Newer
Older
# Amira Abdel-Rahman
# (c) Massachusetts Institute of Technology 2020
#################################################################
function runMetavoxelGPULive!(setup,folderPath)
maxNumTimeSteps=setup["numTimeSteps"]
maxNumFiles=setup["maxNumFiles"]
saveEvery=round(maxNumTimeSteps/maxNumFiles)
maxNumFiles=round(maxNumTimeSteps/saveEvery)-1
setup["maxNumFiles"]=maxNumFiles
function initialize!(setup)
nodes = setup["nodes"]
edges = setup["edges"]
i=1
for node in nodes
if node["parent"]=="11" || node["parent"]=="" #to ignore child nodes that are there for visualization
# element=parse(Int,node["id"][2:end])
node["position"]["y"]=node["position"]["y"]+0.0
node["position"]["z"]=node["position"]["z"]+0.0
N_position[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])
N_restrained[i]=DOF(node["restrained_degrees_of_freedom"][1],node["restrained_degrees_of_freedom"][2],node["restrained_degrees_of_freedom"][3],node["restrained_degrees_of_freedom"][4],node["restrained_degrees_of_freedom"][5],node["restrained_degrees_of_freedom"][6])
N_displacement[i]=Vector3(node["displacement"]["x"],node["displacement"]["y"],node["displacement"]["z"])
N_angle[i]=Vector3(node["angle"]["x"],node["angle"]["y"],node["angle"]["z"])
N_force[i]=Vector3(node["force"]["x"],node["force"]["y"],node["force"]["z"])
N_fixedDisplacement[i]=Vector3(node["fixedDisplacement"]["x"],node["fixedDisplacement"]["y"],node["fixedDisplacement"]["z"])
N_currPosition[i]=Vector3(node["position"]["x"],node["position"]["y"],node["position"]["z"])
E=2000
E = node["material"]["stiffness"] # MPa
nu=0.0
if haskey(node["material"], "poissonRatio") #todo change material data to nodes
nu= node["material"]["poissonRatio"]
# println(nu)
rho=1e3
rho = node["material"]["density"] # MPa
momentInertiaInverse=1.92e-6
inertia=1/momentInertiaInverse
zetaInternal=1.0
zetaGlobal=0.2
if haskey(setup,"globalDamping")
zetaGlobal=setup["globalDamping"]
end
zetaCollision=0.0
muStatic= 2.0
muKinetic= 0.1
nomSize=round(sqrt(node["material"]["area"] );digits=10)
nomSize=nomSize*2.0
mass=round(nomSize*nomSize*nomSize *rho;digits=10)
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
linear=true
poisson=false
if haskey(setup,"linear")
linear=setup["linear"]
end
if haskey(setup,"poisson")
poisson= setup["poisson"]
end
cTE=0.0 #Coefficient of thermal expansion
if haskey(setup,"thermal") # later change for node matrial data
if setup["thermal"]
cTE=node["material"]["cTE"]
end
end
# print("poisson $poisson")
# epsilonFail=E*1000.0
scale =0
if haskey(setup,"multiscale")
if setup["multiscale"]
scale=node["scale"]
end
nomSize=nomSize*scale
mass=round(nomSize*nomSize*nomSize *rho;digits=10)
end
N_material[i]=voxelMaterial(E,mass,nu,rho,zetaInternal,zetaGlobal,zetaCollision,muStatic,muKinetic,nomSize,linear,poisson,cTE,scale)
i=i+1
else
node["position"]["x"]= node["position"]["x"]*setup["scale"] #for export
node["position"]["y"]= node["position"]["y"]*setup["scale"] #for export
node["position"]["z"]= node["position"]["z"]*setup["scale"] #for export
end
end
i=1
for edge in edges
# element=parse(Int,edge["id"][2:end])
# find the nodes that the elements connects
fromNode = nodes[edge["source"]+1]
toNode = nodes[edge["target"]+1]
sourceRelPos=Vector3(0,0,0)
targetRelPos=Vector3(0,0,0)
if haskey(setup,"multiscale")
E_sourceNodalCoordinate[i]=edge["sourceNodalCoordinate"]
E_targetNodalCoordinate[i]=edge["targetNodalCoordinate"]
sourceRelPos=getRelativePosition(E_sourceNodalCoordinate[i],setup["voxelSize"]/2.0)
targetRelPos=getRelativePosition(E_targetNodalCoordinate[i],setup["voxelSize"]/2.0)
node1 = [fromNode["position"]["x"]+sourceRelPos.x fromNode["position"]["y"]+sourceRelPos.y fromNode["position"]["z"]+sourceRelPos.z]
node2 = [toNode["position"]["x"]+targetRelPos.x toNode["position"]["y"]+targetRelPos.y toNode["position"]["z"]+targetRelPos.z]
axis=normalize(collect(Iterators.flatten(node2-node1))) # pre-calculate the axis
E_source[i]=edge["source"]+1
E_target[i]=edge["target"]+1
E_axis[i]=Vector3(axis[1],axis[2],axis[3])
E_currentRestLength[i]=length #?????? todo change
N_edgeID[E_source[i],N_currEdge[E_source[i]]]=i
N_edgeFirst[E_source[i],N_currEdge[E_source[i]]]=true
N_currEdge[E_source[i]]+=1
N_edgeID[E_target[i],N_currEdge[E_target[i]]]=i
N_edgeFirst[E_target[i],N_currEdge[E_target[i]]]=false
N_currEdge[E_target[i]]+=1
E=(N_material[E_source[i]].E+N_material[E_target[i]].E)/2.0
mass=(N_material[E_source[i]].mass+N_material[E_target[i]].mass)/2.0
nu=(N_material[E_source[i]].nu+N_material[E_target[i]].nu)/2.0
rho=(N_material[E_source[i]].rho+N_material[E_target[i]].rho)/2.0
if(haskey(edge, "loaded"))
loaded=edge["loaded"]
end
strainRatio=(N_material[E_source[i]].E / N_material[E_target[i]].E)
linear=(N_material[E_source[i]].linear && N_material[E_target[i]].linear)
poisson=(N_material[E_source[i]].poisson || N_material[E_target[i]].poisson)
# epsilonFail=(N_material[E_source[i]].epsilonFail+N_material[E_target[i]].epsilonFail)/2.0 #TODO CHANGE TO SMALLEST
b=sqrt(area)
h=sqrt(area)
E_currentTransverseArea[i]=b*h
if haskey(setup,"linear")
linear=setup["linear"]
end
if haskey(edge,"cTE")
cTE=edge["cTE"]
end
cTE=N_material[E_source[i]].cTE+N_material[E_target[i]].cTE
E_material[i]=edgeMaterial(E,mass,nu,rho,b,h,length,loaded,strainRatio,linear,poisson,cTE)
#non linear from data
# todo cleanup
# yieldStress=1e5
# failureStress=-1
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# failureStress=23e4
failureStress=1.1e5
# E_material[i]=setModelBilinear(E_material[i], plasticModulus, yieldStress,failureStress)
strainData=[0.0, 0.1,0.5, 1.1]
stressData=[0.0, 100000.0,500000.0, 110000.0]
strainData=[0.0, 0.1, 0.5, 0.9, -1]
stressData=[0.0, 100000.0,500000.0,450000.0, -1]
strainData=[0.0, 0.1, 0.3, 0.7, -1]
stressData=[0.0, 1e5,5e5,6e5, -1]
strainData=[0.0, 0.1, 0.5, 0.9, -1]
stressData=[0.0, 1e5,5e5,10e5, -1]
strainData=[0.0,0.1,0.25, 0.3, 0.95, -1]
stressData=[0.0,1e5,25e4, 5e5, 6e5, -1]
strainData=[0.0,0.1,0.25, 0.3, 0.5, -1]
stressData=[0.0,1e5,25e4, 25e4, 25e4, -1]
strainData=[0.0, 1.0*0.25, 1.0*0.5, 1.0*0.75, 1.0*0.9, -1]
stressData=[0.0, 1e5*0.25, 1e5*0.5, 1e5*0.75, 1e5*0.9, -1]
strainData=[0.0, 1.0*0.1, 1.0*0.2, 1.0*0.4, 1.0*0.75, -1]
stressData=[0.0, 1e5*0.1, 1e5*0.2, 5e5*0.4, 5e5*0.75, -1]
dataPointCount=8
strainData=[0.0, 1.0*0.1, 1.0*0.2, 1.0*0.4, 1.0*0.6, 1.0*0.7, 1.0*0.9, -1]
stressData=[0.0, 1e5*0.1, 1e5*0.2, 2e5 , 3.6e5 , 5e5 , 7.2e5 , -1]
# strainData=[0.0, 1.0*0.1, 1.0*0.3, 1.0*0.5, 1.0*0.7, 1.0*0.9, 1.0*0.95, -1]
# youngsData=[0.0, 0.0, 1e5, 9e5, 8e5, 1.3e6, 1.15e6,4e5,1e6]
strainData=[0.0, 1.0*0.1, 1.0*0.2, 1.0*0.4, 1.0*0.6, 1.0*0.8, 1.0*0.95, 1.0]
youngsData=[0.0, 0.0, 1e6, 1e6, 1e6, 9e5, 8e5, 7e5]
stressData=[0.0, 1e5*0.1, 1e5*0.2, 1e5*2.2, 1e5*4.1, 1e5*6.0, 1e5*7.1, 1e5*7.5]
strainData=[0.0, 1.0*0.1, 1.0*0.2, 1.0*0.4, 1.0*0.6, 1.0*0.8, 1.0*0.95, 1.0]
youngsData=[0.0, 0.0, 1e6, 1e6, 1e6, 9e5, 8e5, 7e5]
stressData=[0.0, 1e5*0.1, 1e5*0.2]
for i= 4:dataPointCount
append!(stressData,[youngsData[i]*(strainData[i]-strainData[i-1])+stressData[i-1]])
end
# append!(stressData,[-1])
# append!(stressData,[-1])
strainData=[0.0, 1.0*0.1, 1.0*0.2, 1.0*0.4, 1.0*0.6, 1.0*0.8, 1.0*0.95, -1.0]
youngsData=[0.0, 0.0, 1e4, 5e4, 1e5, 5e5, 8e5, 1e5]
stressData=[0.0, 1e5*0.1]
for i= 3:dataPointCount-1
append!(stressData,[youngsData[i]*(strainData[i]-strainData[i-1])+stressData[i-1]])
end
append!(stressData,[-1])
if i==1
println(stressData)
end
strainData=[0.0, 1.0*0.1, 1.0*0.2, 1.0*0.4, 1.0*0.6, 1.0*0.8, 1.0*0.95, -1.0]
stressData=[0.0, 0.05, 0.1, 0.4, 0.6, 0.9, 1.2, -1.0e-5].*1e5
strainData=[0.0, 1.0*0.05, 1.0*0.1, 1.0*0.2, 1.0*0.3, 1.0*0.4, 1.0*0.5, -1]
stressData=[0.0, 1e5*0.05, 1e5*0.1, 1e5*0.2, 1e5*0.3, 1e5*0.4, 1e5*0.5, -1]
strainData=[0.0, 0.1, 0.3, 0.7,0.75,0.8, 0.9, -1]
stressData=[0.0, 1e5, 5e5, 6e5,6.7e5,7e5,7.5e5, -1]
dataPointCount=6
# strainData=[0.0, 0.2, 0.4, 0.7, 1.2, 1.8]
# stressData=[0.0, 2e5 ,4e5, 7e5, 10e5, 18e5]
# strainData=[0.0, 0.2, 0.3, 0.6, 0.9, 1.8]
# stressData=[0.0, 2e5 ,3e5, 8e5, 11e5, 18e5]
# strainData=[0.0, 0.2, 0.4, 0.6, 0.8, 1.8]
# stressData=[0.0, 2e5 ,4e5, 9e5, 8e5, 10e5]
strainData=[0.0, 0.2, 0.4, 0.7, 1.2, 1.8]
stressData=[0.0, 2e5 ,4e5, 4.5e5, 5e5, 6e5]
strainData=[0.0, 0.1, 0.2, 0.5, 0.6, 1.2]
stressData=[0.0, 1e5 ,2e5, 2.5e5, 1.0e5, 0.7e5]
strainData=[0.0, 0.1, 0.2, 0.5, 0.8, 1.2]
stressData=[0.0, 1e5 ,2e5, 3.0e5, 7.0e5, 12e5]
# if i==1
# strainn=0.1
# nu=0.3
# DataCount =dataPointCount
# poisson=true
# transverseStrainSumm=0.001
# for i = 3:DataCount #(i=2; i<DataCount; i++) #go through each segment in the material model (skipping the first segment because it has already been handled.
# println(i)
# if (strainn <= strainData[i] || i==DataCount) #if in the segment ending with this point (or if this is the last point extrapolate out)
# Perc = (strainn-strainData[i-1])/(strainData[i]-strainData[i-1]);
# println("Perc: $Perc")
# basicStress = stressData[i-1] + Perc*(stressData[i]-stressData[i-1]);
# println("basicStress: $basicStress")
# if (!poisson || nu == 0.0)
# basicStress;
# else #accounting for volumetric effects
# modulus = (stressData[i]-stressData[i-1])/(strainData[i]-strainData[i-1]);
# println("modulus: $modulus")
# modulusHat = modulus/((1.0-2.0*nu)*(1.0+nu));
# effectiveStrain = basicStress/modulus; #this is the strain at which a simple linear stress strain line would hit this point at the definied modulus
# effectiveTransverseStrainSum = transverseStrainSumm*(effectiveStrain/strainn);
# m=modulusHat*((1.0-nu)*effectiveStrain + nu*effectiveTransverseStrainSum);
# println("m: $m")
# println()
# end
# end
# end
# end
E_material[i]=setModel(E_material[i],dataPointCount, strainData, stressData)
# println(E_material[i].strainData)
# println(E_material[i].stressData)
# println(E_material[i].epsilonFail)
# println(length)
E_source[i]=edge["source"]+1
E_target[i]=edge["target"]+1
function simulateParallel!(metavoxel,maxNumTimeSteps,dt)
if(mod(i,saveEvery)==0)
#append!(displacements,[Array(metavoxel["N_displacementGPU"])])
updateDataAndSave!(metavoxel,setup,"$(folderPath)$(numFile).json")
numFile+=1
if numFile>maxNumFiles
numFile=0
end
end
end
end
########
voxCount=0
linkCount=0
nodes = setup["nodes"]
edges = setup["edges"]
voxCount=size(nodes)[1]
linkCount=size(edges)[1]
strain =0 #todooo moveeee
maxNumEdges=10
############# nodes
N_position=fill(Vector3(),voxCount)
N_displacement=fill(Vector3(),voxCount)
N_angle=fill(Vector3(),voxCount)
N_currPosition=fill(Vector3(),voxCount)
N_linMom=fill(Vector3(),voxCount)
N_angMom=fill(Vector3(),voxCount)
N_intForce=fill(Vector3(),voxCount)
N_intMoment=fill(Vector3(),voxCount)
N_moment=fill(Vector3(),voxCount)
N_force=fill(Vector3(),voxCount)
N_fixedDisplacement=fill(Vector3(),voxCount)
N_orient=fill(Quaternion(),voxCount)
N_edgeID=fill(-1,(voxCount,maxNumEdges))
N_edgeFirst=fill(true,(voxCount,maxNumEdges))
N_currEdge=fill(1,voxCount)
N_material=fill(voxelMaterial(),voxCount)
N_poissonStrain=fill(Vector3(),voxCount)
############# edges
E_source=fill(0,linkCount)
E_target=fill(0,linkCount)
E_sourceNodalCoordinate=fill(0,linkCount)
E_targetNodalCoordinate=fill(0,linkCount)
E_stress=fill(0.0,linkCount)
E_axis=fill(Vector3(1.0,0.0,0.0),linkCount)
E_currentRestLength=fill(0.0,linkCount)
E_pos2=fill(Vector3(),linkCount)
E_angle1v=fill(Vector3(),linkCount)
E_angle2v=fill(Vector3(),linkCount)
E_angle1=fill(Quaternion(),linkCount)
E_angle2=fill(Quaternion(),linkCount)
E_intForce1=fill(Vector3(),linkCount)
E_intMoment1=fill(Vector3(),linkCount)
E_intForce2=fill(Vector3(),linkCount)
E_intMoment2=fill(Vector3(),linkCount)
E_damp=fill(false,linkCount)
E_smallAngle=fill(true,linkCount)
E_material=fill(edgeMaterial(),linkCount)
E_strain=fill(0.0,linkCount)
E_maxStrain=fill(0.0,linkCount)
E_strainOffset=fill(0.0,linkCount)
E_currentTransverseArea=fill(0.0,linkCount)
E_currentTransverseStrainSum=fill(0.0,linkCount)# TODO remove ot incorporate
#################################################################
initialize!(setup)
#################################################################
########################## turn to cuda arrays
############# nodes
N_positionGPU= CuArray(N_position)
N_restrainedGPU= CuArray(N_restrained)
N_displacementGPU= CuArray(N_displacement)
N_angleGPU= CuArray(N_angle)
N_currPositionGPU= CuArray(N_currPosition)
N_linMomGPU= CuArray(N_linMom)
N_angMomGPU= CuArray(N_angMom)
N_intForceGPU= CuArray(N_intForce)
N_intMomentGPU= CuArray(N_intMoment)
N_momentGPU= CuArray(N_moment)
N_forceGPU= CuArray(N_force)
N_fixedDisplacementGPU= CuArray(N_fixedDisplacement)
N_orientGPU= CuArray(N_orient)
N_edgeIDGPU= CuArray(N_edgeID)
N_edgeFirstGPU= CuArray(N_edgeFirst)
N_materialGPU= CuArray(N_material)
N_poissonStrainGPU= CuArray(N_poissonStrain)
############# edges
E_sourceGPU= CuArray(E_source)
E_targetGPU= CuArray(E_target)
E_sourceNodalCoordinateGPU= CuArray(E_sourceNodalCoordinate)
E_targetNodalCoordinateGPU= CuArray(E_targetNodalCoordinate)
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
E_stressGPU= CuArray(E_stress)
E_axisGPU= CuArray(E_axis)
E_currentRestLengthGPU= CuArray(E_currentRestLength)
E_pos2GPU= CuArray(E_pos2)
E_angle1vGPU= CuArray(E_angle1v)
E_angle2vGPU= CuArray(E_angle2v)
E_angle1GPU= CuArray(E_angle1)
E_angle2GPU= CuArray(E_angle2)
E_strainGPU= CuArray(E_strain)
E_maxStrainGPU= CuArray(E_maxStrain)
E_strainOffsetGPU= CuArray(E_strainOffset)
E_currentTransverseAreaGPU= CuArray(E_currentTransverseArea)
E_currentTransverseStrainSumGPU=CuArray(E_currentTransverseStrainSum)# TODO remove ot incorporate
E_intForce1GPU= CuArray(E_intForce1)
E_intMoment1GPU= CuArray(E_intMoment1)
E_intForce2GPU= CuArray(E_intForce2)
E_intMoment2GPU= CuArray(E_intMoment2)
E_dampGPU= CuArray(E_damp)
E_smallAngleGPU= CuArray(E_smallAngle)
E_materialGPU= CuArray(E_material)
#########################################
metavoxel = Dict(
"N_positionGPU" => N_positionGPU,
"N_restrainedGPU" => N_restrainedGPU,
"N_displacementGPU" => N_displacementGPU,
"N_angleGPU" => N_angleGPU,
"N_currPositionGPU" => N_currPositionGPU,
"N_linMomGPU" => N_linMomGPU,
"N_angMomGPU" => N_angMomGPU,
"N_intForceGPU" => N_intForceGPU,
"N_intMomentGPU" => N_intMomentGPU,
"N_momentGPU" => N_momentGPU,
"N_forceGPU" => N_forceGPU,
"N_fixedDisplacementGPU"=>N_fixedDisplacementGPU,
"N_orientGPU" => N_orientGPU,
"N_edgeIDGPU" => N_edgeIDGPU,
"N_edgeFirstGPU" => N_edgeFirstGPU,
"N_materialGPU"=> N_materialGPU,
"N_poissonStrainGPU"=> N_poissonStrainGPU,
"E_sourceGPU" =>E_sourceGPU,
"E_targetGPU" =>E_targetGPU,
"E_sourceNodalCoordinateGPU" =>E_sourceNodalCoordinateGPU,
"E_targetNodalCoordinateGPU" =>E_targetNodalCoordinateGPU,
"E_stressGPU" =>E_stressGPU,
"E_axisGPU" =>E_axisGPU,
"E_currentRestLengthGPU" =>E_currentRestLengthGPU,
"E_pos2GPU" =>E_pos2GPU,
"E_angle1vGPU" =>E_angle1vGPU,
"E_angle2vGPU" =>E_angle2vGPU,
"E_angle1GPU" =>E_angle1GPU,
"E_strainGPU" =>E_strainGPU,
"E_maxStrainGPU" =>E_maxStrainGPU,
"E_strainOffsetGPU"=>E_strainOffsetGPU,
"E_currentTransverseAreaGPU" =>E_currentTransverseAreaGPU,
"E_currentTransverseStrainSumGPU" =>E_currentTransverseStrainSumGPU,
"E_intForce1GPU" =>E_intForce1GPU,
"E_intMoment1GPU" =>E_intMoment1GPU,
"E_intForce2GPU" =>E_intForce2GPU,
"E_intMoment2GPU" =>E_intMoment2GPU,
"E_dampGPU" =>E_dampGPU,
"E_smallAngleGPU" =>E_smallAngleGPU,
"E_materialGPU" =>E_materialGPU
)
#########################################
dt=0.0251646
E = setup["edges"][1]["material"]["stiffness"] # MPa
s=round(sqrt(setup["edges"][1]["material"]["area"] );digits=10)
# s=E_material[1].L
# s=setup["voxelSize"]
mass=N_material[1].mass
if(setup["poisson"])
# mat->_eHat*currentTransverseArea/((strain+1.0)*currentRestLength)
eHat=E_material[1].eHat
temp=eHat*E_material[1].b*E_material[1].h/((0.0+1.0)*E_material[1].L)
MaxFreq2=temp/mass
end
dt= 1.0/(6.283185*sqrt(MaxFreq2))
println("dt: $dt, s: $s, mass: $mass, momentInertiaInverse: $(N_material[1].momentInertiaInverse)")
t=@timed doTimeStep!(metavoxel,dt,0)
time=t[2]
println("first timestep took $time seconds")
t=@timed simulateParallel!(metavoxel,maxNumTimeSteps-1,dt)
setup["maxNumFiles"]=numSaves
println("ran $voxCount nodes and $linkCount edges for $maxNumTimeSteps time steps took $time seconds")
function doTimeStep!(metavoxel,dt,currentTimeStep)
# update forces: go through edges, get currentposition from nodes, calc pos2 and update stresses and interior forces of nodes
run_updateEdges!(dt,currentTimeStep,
metavoxel["E_sourceGPU"],
metavoxel["E_targetGPU"],
metavoxel["E_sourceNodalCoordinateGPU"],
metavoxel["E_targetNodalCoordinateGPU"],
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
metavoxel["E_stressGPU"],
metavoxel["E_axisGPU"],
metavoxel["E_currentRestLengthGPU"],
metavoxel["E_pos2GPU"],
metavoxel["E_angle1vGPU"],
metavoxel["E_angle2vGPU"],
metavoxel["E_angle1GPU"],
metavoxel["E_angle2GPU"],
metavoxel["E_intForce1GPU"],
metavoxel["E_intMoment1GPU"],
metavoxel["E_intForce2GPU"],
metavoxel["E_intMoment2GPU"],
metavoxel["E_dampGPU"],
metavoxel["E_smallAngleGPU"],
metavoxel["E_materialGPU"],
metavoxel["E_strainGPU"],
metavoxel["E_maxStrainGPU"],
metavoxel["E_strainOffsetGPU"],
metavoxel["E_currentTransverseAreaGPU"],
metavoxel["E_currentTransverseStrainSumGPU"],
metavoxel["N_currPositionGPU"],
metavoxel["N_orientGPU"],
metavoxel["N_poissonStrainGPU"])
# update forces: go through nodes and update interior force (according to int forces from edges), integrate and update currpos
run_updateNodes!(dt,currentTimeStep,
metavoxel["N_positionGPU"],
metavoxel["N_restrainedGPU"],
metavoxel["N_displacementGPU"],
metavoxel["N_angleGPU"],
metavoxel["N_currPositionGPU"],
metavoxel["N_linMomGPU"],
metavoxel["N_angMomGPU"],
metavoxel["N_intForceGPU"],
metavoxel["N_intMomentGPU"],
metavoxel["N_forceGPU"],
metavoxel["N_fixedDisplacementGPU"],
metavoxel["N_momentGPU"],
metavoxel["N_orientGPU"],
metavoxel["N_edgeIDGPU"],
metavoxel["N_edgeFirstGPU"],
metavoxel["N_materialGPU"],
metavoxel["N_poissonStrainGPU"],
metavoxel["E_intForce1GPU"],
metavoxel["E_intMoment1GPU"],
metavoxel["E_intForce2GPU"],
metavoxel["E_intMoment2GPU"],
metavoxel["E_axisGPU"],
metavoxel["E_strainGPU"],