Skip to content
Snippets Groups Projects
wind-turbine.html 21.3 KiB
Newer Older
Sam Calisch's avatar
Sam Calisch committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
<html lang="en">
<head>
	<title>energy</title>
	<meta charset="utf-8">
<link rel="stylesheet" type="text/css" href="../style/main.css">
</head>
<script type='text/javascript' src='../js/parse-bibtex.js'></script>
<script type='text/javascript' src='../js/jquery-3.0.0.min.js'></script>
<script type='text/javascript' src='../js/mustache.min.js'></script>
<script type='text/javascript' src='../js/parse_citations.js'></script>
<script charset="UTF-8" src="../js/d3.min.js"></script>

<script type='text/javascript' src='../js/scoreboard.js'></script>
<script type='text/javascript'>parse_citations('../energy.bib');</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
  tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}
});
</script>
<script type="text/javascript" async   src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>

<body>

<p>For this study, we compared many papers on life cycle analyses of wind turbines and found considerable disagreement and contention about methods.  A great study, focused on turbines in the American midwest is <cite id="White2006"></cite>.  We use the values given in this study, and confirm their size with other sources.  These are given in GJ/MW capactity as:</p>

<table class="tableizer-table">
<thead><tr class="tableizer-firstrow"><th>Turbine</th><th>Kenetech (340 kW)</th><th>Zond (750 kW)</th><th>Tacke (600 kW)</th><th>Average</th><th>Percent</th></tr></thead><tbody>
 <tr><td>Materials production</td><td>4162</td><td>6358</td><td>8303</td><td>6274</td><td>62.93</td></tr>
 <tr><td>Materials transportation</td><td>604</td><td>484</td><td>400</td><td>496</td><td>4.97</td></tr>
 <tr><td>Construction</td><td>612</td><td>855</td><td>1069</td><td>845</td><td>8.47</td></tr>
 <tr><td>Operation and Maintenance</td><td>2892</td><td>1584</td><td>1320</td><td>1932</td><td>19.37</td></tr>
 <tr><td>Decommisioning</td><td>306</td><td>427</td><td>534</td><td>422</td><td>4.23</td></tr>
 <tr><td>Total</td><td>8576</td><td>9708</td><td>11626</td><td>9970</td><td></td></tr>
</tbody></table>


<p>In <cite id="wilburn2011wind"></cite>, Table 5 shows estimated material requirements per megawatt of capacity of representative wind technologies. From <cite id='geoff2011inventory'></cite>, we can extract approximate intensities of refining these materials.  The results are summarized below:</p>

<table>
	<tr>
		<td><b>Material</b></td>
		<td><b>kg/MW installed</b></td>
		<td><b>MJ/kg embodied</b></td>
		<td><b>MJ/MW installed</b></td>
	</tr>
	<tr>
		<td>Steel and Stainless Steel</td>
		<td>115,000</td>
		<td>20.1</td>
		<td>2,311,500</td>
	</tr>
	<tr>
		<td>Concrete</td>
		<td>590,000</td>
		<td>.75</td>
		<td>442,500</td>

	</tr>
	<tr>
		<td>Fiberglass</td>
		<td>9,800</td>
		<td>100</td>
		<td>980,000</td>

	</tr>
	<tr>
		<td>Miscellaneous (Alum., plastic, <br>epoxy, foam, and wood)</td>
		<td>8,050</td>
		<td>~100 (155, 80, 137, 88, 18)</td>
		<td>805,000</td>

	</tr>
	<tr>
		<td>Copper</td>
		<td>2,500</td>
		<td>42</td>
		<td>105,000</td>

	</tr>
	<tr>
		<td>Cast iron</td>
		<td>23,900 </td>
		<td>25</td>
		<td>597,500</td>
	</tr>
	<tr>
		<td><b>Total</b></td>
		<td></td>
		<td></td>
		<td><b>5,241,500</b></td>
	</tr>
</table>

<p>As a double check, we take the materials data from <cite id="crawford2007life"></cite> for a 3 MW turbine and estimate the materials embodied energy.  The result (per MW of capacity) is 5852 GJ, a similar figure to our first estimation.</p>

<table class="tableizer-table">
<thead><tr class="tableizer-firstrow"><th>component</th><th>material</th><th>quant</th><th>unit</th><th>intensity (GJ/t)</th><th>total energy (GJ)</th><th>&nbsp;</th></tr></thead><tbody>
 <tr><td>foundation</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>concrete</td><td>1140</td><td>t</td><td>1.77</td><td>2022.26087</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>steel</td><td>36</td><td>t</td><td>35</td><td>1260</td><td>&nbsp;</td></tr>
 <tr><td>tower</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>steel</td><td>158.76</td><td>t</td><td>35</td><td>5556.6</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>paint</td><td>1.24</td><td>t</td><td>400</td><td>496</td><td>&nbsp;</td></tr>
 <tr><td>nacelle</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>steel</td><td>61</td><td>t</td><td>35</td><td>2135</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>copper</td><td>3.75</td><td>t</td><td>379</td><td>1421.25</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>aluminum</td><td>2.311</td><td>t</td><td>252</td><td>582.372</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>plastic</td><td>0.7</td><td>&nbsp;</td><td>80</td><td>56</td><td>&nbsp;</td></tr>
 <tr><td>rotor</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>steel</td><td>19.93</td><td>t</td><td>35</td><td>697.55</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>fiberglass</td><td>12.04</td><td>t</td><td>168</td><td>2022.72</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>epoxy</td><td>8.03</td><td>t</td><td>163</td><td>1308.89</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>17558</td><td>&nbsp;</td></tr>
 <tr><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>5852</td><td>embodied energy (GJ) per MW of capacity</td></tr>
</tbody></table>

<p>Both of these figures are comparable to our primary source <cite id="White2006"></cite>.</p>

<p>For manufacturing, we have the turbine specific manufacturing steps, transport, and installation.  For instance, let's look at transport.  Assuming all shipping is by road freight, we can estimate the energy intensity of this using statistics from <cite id="dot2015national"></cite> (Table 1-05 and 4-06) and <cite id="davis2015transportation"></cite> (Chapters 2 and 5).  We get values between 1 and 1.6 MJ/km/tonne for road freight shipping.</p>

<p>Now we use <cite id="haapala2014comparative"></cite> to generate an example supply chain for a 2 MW turbine, shown below, with installation site near Augspurger Mountain in central Washington, and shipping intensity 1.3 GJ/km/tonne.</p>
<table class="tableizer-table">
<thead><tr class="tableizer-firstrow"><th></th><th>Origin</th><th>Distance (kilometers)</th><th>Mass (tons)</th><th>Mass (tonnes)</th><th>km-t</th><th>Transport Energy (GJ)</th></tr></thead><tbody>
 <tr><td>Blades + Rotor</td><td>Windsor, CO</td><td>1945</td><td>25.55</td><td>23.17385</td><td>45073.13825</td><td>58.59507973</td></tr>
 <tr><td>Tower</td><td>Pueblo, CO</td><td>2205</td><td>165</td><td>149.655</td><td>329989.275</td><td>428.9860575</td></tr>
 <tr><td>Nacelle, Gearbox, Generator, Yaw/pitch system</td><td>Brighton, CO</td><td>1931</td><td>51.38</td><td>46.60166</td><td>89987.80546</td><td>116.9841471</td></tr>
 <tr><td>Foundation</td><td>Lafarge, Seattle, WA</td><td>321</td><td>788</td><td>714.716</td><td>229423.836</td><td>298.2509868</td></tr>
 <tr><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>902.8162711</td></tr>
</tbody></table>
<p></p>

<p>We see that transportation contributes around 450 GJ/MW of capacity, very close to <cite id="White2006"></cite>.  Independent sources for the other sectors were harder to construct, so given close agreement with <cite id="White2006"></cite>, we accepted those values.</p>

<p>Much of this analysis is confirmed and updated in <cite id="kubiszewski2010meta"></cite>, extending the work to more modern studies and larger turbines.</p>






<h3>Turbine by component</h3>

<p>
	In <cite id="Lenzen2002339"></cite>, Table 2 shows main material constituents of wind turbine components, along with energy content.  We graph this data in below.  We see, the steel tower requires roughly 43% of the total energy invested in the turbine.
</p>

<span id="turbine_component_energy"></span>
<span id="turbine_component_mass"></span>

<p>
	The tower stands out as a huge source of energy inputs for the turbine.  To support the massive bending load, thick, steel cylindrical sections are used.  <cite id='jay2014design'></cite> cites several reasons why tower designs may often be structurally suboptimal, including transportation constraints of towers with large base diameters.  Towers with large base diameter could be made thinner while meeting design requirements and offer significant material energy savings.  The authors offer an on-site spiral welding technique capable of producing optimized geometries without being subject to transportation constraints.
</p>

<p>
	<cite id="Lenzen2002339"></cite> also synthesizes 72 energy and CO2 analyses of wind turbines and extracts average trends.  Comparing these results with scaling laws, we see the average normalized (20 year lifetime, 25% capacity factor) energy intensity of a wind turbine of 1 MW capacity is .05.  That is, the turbine generates 20 times more energy than is required to manufacture, install, operate, and dispose of it.  This intensity is proportional to as $P^{-.18}$, where $P$ is the nameplate power capacity.
</p>

<span id="turbine_power_scaling"></span>
<span id="turbine_energy_intensity_scaling"></span>

<p>Clearly, this last graph suggests bigger wind turbines have better energetic returns.  To make these economical, we must address cost scaling.</p>


<p>To see all turbine system components by cost, we use data from <cite id='european2009economics'></cite>, based on a 45 meter blade radius on a 100 meter tower (roughly 3 MW).</p>

<span id="turbine_component_cost"></span>

<p>Again, we see the tower is the largest contributor, this time to cost.  Here it is followed closely by the blades.  In the next section we analyze scaling of blade cost.</p>



<h3>Blade Material costs</h3>

<p>Of the material input, we can look at the cost and mass breakdown by component.  <cite id='tpi2003cost'></cite> contains a very nice analysis of this, citing turbines with blade lengths (turbine radii) of 30, 50 and 70 meters.  We extract scaling laws from these data points for the graphs below.</p>

<div id="turbine_power"></div>
<span id="turbine_component_cost_scaling"></span>
<span id="turbine_component_mass_scaling"></span>

<p>We see the fiberglass and resin for the skins and shear webs make up a significant portion of the material cost.</p>

<span id="turbine_labor_cost_scaling"></span>


<span id="turbine_tooling_cost_scaling"></span>
<p>Similarly, the labor to produce these components dominates the cost.  Due to amortization over many blades (400 in this study), the per-blade and per-MW tooling costs are amazingly low.</p>

<span id="turbine_total_cost_scaling"></span>

<p>We can combine these broad categories to estimate overall costs.</p>


<p><cite id='ashwill2002parametric'></cite> explores the trade-offs between aerodynamic and structural performance of thickening blade sections. 
</p>

<p>I've found the concept of <cite id='loth2012segmented'></cite> an interesting take on rewriting these scaling laws.  Downwind turbines don't have a tower strike constraint, and so can accomodate significantly coned blades.  These blades must be longer to present an equivalent diameter to the wind, but the strains seen in the blade are dramatically reduced.  As such, the mass of the blade can be reduced, which triggers a cascade of savings through the system.</p>

<figure>
<img src='../img/segmented-blades.png' width=600px>
<figcaption>Segmented blades, image from <cite id='loth2012segmented'></cite></figcaption>
</figure>

<p><cite id='ning2016integrated'></cite> uses analytic gradients in turbine system optimization.  They are skeptical of blades with purely downwind coning (the mass savings are only modest), but note that an active coning mechanism would be extremely advantageous.  <cite id='ichter2015morphing'></cite> describes a 13 MW turbine using lockable joints to adapt the coning to wind conditions.  This offered one-third mass reduction while still capturing the same average power in simulation.  <cite id='koh2016downwind'></cite> describes the advantages of downwind turbines, especially for offshore applications.  The effects of wind shadowing on power output are noted to generally be small for well designed turbines.</p>



<a href='../index.html'>Back</a>




<div id="bib"></div>
<script charset="UTF-8" src="../js/d3.pie-chart.js"></script>
<script>run_scoreboard('Wind Turbine')</script>
<script type='text/javascript' src='../js/d3.legend.js'></script>
<script type='text/javascript' src='../js/d3.stacked-line-graph.js'></script>
<script type='text/javascript' src='../js/d3.line-graph.js'></script>
<script type='text/javascript' src='../js/math.min.js'></script>
<script type='text/javascript' src='../js/lodash.core.js'></script>
<script type='text/javascript' src='../js/curve_fit.js'></script>
<script>
	$.getJSON("wind-turbine.json", function(values){

		//component by energy
		var total_energy = 9967; //GJ/1MW turbine
		var unit = "GJ/MW installed"
		var data = values.relative_energy_by_component.data;
	    chart = pieChart()
			.data(data)
			.selection_string("#turbine_component_energy")
			.width(550).height(300)
			.title('Turbine Component Energy')
			.slice_value(function(d) { return d.Percent*total_energy/100; })
			.label_value(function(d) { return d.data.Component + ' ' + Math.round(d.data.Percent*total_energy/100) + ' ' + unit; });
		chart();

		//component by mass
		var unit = "%"
		var data = values.relative_mass_by_component.data;
	    chart = pieChart()
			.data(data)
			.selection_string("#turbine_component_mass")
			.width(550).height(300)
			.title('Turbine Component Mass')
			.slice_value(function(d) { return d.Percent; })
			.label_value(function(d) { return d.data.Component + ' ' + Math.round(d.data.Percent) + ' ' + unit; });
		chart();

		var power_data_points = values.power_radius_data.data
		var beta_power_v_radius = power_fit( 
				_.map(power_data_points,'radius'), 
				_.map(power_data_points, 'power' )
			);

		var radii = d3.range(10,100,1);
		//power vs. radius
		var data = []
		var series = ['Power']
		series.forEach(function(c){
			data.push( {
				'name':c,
				'values': _.map( radii, function(r){ return {"x":r, "y":beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1])}; })
			});
		});
		chart = lineGraph()
			.data(data)
			.selection_string("#turbine_power_scaling")
			.width(400).height(300)
			.margin({top: 30, right: 20, bottom: 30, left: 50})
			.title("Turbine Power vs. Radius")
			.xaxislabel("Turbine radius (m)")
			.yaxislabel("Turbine power (MW)");
		chart();


		var series = ['Energy out / Energy in']
		var data = []
		series.forEach(function(c){
			data.push( {
				'name':c,
				'values': _.map( radii, function(r){ 
					return {"x":r, "y":20*Math.pow(beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1]),.18)};
					 })
			});
		});
		chart = lineGraph()
			.data(data)
			.selection_string("#turbine_energy_intensity_scaling")
			.width(400).height(300)
			.margin({top: 30, right: 20, bottom: 30, left: 50})
			.title("Turbine Energy Intensity vs. Radius")
			.xaxislabel("Turbine radius (m)")
			.yaxislabel("Energy out / Energy in");
		chart();

		//component by cost
		var unit = "%"
		var data = values.relative_cost_by_component_EWEA.data;
	    chart = pieChart()
			.data(data)
			.selection_string("#turbine_component_cost")
			.width(550).height(300)
			.title('Turbine Component Cost')
			.slice_value(function(d) { return d.Percent; })
			.label_value(function(d) { return d.data.Component + ' ' + Math.round(d.data.Percent) + ' ' + unit; });
		chart();






		var radii = d3.range(20,80,1);
		var blades = _.pick(values.blades,["blade_30","blade_50","blade_70"]);

	    //stacked component cost
		var categories = (Object.keys(blades["blade_30"].cost_by_material));
		var data_component = [];
		var total_material = {'name':'Material', 'values': _.map( radii, function(r){ return {"x":beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1]), "y":0}; })};
		categories.forEach(function(c){
			var beta = power_fit( 
				_.map(blades,'radius'), 
				_.map(blades, b => b.cost_by_material[c]/1000. )
			);
			data_component.push({
				'name':c,
				'values': _.map( radii, function(r){ return {"x":r, "y":beta[0]*Math.pow(r,1*beta[1])}; })
				});
			total_material.values.forEach( function(v,i){ total_material.values[i].y += data_component[data_component.length-1].values[i].y; } );
		});
		
		chart = stackedLineGraph()
			.data(data_component)
			.selection_string("#turbine_component_cost_scaling")
			.width(400).height(300)
			.margin({top: 30, right: 20, bottom: 30, left: 50})
			.title("Turbine Component Material Cost")
			.xaxislabel("Turbine radius (m)")
			.yaxislabel("Thousands of US Dollars");
		chart();



	    //stacked component mass
		var categories = (Object.keys(blades["blade_30"].mass_by_material));
		var data = [];
		categories.forEach(function(c){
			var beta = power_fit( 
				_.map(blades,'radius'), 
				_.map(blades, b => b.mass_by_material[c] )
			);
			data.push({
				'name':c,
				'values': _.map( radii, function(r){ return {"x":beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1]), "y":beta[0]*Math.pow(r,1*beta[1])}; })
				});
		});		
		chart = stackedLineGraph()
			.data(data)
			.selection_string("#turbine_component_mass_scaling")
			.width(400).height(300)
			.margin({top: 30, right: 20, bottom: 30, left: 50})
			.title("Turbine Component Mass")
			.xaxislabel("Turbine radius (m)")
			.yaxislabel("Mass (kg)");
		chart();


	    //stacked labor
		var categories = values["manufacturing_labor"].data;
		categories.sort(function(a,b){
			return b.Percent_30 - a.Percent_30;
		})
		var total_labor = {'name':'Labor', 'values': _.map( radii, function(r){ return {"x":beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1]), "y":0}; })};		
		var total_hours = values["manufacturing_labor"].total_hours_30;
		var wage = 30;
		var data_labor = [];
		categories.forEach(function(c){
			data_labor.push({
				'name':c.Category,
				'values': _.map( radii, function(r){ 
					return {
						"x":r, 
						"y":total_hours*wage/1000.*(c.Percent_30/100.)*Math.pow(r,1*c.Power)/Math.pow(30,1*c.Power)}; })
				});
			total_labor.values.forEach( function(v,i){ total_labor.values[i].y += data_labor[data_labor.length-1].values[i].y; } );

		});
		
		chart = stackedLineGraph()
			.data(data_labor)
			.selection_string("#turbine_labor_cost_scaling")
			.width(400).height(300)
			.margin({top: 30, right: 20, bottom: 30, left: 50})
			.title("Turbine Labor Cost ($30/hour)")
			.color(d3.scale.category20b())
			.legend_font_size("14px")
			.xaxislabel("Turbine radius (m)")
			.yaxislabel("Thousands of US Dollars");
		chart();



	    //tooling cost
		var categories = (Object.keys(blades["blade_30"].cost_by_material));
		var beta_tool = homogeneous_quadratic_fit( 
			_.map(blades,'radius'), 
			_.map(blades, b => b['tool_cost (dollars)']/b['tool_runs'] )
		);
		var beta_plant = power_fit(
			_.map(blades,'radius'), 
			_.map(blades, b => b['plant_cost_per_floor_area (dollars/year)']*b['plant_floor_area (m2)']/b['plant_throughput (blades/day)']/365 )
			)	
		var data_tooling_plant = [{
				'name':'Tooling cost per blade',
				'values':_.map(radii, 
					function(r){ 
						return {"x":r, "y":beta_tool[0]*r*r}; 
					})
			},
				{'name':'Tooling cost per MW',
				'values':_.map(radii, 
					function(r){ 
						return {"x":r, "y":beta_tool[0]*r*r / (beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1]))}; 
					})
			},
				{'name':'Plant cost per blade',
				'values':_.map(radii, 
					function(r){ 
						return {"x":r, "y":beta_plant[0]*Math.pow(r,1*beta_plant[1])}; 
					})
			},
			{'name':'Plant cost per MW',
				'values':_.map(radii, 
					function(r){ 
						return {"x":r, "y":beta_plant[0]*Math.pow(r,1*beta_plant[1])/ (beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1]))}; 
					})
			}			
		];
		var total_tooling = {'name':'Tooling', 'values': _.map( radii, function(r,i){ return {"x":beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1]), "y":data_tooling_plant[0].values[i].y/1000}; })};	
		var total_plant = {'name':'Plant', 'values': _.map( radii, function(r,i){ return {"x":beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1]), "y":data_tooling_plant[2].values[i].y/1000}; })};	
		chart = lineGraph()
			.data(data_tooling_plant)
			.selection_string("#turbine_tooling_cost_scaling")
			.width(400).height(300)
			.margin({top: 30, right: 20, bottom: 30, left: 50})
			.title("Tooling and Plant Costs")
			.xaxislabel("Turbine radius (m)")
			.color(d3.scale.category10())
			.legend_font_size("18px")
			.yaxislabel("US Dollars");
		chart();


		//total cost
		var total_data = [total_material, total_labor, total_tooling, total_plant];
		var total_transport = {'name':'Transport', 'values': _.map( radii, function(r,i){ 
			return {"x": beta_power_v_radius[0]*Math.pow(r,1*beta_power_v_radius[1]) , "y": .07*(total_material.values[i].y+total_labor.values[i].y+total_tooling.values[i].y+total_plant.values[i].y)}; })};	
		total_data.push(total_transport);

		chart = stackedLineGraph()
			.data(total_data)
			.selection_string("#turbine_total_cost_scaling")
			.width(400).height(300)
			.margin({top: 30, right: 20, bottom: 30, left: 50})
			.title("Total cost vs. nameplate power")
			.xaxislabel("Turbine Power (MW)")
			.color(d3.scale.category20())
			.legend_font_size("18px")
			.yaxislabel("Thousands of US Dollars");
		chart();


	});

</script>


</body>

</html>