(ien[2,i])] ]
        # println(de)
        # println(Ke0[:,:,i])
        dKedA=Ke0[:,:,i]
        dgdA[i]=(-1.0 .*λe)'*dKedA*de
        dfdA[i]=len[i]
    end
    return dfdA,dgdA
end

# =======================================================================

function getSensitivitesSIMP(Ke0,dcomp,ien,nel,len,λ,η,X)

    dfdA=zeros(nel)
    dgdA=zeros(nel)


    for i in 1:nel
        de=[dcomp[1,Int(ien[1,i])],dcomp[2,Int(ien[1,i])],dcomp[3,Int(ien[1,i])] ,dcomp[1,Int(ien[2,i])] ,dcomp[2,Int(ien[2,i])] ,dcomp[3,Int(ien[2,i])]]
        λe=[λ[1,Int(ien[1,i])],λ[2,Int(ien[1,i])],λ[3,Int(ien[1,i])] ,λ[1,Int(ien[2,i])] ,λ[2,Int(ien[2,i])],λ[3,Int(ien[2,i])] ]
        # println(de)
        # println(Ke0[:,:,i])
        # dKedA=Ke0[:,:,i]
        dKedA=Ke0[:,:,i].*(η).*X[i]^(η-1)
        dgdA[i]=(-1.0 .*λe)'*dKedA*de
        dfdA[i]=len[i]
    end
    return dfdA,dgdA
end



function getAdjoint(K,dcomp,L,free)
    L1=L[:,free]
    λ1=K\L1[:]
    λ=zeros(size(dcomp))
    λ[:,free].=reshape(λ1,size(L1))
    return λ,L1,λ1
end
# =======================================================================

function optimizeCompliantMechanism1(problem,Ls,free,dmax,totalVolFactor,maxeval=500)
    
    E,f,g,idb,ien,ndf,nel,nen,nnp,nsd,xn,len,Ke,Te=problem
    
    nel=length(len)
    η=3.0
    
    
    function FA(x::Vector, grad::Vector)

        K,F,d,stress,dcomp,g=FEM_truss(problem,x);
        λ,L1,λ1=getAdjoint(copy(K),copy(dcomp),copy(Ls[1]),copy(free))

        grad[:] .=getSensitivites(Ke,dcomp,ien,nel,len,copy(λ))[2]

        # g=(L1[:]'*d)[1] .- dmax - (λ1'*(K*d -F))[1]

        goal=L1[:]'*d -λ1'*K*d +λ1'*F .-dmax
        # display(goal )
        # display(sum(x) )
        
        return goal[1]
    end

    function GA(x::Vector, grad::Vector)
        grad[:] .=len[:]
        return (sum(x .* len )) - totalVolFactor
    end
    FA(ones(nel), fill(0.25,nel))
    GA(ones(nel), fill(0.25,nel))
    

    opt = Opt(:LD_MMA, nel)
    opt.lower_bounds = fill(1e-3,nel)
    opt.xtol_rel = 1e-6
    opt.maxeval = maxeval

    opt.min_objective = FA
    inequality_constraint!(opt, (x,gg) -> GA(x,gg), 1e-6)

    display(@time (minf,minx,ret) = optimize(opt, ones(nel)))
    numevals = opt.numevals # the number of function evaluations
    display("got $minf after $numevals iterations (returned $ret)")
    
    return minx
end
# =======================================================================

function optimizeCompliantMechanism(problem,Ls,free,dmax,maxeval=500)
    
    E,f,g,idb,ien,ndf,nel,nen,nnp,nsd,xn,len,Ke,Te=problem
    
    nel=length(len)

    η=1.0
    
    function GA(x::Vector, grad::Vector,num::Int)

        K,F,d,stress,dcomp,g=FEM_truss(problem,x);
        λ,L1,λ1=getAdjoint(copy(K),copy(dcomp),copy(Ls[num]),copy(free))

        grad[:] .=getSensitivites(Ke,dcomp,ien,nel,len,copy(λ))[2]

        # g=(L1[:]'*d)[1] .- dmax - (λ1'*(K*d -F))[1]

        goal=L1[:]'*d -λ1'*K*d +λ1'*F .-dmax
        # display(goal )
        # display(sum(x) )
        
        return goal[1]
    end

    function GASIMP(x::Vector, grad::Vector,num::Int)

        K,F,d,stress,dcomp,g=FEM_truss(problem,x.^η);
        λ,L1,λ1=getAdjoint(copy(K),copy(dcomp),copy(Ls[num]),copy(free))

        grad[:] .=getSensitivitesSIMP(Ke,dcomp,ien,nel,len,copy(λ),η,x)[2]

        # g=(L1[:]'*d)[1] .- dmax - (λ1'*(K*d -F))[1]

        goal=L1[:]'*d -λ1'*K*d +λ1'*F .-dmax
        # display(goal )
        # display(sum(x) )
        
        return goal[1]
    end

    function FA(x::Vector, grad::Vector)
        grad[:] .=len[:]
        return (sum(x .* len )) 
    end

    function FASIMP(x::Vector, grad::Vector)
        grad[:] .=len[:]
        return (sum(x.^η .* len )) 
    end
    

    opt = Opt(:LD_MMA, nel)
    opt.lower_bounds = fill(1e-3,nel)
    opt.xtol_rel = 1e-6
    opt.maxeval = maxeval

    opt.min_objective = FA
    println(size(Ls)[1])
    for i =1:size(Ls)[1]
        inequality_constraint!(opt, (x,gg) -> GASIMP(x,gg,i), 1e-6)
    end

    display(@time (minf,minx,ret) = optimize(opt, ones(nel).*0.5))
    numevals = opt.numevals # the number of function evaluations
    display("got $minf after $numevals iterations (returned $ret)")
    
    return minx
end
# =======================================================================

function simulateAndExport(setup,X,dcomp,fileName,threshold)
    nodes=setup["nodes"]
    edges=setup["edges"]

    nodesNew=[]
    edgesNew=[]

    nel =  length(edges);  # number of elements 
    nnp =  length(nodes);  # number of nodal points

    for i in 1:nnp
        nodes[i]["in"]=false
        nodes[i]["displacement"]["x"]=dcomp[1,i];
        nodes[i]["displacement"]["y"]=dcomp[2,i];
        nodes[i]["displacement"]["z"]=dcomp[3,i]; 
    end

    idCount=0
    for i in 1:nel
        if X[i]>threshold
            if (!nodes[(edges[i]["source"]+1)]["in"])
                nodes[(edges[i]["source"]+1)]["in"]=true
                nodes[(edges[i]["source"]+1)]["id"]="n$(idCount)"
                nodes[(edges[i]["source"]+1)]["idd"]=idCount
                append!(nodesNew,[nodes[(edges[i]["source"]+1)]])
                id1=idCount
                idCount=idCount+1
            else
                id1=nodes[(edges[i]["source"]+1)]["idd"]
            end

            if (!nodes[(edges[i]["target"]+1)]["in"])
                nodes[(edges[i]["target"]+1)]["in"]=true
                nodes[(edges[i]["target"]+1)]["id"]="n$(idCount)"
                nodes[(edges[i]["target"]+1)]["idd"]=idCount
                append!(nodesNew,[nodes[(edges[i]["target"]+1)]])
                id2=idCount
                idCount=idCount+1
            else
                id2=nodes[(edges[i]["target"]+1)]["idd"]
            end
            edges[i]["source"]=id1
            edges[i]["target"]=id2

            append!(edgesNew,[edges[i]])

        end
    end


    setup["nodes"]=nodesNew;
    setup["edges"]=edgesNew;

    stringdata = JSON.json(setup)# pass data as a json string (how it shall be displayed in a file)

    # write the file with the stringdata variable information
    open(fileName, "w") do f
            write(f, stringdata)
    end


    # E,f,g,idb,ien,ndf,nel,nen,nnp,nsd,xn,len,Ke,Te,Ls=getDataFromSetup3D(setup,scale);

    # problem1=E,f,g,idb,ien,ndf,nel,nen,nnp,nsd,xn,len,Ke,Te;

    # nel=length(edgesNew)

    # display(a)

    # X=ones(nel)
    # K,F,d,stress,dcomp,g=FEM_truss(problem1,X);
    # display(dcomp)
    

    # display(plotTrussDeformed3D(problem1,copy(X),scale,0.1,1))


    
end