-
Amira Abdel-Rahman authoredAmira Abdel-Rahman authored
Asymp_homogenization.jl 18.17 KiB
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020
# Asymptotic Homogenization Implementation in Julia
# Based on: https://asmedigitalcollection.asme.org/materialstechnology/article-abstract/141/1/011005/368579
# using MAT
# using LinearAlgebra
# using CUDA, IterativeSolvers
# using SparseArrays
# using Krylov
# vars = matread("grid_octet_skel.mat")
# GRID=vars["GRID"];
# STRUT=vars["STRUT"];
# res = 40; # number of voxels per side
# rad = 0.1; # radius of struts
# two options to format effective property results: 'vec' or 'struct'
# outOption = "struct";
# options to print results and/or plot Young's modulus surface
# dispFlag = 1;
# plotFlag = 1;
# props, SH = evaluateCH(CH, dens, outOption, dispFlag);
function KE_from_E(E,nu)
D0 = E/(1+nu)/(1-2*nu)*
[ 1-nu nu nu 0 0 0 ;
nu 1-nu nu 0 0 0 ;
nu nu 1-nu 0 0 0 ;
0 0 0 (1-2*nu)/2 0 0 ;
0 0 0 0 (1-2*nu)/2 0 ;
0 0 0 0 0 (1-2*nu)/2];
Ke = elementMatVec3D(0.5, 0.5, 0.5, D0);
return Ke,[E,E,E]
end
function getCH(GRID,STRUT,res,rad)
vox, dens = generateVoxelLattice(res, rad, GRID, STRUT);
# alternatively, define voxels directly
# vars = matread("grid_octet_vox.mat")
# vox=vars["vox"];
# dens = sum(vox)/length(vox)
# lengths of sides of unit cell
ll = [1,1,1];
# properties of isotropic constituent material properties
E = [1e-9 2e9]; # E1, E2
nu = [0.33 0.33]; # nu1, nu2
lam = nu.*E ./ ((1.0 .+nu).*(1.0 .-2.0*nu));
mu = E ./ (2.0*(1.0 .+nu));
# two options to define constituent materials: 'young's or 'lame'
# changes how stiffness matrix is assembled.
def = "youngs"; props0 = [E; nu]; # with young's modulus and poisson's ratio
# def = "lame"; props0 = [lam; mu]; # with lame's parameters
# two options for solver: 'pcg' or 'direct'
solver = "pcg";
CH = homogAsymp3D(ll, vox, props0, def, solver);
# two options to format effective property results: 'vec' or 'struct'
outOption = "struct";
# options to print results and/or plot Young's modulus surface
dispFlag = 1;
plotFlag = 1;
dens=0.5
props, SH = evaluateCH(CH, dens, outOption, dispFlag);
EH=props["EH"]
return CH,EH
end
function generateVoxelLattice(n,radius,node,strut)
#########################################################################
#########################################################################
vox_size = 1/n; # initial size of voxels
voxel = zeros(Int,n,n,n); # initial grid with zeros
## generate a list of centers of voxel
voxel_c = zeros(n^3,6);
p = 0; # p count the number of all voxels
for i = 1:n # i for z axis
for j = 1:n # j for y axis
for k = 1:n # k for x axis
p = p + 1;
voxel_c[p,1:3] = [k,j,i]; # save index along x,y,z axis
# save coordinate along x,y,z axis
voxel_c[p,4:6] = [(k-0.5)*vox_size,(j-0.5)*vox_size,(i-0.5)*vox_size];
end
end
end
voxel_i = Base._sub2ind(size(voxel), map(y->Int.(y),voxel_c[:,1]), map(y->Int.(y),voxel_c[:,2]), map(y->Int.(y),voxel_c[:,3]));
start_n = node[Int.(strut[:,1]),:];
end_n = node[Int.(strut[:,2]),:];
## Get the voxel close the the strut witnin a certain distance
for i = 1:size(strut)[1]
alpha = acosd.( sum((voxel_c[:,4:6] .- start_n[i,:]') .* (end_n[i,:]' .- start_n[i,:]'), dims=2) ./ (vecNorm(voxel_c[:,4:6] .- start_n[i,:]') .* vecNorm(end_n[i,:]' .- start_n[i,:]')) );
beta = acosd.( sum((voxel_c[:,4:6] .- end_n[i,:]') .* (start_n[i,:]' .- end_n[i,:]'), dims=2) ./ (vecNorm(voxel_c[:,4:6] .- end_n[i,:]') .* vecNorm(start_n[i,:]' .- end_n[i,:]')) );
# if it is acute angle, distance to node
distance = min.(vecNorm(voxel_c[:,4:6] .- start_n[i,:]'), vecNorm(voxel_c[:,4:6] .- end_n[i,:]'));
# if not acute angle, distance to line
obtuse = ((alpha .<90.0) .& (beta .<90.0));
A=end_n[i,:] .- start_n[i,:];
B= voxel_c[:,4:6] .- start_n[i,:]';
temp = vecNorm( getCross(A,B) ) ./ vecNorm(end_n[i,:]' .- start_n[i,:]');
distance[obtuse] = temp[obtuse];
# if distance less than radius, activate it
temp = zeros(Int,p,1);
active = (distance .<= radius);
temp[active] .= 1;
temp_voxel = zeros(Int,size(voxel));
temp_voxel[voxel_i] = temp;
voxel .= temp_voxel .| voxel;
end
Density = sum(sum(sum(voxel)))/length(voxel); # calculate the relative density
return voxel,Density
end
function vecNorm(A)
new_norm = sqrt.(sum(A.^2, dims=2));
return new_norm
end
function getCross(A,B)
dim1=size(B)[1]
dim2=size(B)[2]
result=zeros(dim1,dim2)
for i=1:dim1 #64000
result[i,:].=cross(A,B[i,:])
end
return result
end
## COMPUTE UNIT ELEMENT STIFFNESS MATRIX AND LOAD VECTOR
function assemble_lame(a, b, c)
# Initialize
keLambda = zeros(24,24); keMu = zeros(24,24);
feLambda = zeros(24,6); feMu = zeros(24,6);
ww = [5/9, 8/9, 5/9];
J_ = [-a a a -a -a a a -a; -b -b b b -b -b b b; -c -c -c -c c c c c]';
# Constitutive matrix contributions
CMu = diagm(0=>[2, 2, 2, 1, 1, 1]);
CLambda = zeros(6);
CLambda[1:3,1:3] = 1;
# Three Gauss points in both directions
xx = [-sqrt(3/5), 0, sqrt(3/5)]; yy = xx; zz = xx;
for ii = 1:size(xx)[1]
for jj = 1:size(yy)[1]
for kk = 1:size(zz)[1]
# integration point
x = xx(ii); y = yy(jj); z = zz(kk);
# stress strain displacement matrix
B, J = strain_disp_matrix(x, y, z, J_);
# Weight factor at this point
weight = det(J) * ww(ii) * ww(jj) * ww(kk);
# Element matrices
keLambda = keLambda + weight * B' * CLambda * B;
keMu = keMu + weight * B' * CMu * B;
# Element loads
feLambda = feLambda + weight * B' * CLambda;
feMu = feMu + weight * B' * CMu;
end
end
end
return keLambda, keMu, feLambda, feMu
end
function assemble_youngs(nu, a, b, c)
# Initialize
ww = [5/9, 8/9, 5/9];
J_ = [-a a a -a -a a a -a; -b -b b b -b -b b b; -c -c -c -c c c c c]';
ke = zeros(24,24); fe = zeros(24,6);
# Constitutive matrix with unit Young's modulus
nu = nu[2]; #TODO multi-material nu
C = diagm(1=>[nu, nu, 0, 0, 0]) .+ diagm(2=>[nu, 0, 0, 0]);
C = C .+C';
C = C + diagm(0=>[ 1-nu,1-nu,1-nu,(1-2*nu)/2,(1-2*nu)/2, (1-2*nu)/2]);
C = C / ((1+nu).*(1-2*nu));
# Three Gauss points in both directions
xx = [-sqrt(3/5), 0, sqrt(3/5)]; yy = xx; zz = xx;
for ii = 1:size(xx)[1]
for jj = 1:size(yy)[1]
for kk = 1:size(zz)[1]
# integration point
x = xx[ii]; y = yy[jj]; z = zz[kk];
# stress strain displacement matrix
B, J = strain_disp_matrix(x, y, z, J_);
# Weight factor at this point
weight = det(J) * ww[ii] * ww[jj] * ww[kk];
# Element matrices
ke = ke + weight * B' * C * B;
# Element loads
fe = fe + weight * B' * C;
end
end
end
return ke, fe
end
function strain_disp_matrix(x, y, z, J_)
#stress strain displacement matrix
qx = [ -((y-1)*(z-1))/8, ((y-1)*(z-1))/8, -((y+1)*(z-1))/8, ((y+1)*(z-1))/8, ((y-1)*(z+1))/8, -((y-1)*(z+1))/8,((y+1)*(z+1))/8, -((y+1)*(z+1))/8];
qy = [ -((x-1)*(z-1))/8, ((x+1)*(z-1))/8, -((x+1)*(z-1))/8, ((x-1)*(z-1))/8, ((x-1)*(z+1))/8, -((x+1)*(z+1))/8,((x+1)*(z+1))/8, -((x-1)*(z+1))/8];
qz = [ -((x-1)*(y-1))/8, ((x+1)*(y-1))/8, -((x+1)*(y+1))/8, ((x-1)*(y+1))/8, ((x-1)*(y-1))/8, -((x+1)*(y-1))/8,((x+1)*(y+1))/8, -((x-1)*(y+1))/8];
J = [qx qy qz]' * J_; # Jacobian
qxyz = J \ [qx qy qz]';
B_e = zeros(6,3,8);
for i_B = 1:8
B_e[:,:,i_B] = [qxyz[1,i_B] 0 0;
0 qxyz[2,i_B] 0;
0 0 qxyz[3,i_B];
qxyz[2,i_B] qxyz[1,i_B] 0;
0 qxyz[3,i_B] qxyz[2,i_B];
qxyz[3,i_B] 0 qxyz[1,i_B]];
end
B = [B_e[:,:,1] B_e[:,:,2] B_e[:,:,3] B_e[:,:,4] B_e[:,:,5] B_e[:,:,6] B_e[:,:,7] B_e[:,:,8]];
return B, J
end
function homogAsymp3D(ll, vox, props0, def="youngs", solver="pcg")
nelx, nely, nelz = size(vox); #size of voxel model along x,y and z axis
dx = ll[1]/nelx; dy = ll[2]/nely; dz = ll[3]/nelz;
nel = nelx*nely*nelz;
# Node numbers and element degrees of freedom for full (not periodic) mesh
nodenrs = reshape(1:(1+nelx)*(1+nely)*(1+nelz),1+nelx,1+nely,1+nelz);
edofVec = reshape(3*nodenrs[1:end-1,1:end-1,1:end-1] .+ 1,nel,1);
addx = [0 1 2 3*nelx .+ [3 4 5 0 1 2] -3 -2 -1];
addxy = 3*(nely+1)*(nelx+1) .+ addx;
edofMat = repeat(edofVec,1,24) .+ repeat([addx addxy],nel,1);
## IMPOSE PERIODIC BOUNDARY CONDITIONS
# Use original edofMat to index into list with the periodic dofs
nn = (nelx+1)*(nely+1)*(nelz+1); # Total number of nodes
nnP = (nelx)*(nely)*(nelz); # Total number of unique nodes
nnPArray_old = reshape(1:nnP, nelx, nely, nelz);
nnPArray=zeros(nelx+1, nely+1, nelz+1);
nnPArray[1:nelx,1:nely,1:nelz].=nnPArray_old;
# Extend with a mirror of the back border
nnPArray[end,:,:] = nnPArray[1,:,:];
# Extend with a mirror of the left border
nnPArray[:, end, :] = nnPArray[:,1,:];
# Extend with a mirror of the top border
nnPArray[:, :, end] = nnPArray[:,:,1];
# Make a vector into which we can index using edofMat:
dofVector = zeros(3*nn, 1);
dofVector[1:3:end] = 3*nnPArray[:] .-2;
dofVector[2:3:end] = 3*nnPArray[:] .-1;
dofVector[3:3:end] = 3*nnPArray[:];
edof = Int.(dofVector[edofMat]);
ndof = 3 .*nnP;
## ASSEMBLE GLOBAL STIFFNESS MATRIX K AND LOAD VECTOR F
# Indexing vectors
iK = kron(edof,ones(24,1))';
jK = kron(edof,ones(1,24))';
iF = repeat(edof',6,1);
jF = [ones(24,nel); 2 .*ones(24,nel); 3 .*ones(24,nel); 4 .*ones(24,nel); 5 .*ones(24,nel); 6 .*ones(24,nel);];
# Assemble stiffness matrix and load vector
if def == "lame"
# Material properties assigned to voxels with materials
lambda = props0[1,:];
mu = props0[2,:];
lambda = lambda[1]*(vox==0) + lambda[2]*(vox==1);
mu = mu[1]*(vox==0) + mu[2]*(vox==1);
# Unit element stiffness matrix and load
keLambda, keMu, feLambda, feMu = assemble_lame(dx/2, dy/2, dz/2);
ke = keMu + keLambda; # Here the exact ratio does not matter, because
fe = feMu + feLambda; # it is reflected in the load vector
sK = keLambda[:]* lambda[:]' + keMu(:)*mu(:)';
sF = feLambda[:]* lambda[:]' + feMu(:)*mu(:)';
# sK = keLambda[:]* lambda[:].' + keMu(:)*mu(:).';
# sF = feLambda[:]* lambda[:].' + feMu(:)*mu(:).';
elseif def == "youngs"
E = props0[1,:];
E = E[1] .+ vox .*(E[2] .-E[1]); # SIMP
nu = props0[2,:];
# Unit element stiffness matrix and load
ke, fe = assemble_youngs(nu, dx/2, dy/2, dz/2);
sK = ke[:]*E[:]';
sF = fe[:]*E[:]';
else
error("unavailable option for constituent properties definition")
end
# Global stiffness matrix
K = sparse(iK[:], jK[:], sK[:], ndof, ndof);
K = (K+K')/2;
# Six load cases corresponding to the six strain cases
F = sparse(iF[:], jF[:], sF[:], ndof, 6);
## SOLUTION
activedofs = edof[reshape((vox.==0) .| (vox.==1),nelx* nely* nelz ),:];
activedofs = Int.(sort(unique(activedofs[:])));
X = zeros(ndof,6);
display("Solving")
if solver =="pcg"
# solve using PCG method, remember to constrain one node
# L = ichol(K[activedofs[4:end],activedofs[4:end]]); # preconditioner
display("started pcg")
for i = 1:6 # run once for each loading condition
# [X[activedofs[4:end],i],~,~,~] = cg(K[activedofs[4:end],activedofs[4:end]],F[activedofs[4:end],i]
# ,1e-10,300,L,L');
# A = cu(K[activedofs[4:end],activedofs[4:end]])
# b = cu(F[activedofs[4:end],i])
# X[activedofs[4:end],i].= Array(cg(A, b,verbose=true))
A = K[activedofs[4:end],activedofs[4:end]]
b = F[activedofs[4:end],i]
# x = cg(A, b,tol=1.0e-10,maxiter=300)
X[activedofs[4:end],i].= Krylov.cg(A, b,atol=1.0e-12,rtol=1.0e-12,itmax =500,verbose=false)[1]
# X[activedofs[4:end],i].= Krylov.cg(A, b,tol=1.0e-10,maxiter=2,verbose=true)
# X[activedofs[4:end],i]=cg(K[activedofs[4:end],activedofs[4:end]],F[activedofs[4:end],i])
display(i)
end
elseif solver=="direct"
display("started direct")
# solve using direct method
X[activedofs[4:end],:] = K[activedofs[4:end],activedofs[4:end]] \ F[activedofs[4:end],:];
else
error("unavailable option for solver")
end
## ASYMPTOTIC HOMOGENIZATION
# The displacement vectors corresponding to the unit strain cases
X0 = zeros(nel, 24, 6);
# The element displacements for the six unit strains
X0_e = zeros(24, 6);
# fix degrees of nodes [1 2 3 5 6 12];
X0_e[vcat(4,7:11,13:24),:] = ke[vcat(4,7:11,13:24),vcat(4,7:11,13:24)] \fe[vcat(4, 7:11, 13:24),:];
X0[:,:,1] = kron(X0_e[:,1]', ones(nel,1)); # epsilon0_11 = (1,0,0,0,0,0)
X0[:,:,2] = kron(X0_e[:,2]', ones(nel,1)); # epsilon0_22 = (0,1,0,0,0,0)
X0[:,:,3] = kron(X0_e[:,3]', ones(nel,1)); # epsilon0_33 = (0,0,1,0,0,0)
X0[:,:,4] = kron(X0_e[:,4]', ones(nel,1)); # epsilon0_12 = (0,0,0,1,0,0)
X0[:,:,5] = kron(X0_e[:,5]', ones(nel,1)); # epsilon0_23 = (0,0,0,0,1,0)
X0[:,:,6] = kron(X0_e[:,6]', ones(nel,1)); # epsilon0_13 = (0,0,0,0,0,1)
CH = zeros(6,6);
volume = prod(ll);
# Homogenized elasticity tensor
if def == "lame"
for i = 1:6
for j = 1:6
sum_L = (X0[:,:,i] .- X[edof .+(i-1)*ndof]*keLambda).*(X0[:,:,j] .- X[edof .+(j-1)*ndof]);
sum_M = (X0[:,:,i] .- X[edof .+(i-1)*ndof]*keMu).* (X0[:,:,j] .- X[edof .+(j-1)*ndof]);
sum_L = reshape(sum(sum_L,dims=2), nelx, nely, nelz);
sum_M = reshape(sum(sum_M,dims=2), nelx, nely, nelz);
CH[i,j] = 1/volume*sum(sum(sum(lambda.*sum_L + mu .* sum_M)));
end
end
elseif def == "youngs"
for i = 1:6
for j = 1:6
sum_XkX = ((X0[:,:,i] .- X[edof .+ (i-1)*ndof] )*ke).* (X0[:,:,j] .- X[edof .+ (j-1)*ndof]);
sum_XkX = reshape(sum(sum_XkX,dims=2), nelx, nely, nelz);
CH[i,j] = 1/volume*sum(sum(sum(sum_XkX.*E)));
end
end
end
return CH
end
function evaluateCH(CH, dens, outOption, dispFlag)
U,S,V = svd(CH);
sigma = S;
k = sum(sigma .> 1e-15);
SH = (U[:,1:k] * diagm(0=>(1 ./sigma[1:k])) * V[:,1:k]')'; # more stable SVD (pseudo)inverse
EH = [1/SH[1,1], 1/SH[2,2], 1/SH[3,3]]; # effective Young's modulus
GH = [1/SH[4,4], 1/SH[5,5], 1/SH[6,6]]; # effective shear modulus
vH = [-SH[2,1]/SH[1,1] -SH[3,1]/SH[1,1] -SH[3,2]/SH[2,2];
-SH[1,2]/SH[2,2] -SH[1,3]/SH[3,3] -SH[2,3]/SH[3,3]]; # effective Poisson's ratio
if outOption=="struct"
props = Dict("CH"=>CH, "SH"=>SH, "EH"=>EH, "GH"=>GH, "vH"=>vH, "density"=>dens);
elseif outOption== "vec"
props = [EH, GH, vH[:]', dens];
end
if true
println("\n--------------------------EFFECTIVE PROPERTIES--------------------------\n")
println("Density: $dens")
println("Youngs Modulus:____E11_____|____E22_____|____E33_____\n")
println(" $(EH[1]) | $(EH[2]) | $(EH[3])\n\n")
println("Shear Modulus:_____G23_____|____G31_____|____G12_____\n")
println(" $(GH[1]) | $(GH[2]) | $(GH[3])\n\n")
println("Poissons Ratio:____v12_____|____v13_____|____v23_____\n")
println(" $(vH[1,1]) | $(vH[1,2]) | $(vH[1,3])\n\n")
println(" ____v21_____|____v31_____|____v32_____\n")
println(" $(vH[2,1]) | $(vH[2,2]) | $(vH[2,3])\n\n")
println("------------------------------------------------------------------------")
end
return props, SH
end
## SUB FUNCTION: elementMatVec3D
function elementMatVec3D(a, b, c, DH)
GN_x=[-1/sqrt(3),1/sqrt(3)]; GN_y=GN_x; GN_z=GN_x; GaussWeigh=[1,1];
Ke = zeros(24,24); L = zeros(6,9);
L[1,1] = 1; L[2,5] = 1; L[3,9] = 1;
L[4,2] = 1; L[4,4] = 1; L[5,6] = 1;
L[5,8] = 1; L[6,3] = 1; L[6,7] = 1;
for ii=1:length(GN_x)
for jj=1:length(GN_y)
for kk=1:length(GN_z)
x = GN_x[ii];y = GN_y[jj];z = GN_z[kk];
dNx = 1/8*[-(1-y)*(1-z) (1-y)*(1-z) (1+y)*(1-z) -(1+y)*(1-z) -(1-y)*(1+z) (1-y)*(1+z) (1+y)*(1+z) -(1+y)*(1+z)];
dNy = 1/8*[-(1-x)*(1-z) -(1+x)*(1-z) (1+x)*(1-z) (1-x)*(1-z) -(1-x)*(1+z) -(1+x)*(1+z) (1+x)*(1+z) (1-x)*(1+z)];
dNz = 1/8*[-(1-x)*(1-y) -(1+x)*(1-y) -(1+x)*(1+y) -(1-x)*(1+y) (1-x)*(1-y) (1+x)*(1-y) (1+x)*(1+y) (1-x)*(1+y)];
J = [dNx;dNy;dNz]*[ -a a a -a -a a a -a ; -b -b b b -b -b b b; -c -c -c -c c c c c]';
G = [inv(J) zeros(3) zeros(3);zeros(3) inv(J) zeros(3);zeros(3) zeros(3) inv(J)];
dN=zeros(9,24)
dN[1,1:3:24] = dNx; dN[2,1:3:24] = dNy; dN[3,1:3:24] = dNz;
dN[4,2:3:24] = dNx; dN[5,2:3:24] = dNy; dN[6,2:3:24] = dNz;
dN[7,3:3:24] = dNx; dN[8,3:3:24] = dNy; dN[9,3:3:24] = dNz;
Be = L*G*dN;
Ke = Ke + GaussWeigh[ii]*GaussWeigh[jj]*GaussWeigh[kk]*det(J)*(Be'*DH*Be);
end
end
end
return Ke
end